Đăng ký Đăng nhập
Trang chủ Nghiên cứu thuật toán xác định và duy trì điểm làm việc có công suất cực đại của...

Tài liệu Nghiên cứu thuật toán xác định và duy trì điểm làm việc có công suất cực đại của hệ thống lai điện gió và điện mặt trời nối lưới

.PDF
84
2
102

Mô tả:

i .. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG BÙI THỊ HUYỀN TRANG NGHIÊN CỨU THUẬT TOÁN XÁC ĐỊNH VÀ DUY TRÌ ĐIỂM LÀM VIỆC CÓ CÔNG SUẤT CỰC ĐẠI CỦA HỆ THỐNG LAI ĐIỆN GIÓ VÀ ĐIỆN MẶT TRỜI NỐI LƯỚI Ngành: kỹ thuật điều khiển và tự động hóa Mã số: 8520216 LUẬN VĂN THẠC SĨ KỸ THUẬT NGÀNH KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. LẠI KHẮC LÃI Thái Nguyên - 2020 ii LỜI CAM ĐOAN Tên tôi là: Bùi Thị Huyền Trang Sinh ngày: 16 tháng 12 năm 1989 Học viên lớp CĐK17A – KTĐK&TĐH, Trường Đại học Công nghệ thông tin và Truyền thông - Đại học Thái Nguyên. Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu nêu trong luận văn là trung thực. Những kết luận trong luận văn chưa từng được công bố trong bất kỳ công trình nào. Mọi thông tin trích dẫn trong luận văn đều chỉ rõ nguồn gốc. Tác giả luận văn Bùi Thị Huyền Trang iii LỜI CẢM ƠN Tôi xin trân trọng bày tỏ lòng biết ơn sâu sắc đến thầy giáo PGS.TS Lại Khắc Lãi - người đã hướng dẫn, giúp đỡ tôi hoàn thành luận văn thạc sĩ này. Tôi xin trân thành cảm ơn ác thầy cô giáo ở Khoa công nghệ tự động hóa trường đại học công nghệ thông tin và truyền thông thái nguyên đã đóng góp nhiều ý kiến và tạo điều kiện thuận lợi cho tôi hoàn thành luận văn. Tôi xin chân thành cảm ơn Phòng Đào Tạo, các phòng ban, Khoa sau đại học, Xin chân thành cảm ơn Ban giám hiệu Trường đại học công nghệ thông tin và truyền thông Thái Nguyên đã tạo những điều kiện thuận lợi nhất về mọi mặt để tôi hoàn thành khóa học. Tác giả luận văn Bùi Thị Huyền Trang iv MỤC LỤC Lời cam đoan ............................................................................................................. ii Lời cảm ơn ................................................................................................................ iii Mục lục .................................................................................................................... iv Danh mục chữ viết tắt .............................................................................................. ix Danh mục hình vẽ và đồ thị .................................................................................... viii CHƯƠNG 1. TỔNG QUAN LÝ THUYẾT SỬ DỤNG TRONG ĐỀ TÀI ......... 4 1.1. Bộ biến đổi một chiều- một chiều(DC-DC)........................................................ 4 1.1.1. Chức năng bộ biến đổi DC-DC ........................................................................ 4 1.1.2. Bộ biến đổi DC-DC không cách li ................................................................... 4 1.1.3. Bộ biến đổi DC- DC có cách ly ..................................................................... 10 1.1.4. Điều khiển bộ biến đổi DC-DC ..................................................................... 11 1.2. BIẾN ĐỔI MỘT CHIỀU SANG XOAY CHIỀU DC-AC (Inverter) .............. 12 1.2.1. Biến đổi một chiều sang hệ thống xoay chiều một pha ................................. 12 1.2.1.1. Cấu tạo ........................................................................................................ 12 1.2.1.2. Nguyên lý làm việc ..................................................................................... 13 1.2.2. Biến đổi một chiều sang hệ thống xoay chiều ba pha .................................... 15 1.3. Các phép chuyển đổi ......................................................................................... 16 1.3.1. Các hệ trục tọa độ .......................................................................................... 16 1.3.2. Các phép chuyển đổi ...................................................................................... 18 1.3.2.1. Biến đổi hệ thống ba pha sang 2 pha .......................................................... 18 1.3.2.2. Chuyển đổi hệ thống một pha sang hai pha ................................................ 21 1.4. Điều chế độ rộng xung (PWM - Pulse Width Modulation) .............................. 22 1.4.1. Điều chế độ rộng xung dựa trên sóng mang (CB-PWM) .............................. 23 1.4.2. Điều chế véc tơ không gian (SVM) .............................................................. 24 1.5. Điều khiển bộ chuyển đổi DC-AC .................................................................... 25 1.5.1. Bộ điều khiển PI............................................................................................. 26 1.5.2. Bộ điều khiển cộng hưởng tỉ lệ (PR - Proportional Resonant) ...................... 26 1.5.3.Bộ điều khiển phản hồi trạng thái ................................................................... 27 1.6. Vấn đề hòa nguồn điện với lưới ........................................................................ 28 v 1.6.1. Các điều kiện hòa đồng bộ ............................................................................. 28 1.6.2. Đồng vị pha trong hai hệ thống lưới .............................................................. 29 1.7. Kết luận chương 1 ............................................................................................. 30 CHƯƠNG 2: HỆ THỐNG TÍCH HỢP ĐIỆN GIÓ VÀ ĐIỆN MẶT TRỜI. ... 31 2.1. Năng lượng gió và năng lượng mặt trời. ........................................................... 31 2.1.1. Năng lượng mặt trời ....................................................................................... 31 2.1.1.1. Cấu trúc của mặt trời ................................................................................... 31 2.1.1.2. Năng lượng mặt trời .................................................................................... 32 2.1.2. Năng lượng điện gió. ..................................................................................... 33 2.1.2.1. Sử dụng điện năng từ gió. ........................................................................... 33 2.1.2.2. Công suất lắp đặt trên thế giới .................................................................... 35 2.2. Khai thác, sử dụng trực tiếp năng lượng gió và mặt trời .................................. 35 2.2.1. Thiết bị sấy khô dùng năng lượng mặt trời. ................................................... 35 2.2.2. Thiết bị chưng cất nước sử dụng năng lượng mặt trời. .................................. 36 2.2.3. Động cơ stirling chạy bằng năng lượng mặt trời. .......................................... 36 2.2.4. Bếp nấu dùng năng lượng mặt trời. ............................................................... 37 2.2.5. Thiết bị đun nước nóng bằng năng lượng mặt trời. ....................................... 38 2.2.6. Thiết bị làm lạnh và điều hòa không khí dùng năng lượng mặt trời. ............ 39 2.2.7. Cối xay gió ..................................................................................................... 40 2.3. Hệ thống tích hợp điện gió và điện mặt trời ..................................................... 41 2.3.1. Sơ đồ khối hệ thống. ...................................................................................... 41 2.3.2. Pin mặt trời..................................................................................................... 41 2.3.2.1. Khái niệm. ................................................................................................... 41 2.3.2.2. Mô hình toán và đặc tính làm việc của pin mặt trời. .................................. 42 2.3.3. Tuabin gió và máy phát điện .......................................................................... 45 2.3.3.1. Cấu trúc chung của tuabin gió. ................................................................... 45 2.3.3.2. Mô hình hóa tuain gió (WT) và máy phát cảm ứng .................................... 47 2.3.3.3.Điều khiển điện gió ...................................................................................... 48 2.4. Hệ thống tích hợp điện gió và mặt trời làm việc độc lập .................................. 49 2.4.1. Sơ đồ khối hệ thống. ...................................................................................... 49 2.4.2. Đặc điểm và phạm vi ứng dụng ..................................................................... 50 vi 2.5. HỆ THỐNG TÍCH HỢP ĐIỆN GIÓ VÀ MẶT TRỜI NỐI LƯỚI. ................. 51 2.5.1. Sơ đồ khối hệ thống. ...................................................................................... 51 2.5.3. Các nhiệm vụ điều khiển trong hệ thống. ..................................................... 51 2.6. Kết luận chương 2 ............................................................................................. 52 CHƯƠNG 3: ĐIỀU KHIỂN BÁM ĐIỂM LÀM VIỆC TỐI ƯU CỦA HỆ THỐNG ĐIỆN GIÓ VÀ MẶT TRỜI NỐI LƯỚI .............................................. 53 3.1. Ý nghĩa việc xác định điểm làm việc có công suất cực đại (MPPT) ................ 53 3.1.1. Ý nghĩa của MPPT đối với mặt trời ............................................................... 53 3.1.2. Ý nghĩa của MPPT đối với điện gió .............................................................. 55 3.2. Thuật toán mppt cho hệ thống chuyển đổi năng lượng mặt trời ....................... 56 3.2.1. Thuật toán điện áp không đổi (CV – Constant Voltage) ............................... 56 3.2.2. Thuật toán xáo trộn và quan sát (P&O - Perturb and Observe) ..................... 57 3.2.3. Thuật toán điện dẫn gia tăng (INC - Inremental Conductance)..................... 57 3.2.4. Thuật toán điện dung ký sinh (PC – ParasiticCapacitance) ........................... 58 3.2.5. MPPT ứng dụng logic mờ .............................................................................. 59 3.3. Thuật toán mppt đối với điện gió ...................................................................... 62 3.3.1. Phương pháp điều khiển TSR ........................................................................ 62 3.3.2. Phương pháp điều khiển PSF ......................................................................... 62 3.3.3. Phương pháp điều khiển leo đồi .................................................................... 63 3.3.4. MPPT cho turbine gió sử dụng máy phát điện đồng bộ kích thích vĩnh cửu 64 3.4. Kết quả mô phỏng ............................................................................................. 67 3.4.1. Sơ đồ và kịch bản mô phỏng .......................................................................... 67 3.4.3. Nhận xét ......................................................................................................... 70 3.5. Kết luận chương 3 ............................................................................................. 70 KẾT LUẬN VÀ KIẾN NGHỊ ............................................................................... 71 1. Kết luận ................................................................................................................ 71 2.Kiến nghị ............................................................................................................... 71 TÀI LIỆU THAM KHẢO ..................................................................................... 72 vii DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Inverter Grid Tie hoặc Inverter On Grid Biến tần nối lưới PLL - Phase Lock Loop Vòng khóa pha NLTT Năng lượng tái tạo DC-DC Biến đổi một chiều sang một chiều DC-AC Biến đổi một chiều sang xoay chiều PR - Proportional Resonant Cộng hưởng tỉ lệ INC - Inremental Conductance Thuật toán độ dẫn gia tăng Anti Islanding Chống cô lập CV - Constant Voltage Thuật toán điện áp không đổi P&O - Perturb and Observe Thuật toán xáo trộn và quan sát PC - Parasitic Capacitance Solar Power SOGI-Second-order generalised integrator Thuật toán điện dung ký sinh Năng lượng mặt trời Tích phân bậc 2 tổng quát ZCD - Zero Cross Detection Phát hiện điểm qua zero ZCZVS - Zero current Zero Voltage Switching. Chuyển mạch với điện áp và dòng điện bằng 0. CB-PWM - Carrier Based Pulse Width Điều chế độ rộng xung dựa trên sóng mang SVM - Space Vecto Modulation Điều chế véc tơ không gian CC - Current Control Điều khiển dòng điện VC - Voltage - Control Điều khiển điện áp VSI - Voltage Source Inverter Biến tần nguồn áp viii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1. 1 Sơ đồ nguyên lý mạch Buck............................................................... 5 Hình 1. 2: Sơ đồ nguyên lý mạch Boost............................................................. 6 Hình 1. 3: Sơ đồ nguyên lý mạch Buck - Boost ................................................. 7 Hình 1. 4: Sơ đồ biến đổi Cuk ............................................................................ 8 Hình 1. 5: Sơ đồ mạch bộ Cuk khi khóa SW mở thông dòng ............................ 8 Hình 1. 6: Sơ đồ mạch bộ Cuk khi khóa SW đóng ............................................ 9 Hình 1. 7: Bộ chuyển đổi DC – DC có cách ly ................................................ 10 Hình 1. 8: Sơ đồ cấu trúc mạch vòng điều khiển điện áp ................................ 11 Hình 1. 9: Sơ đồ cấu trúc mạch vòng điều khiển dòng điện ............................ 12 Hình 1. 10: Nghịch lưu áp cầu một pha và đồ thị ............................................ 13 Hình 1. 11: Sơ đồ mạch nghịch lưu 3 pha ........................................................ 15 Hình 1. 12: Sơ đồ dẫn của các transistor và điện áp ra trên các pha ................ 15 Hình 1. 13: Chuyển đổi từ hệ tọa độ abc sang hệ tọa độ αβ ............................ 19 Hình 1. 14: Chuyển đổi từ hệ qui chiếu αβ sang hệ qui chiếu dq .................... 20 Hình 1. 15: Cấu trúc của SOGI ........................................................................ 22 Hình 1. 16: Điều chế độ rộng xung dựa trên sóng mang hình sin .................... 23 Hình 1. 17: Biểu diễn véc tơ không gian của điện áp ra .................................. 24 Hình 2. 1: Cấu trúc mặt trời ............................................................................. 32 Hình 2. 2: Cối xay gió ...................................................................................... 34 Hình 2. 3: Thiết bị sấy khô dùng năng lượng mặt trời. .................................... 35 Hình 2. 4: Thiết bị chưng cất nước dùng NLMT ............................................. 36 Hình 2. 5: Động cơ stirling chạy bằng năng lượng mặt trời ............................ 36 Hình 2. 6: Bếp nấu dùng năng lượng mặt trời .................................................. 37 Hình 2. 7: Thiết bị đun nước nóng bằng NLMT .............................................. 38 Hình 2. 8: Thiết bị làm lạnh và điều hòa không khí dùng năng lượng mặt trời. ................................................................................................................... 39 Hình 2. 9: Cối xay gió ...................................................................................... 40 Hình 2. 10: Hệ thống tích hợp điện gió và điện mặt trời ................................. 41 Hình 2. 11: Mạch tương đương của modul PV ................................................ 43 ix Hình 2. 12: Quan hệ I(U) và P(U) của PV ....................................................... 44 Hình 2. 13: a, b, c, d : Họ đặc tính của PV ....................................................... 44 Hình 2. 14: Cấu tạo tuabin gió truc ngang ....................................................... 46 Hình 2. 15: Tuabin gió với tốc độ thay đổi có bộ biến đổi nối trực tiếp .......... 47 Hình 2. 16: Sơ đồ mô phỏng tuabin gió ........................................................... 48 Hình 2. 17: Chỉnh lưu cầu kép ......................................................................... 48 Hình 2. 18: Sơ đồ khối chức năng điều khiển tuabin gió ................................. 49 Hình 2. 19: Hệ thống năng lượng mặt trời độc lập. ......................................... 50 Hình 2. 20: Hệ thống tích hợp điện gió và mặt trời nối lưới ............................ 51 Hình 2. 21: Sơ đồ khối hệ thống tích hợp năng lượng gió và mặt trời ............ 52 Hình 3. 2: Đặc tính V-A của tải và của pin mặt trời ........................................ 54 Hình 3. 1: Quan hệ I(U) và P(U) của PV ......................................................... 53 Hình 3. 3: Sơ đồ khối hệ thống điện mặt trời nối lưới sử dụng MPP .............. 54 Hình 3. 4: Sự thay đổi công suất turbine theo tốc độ gió ................................. 55 Hình 3. 5: Quan hệ P(U) của tấm pin PV ......................................................... 56 Hình 3. 6: Lưu đồ thuật toánP&O .................................................................... 57 Hình 3. 7: Lưu đồ thuật toán INC .................................................................... 58 Hình 3. 8: Quan hệ P-U của tấm PV ................................................................ 59 Hình 3. 9: Hàm liên thuộc của các tập mờ đầu vào (E, DE) ............................ 61 Hình 3. 10: Hàm liên thuộc đầu ra (D) ............................................................. 61 Hình 3. 11: Điều khiển tốc độ đầu cánh của WECS ........................................ 62 Hình 3. 12: Phương pháp PSF .......................................................................... 63 Hình 3. 13: Nguyên tắc điều khiển HCS .......................................................... 63 Hình 3. 14: WECS với thuật toán leo đồi......................................................... 64 Hình 3. 15: PMSG hệ thống chuyển đổi năng lượng gió ................................. 64 Hình 3. 16: Lưu đồ thuật toán bộ điều khiển MPPT ........................................ 66 Hình 3. 17: Sơ đồ mô phỏng hệ thống điện mặt trời nối lưới .......................... 67 Hình 3. 18: Điện áp một chiều trên DC-bus (UDC-bus) ...................................... 69 Hình 3. 19: Công suất hệ thống Win-Solar và công suất Inverter bơm vào lưới ................................................................................................................... 69 x Hình 3. 20: Đường cong điện áp và dòng điện 1 pha của Inverter .................. 70 1 LỜI MỞ ĐẦU 1. Tính cấp thiết của đề tài. Hiện nay các nguồn năng lượng truyền thống như: dầu mỏ, khí đốt tự nhiên và than đá đang ngày một cạn kiệt, chỉ có thể đáp ứng nhu cầu năng lượng của chúng ta thêm 50-70 năm nữa. Vì vậy, cần phải tìm kiếm các nguồn năng lượng mới để thay thế. Giải pháp hiện nay là nghiên cứu sử dụng nguồn năng lượng tái tạo. Năng lượng tái tạo tiêu biểu là năng lượng gió và năng lượng mặt trời là nguồn năng lượng sạch và vô hạn mà thiên nhiên ban tặng cho con người. Việt Nam với lợi thế là một trong những nước nằm trong dải phân bổ ánh nắng mặt trời nhiều nhất trong năm trên bản đồ bức xạ của thế giới, với bờ biển dài hơn 3.000 km và lượng gió tại nhiều vùng miền rất dồi dào, chúng ta cần nghiên cứu, tiếp cận những công nghệ mới hơn, hiện đại hơn để đưa chúng trở thành nguồn cung cấp năng lượng chính trong tương lai. Xu hướng khai thác và sử dụng nguồn năng lượng tái tạo chủ yếu hiện nay là chuyển chúng thành điện năng làm việc độc lập, hòa vào lưới điện cục bộ (vi lưới) hoặc hòa lưới điện quốc gia. Do đặc điểm nguồn năng lượng gió và mặt trời luôn luôn thay đổi theo thời gian trong ngày, theo mùa, … nên việc xác định và duy trì điểm làm việc tối ưu cho chúng tại mỗi thời điểm là rất cần thiết. Việt Nam có tiềm năng phát triển các nguồn Năng lượng tái tạo sẵn có của mình. Những nguồn Năng lượng tái tạo có thể khai thác và sử dụng trong thực tế đã được nhận diện đến nay gồm: thủy điện nhỏ, năng lượng gió, năng lượng sinh khối, năng lượng khí sinh học (KSH), nhiên liệu sinh học, năng lượng từ nguồn rác thải sinh hoạt, năng lượng mặt trời, và năng lượng địa nhiệt. Năng lượng gió: Được đánh giá là quốc gia có tiềm năng phát triển năng lượng gió nhưng hiện tại số liệu về tiềm năng khai thác năng lượng gió của Việt Nam chưa được lượng hóa đầy đủ bởi còn thiếu điều tra và đo đạc. Số liệu đánh giá về tiềm năng năng lượng gió có sự dao động khá lớn, từ 1.800MW đến trên 9.000MW, thậm chí 2 trên 100.000MW. Theo các báo cáo thì tiềm năng năng lượng gió của Việt Nam tập trung nhiều nhất tại vùng duyên hải miền Trung, miền Nam, Tây Nguyên và các đảo. Năng lượng mặt trời: Việt Nam có tiềm năng về nguồn năng lượng mặt trời, có thể khai thác cho các sử dụng như: (i) Đun nước nóng, (ii) Phát điện và (iii) Các ứng dụng khác như sấy, nấu ăn... Với tổng số giờ nắng cao lên đến trên 2.500 giờ/năm, tổng lượng bức xạ trung bình hàng năm vào khoảng 230-250 kcal/cm2 theo hướng tăng dần về phía Nam là cơ sở tốt cho phát triển các công nghệ năng lượng mặt trời. So với nhiều nước trên thế giới, những kết quả nêu trên còn quá nhỏ bé và chưa phát huy hết tiềm năng hiện có. Để đáp ứng nhu cầu trong khi việc cung ứng năng lượng đang và sẽ phải đối mặt với nhiều vấn đề và thách thức, đặc biệt là sự cạn kiệt dần nguồn nhiên liệu hóa thạch nội địa, giá dầu biến động theo xu thế tăng và Việt Nam sẽ sự phụ thuộc nhiều hơn vào giá năng lượng thế giới..., Chính vì vậy, việc xem xét khai thác nguồn Năng lượng tái tạo trong giai đoạn tới sẽ có ý nghĩa hết sức quan trọng cả về kinh tế, xã hội, an ninh năng lượng và bảo vệ môi trường. Vấn đề này đã được Chính phủ quan tâm, chỉ đạo và bước đầu đã được đề cập trong một số các văn bản pháp lý. Trong bối cảnh nhu cầu năng lượng của Việt Nam ngày một gia tang, khả năng cung cấp các nguồn năng lượng nội địa hạn chế trong khi tiềm năng nguồn Năng lượng tái tạo của Việt Nam rất lớn kèm theo nhu cầu sử dụng điện và nhiệt cho sản xuất cao thì việc xem xét khai thác nguồn Năng lượng tái tạo sãn có cho sản xuất điện, đồng phát năng lượng là rất khả thi cả về công nghệ lẫn hiệu quả kinh tế và môi trường. 2. Ý nghĩa khoa học của đề tài. Đề tài hoàn thành sẽ là một tài liệu tham khảo bổ ích để xây dựng hệ thống lai điện gió và điện mặt trời nối lưới luôn làm việc ở chế độ tối ưu mặc dầu có sự thay đổi liên tục của điều kiện môi trường như gió, bức xạ mặt trời, nhiệt độ, v,v… 3. Mục tiêu nghiên cứu. Xây dựng hệ thống tích hợp điện gió và điện mặt trời nối lưới 3 pha. Nghiên cứu một số thuật toán xác định và duy trì điểm làm việc cực đại của hệ thống lai điện gió và điện mặt trời nối lưới . 3 4. Đối tượng nghiên cứu. Hệ thống tích hợp điện gió và điện mặt trời nối lưới 3 pha. 5. Phương pháp nghiên cứu. Nghiên cứu lý thuyết để xây dựng các thuật toán điều khiển. Mô hình hóa, mô phỏng để kiểm nghiệm và đánh giá các thuật toán đề xuất. 6. Bố cục luận văn. Chương 1: Tổng quan về lý thuyết sử dụng trong đề tài. Chương 2 : Hệ thống tích hợp điện gió và điện mặt trời. Chương 3: Điều khiển bám điểm làm việc tối ưu của hệ thống điện gió và điện mặt trời nối lưới. 4 CHƯƠNG 1 TỔNG QUAN LÝ THUYẾT SỬ DỤNG TRONG ĐỀ TÀI 1.1. Bộ biến đổi một chiều- một chiều(DC-DC) 1.1.1. Chức năng bộ biến đổi DC-DC Bộ biến đổi 1 chiều 1 chiều (Boot converter) có nhiệm vụ biến đổi điện áp một chiều về trị số phù hợp với điện áp một chiều đặt vào bộ nghịch lưu (thường 400V). Đồng thời thông qua bộ Boost converter này để thực hiện điều khiển bám điểm công suất cực đại cho hệ thống. Các bộ biến đổi DC/DC được chia làm 2 loại: Có cách ly và loại không cách ly. Loại cách ly sử dụng máy biến áp cao tần, chúng cách ly nguồn điện một chiều đầu vào với nguồn một chiều ra và tăng hay giảm áp bằng cách điều chỉnh hệ số biến áp. Loại này thường được sử dụng cho các nguồn cấp một chiều sử dụng khoá điện tử và cho hệ thống lai. Loại DC/DC không cách ly không sử dụng máy biến áp cách ly. Chúng luôn được dùng trong các bộ điều khiển động cơ một chiều. Các loại bộ biến đổi DC/DC thường dùng trong hệ PV gồm: Bộ giảm áp (buck) Bộ tăng áp (boost) Bộ biến đổi tăng - giảm áp Cuk Bộ giảm áp buck có thể định được điểm làm việc có công suất tối ưu mỗi khi điện áp vào vượt quá điện áp ra của bộ biến đổi, trường hợp này ít thực hiện được khi cường độ bức xạ của ánh sáng xuống thấp. Bộ tăng áp boost có thể định điểm làm việc tối ưu ngay cả với cường độ ánh sáng yếu. Hệ thống làm việc với lưới dùng bộ Boost để tăng điện áp ra cấp cho tải trước khi đưa vào bộ biến đổi DC/AC. 1.1.2. Bộ biến đổi DC-DC không cách li a) Mạch Buck Sơ đồ nguyên lý mạch buck được chỉ ra trên hình 1.1[1,2]. Khóa K trong mạch là những khóa điện tử BJT, MOSFET, hay IGBT. Mạch Buck có chức năng giảm 5 điện áp đầu vào xuống thành điện áp nạp ắc quy. Khóa transitor được đóng mở với tần số cao. Hệ số làm việc D của khóa được xác định theo công thức sau: 𝐷= 𝑇𝑜𝑛 𝑇 = 𝑇𝑜𝑛 . 𝑓𝐷𝐶 (1.1) Trong đó Ton là thời gian khóa K mở, T là chu kỳ làm việc của khóa, f DC tần số đóng cắt. Hình 1. 1 Sơ đồ nguyên lý mạch Buck Trong thời gian mở, khóa K thông cho dòng đi qua, điện áp một chiều được nạp vào tụ C2 và cấp năng lượng cho tải qua cuộn kháng L. Trong thời gian đóng, khóa K đóng lại không cho dòng qua nữa, năng lượng 1 chiều từ đầu vào bằng 0. Tuy nhiên tải vẫn được cung cấp đầy đủ điện nhờ năng lượng lưu trên cuộn kháng và tụ điện do Diode khép kín mạch. Như vậy cuộn kháng và tụ điện có tác dụng lưu giữ năng lượng trong thời gian ngắn để duy trì mạch khi khóa K đóng. 𝑈𝑜𝑢𝑡 = 𝑈𝑖𝑛 . 𝐷 (1.2) Công thức (1.2) cho thấy điện áp ra có thể điều khiển được bằng cách điều khiển hệ số làm việc. Hệ số làm việc được điều khiển bằng cách phương pháp điều chỉnh độ rộng xung thời gian mở ton. Do đó, bộ biến đổi này còn được biết đến như là bộ điều chế xung PWM. Bộ Buck có cấu trúc đơn giản nhất, dễ hiểu và dễ thiết kế nhất. Bộ Buck cũng thường được dùng để nạp ắc quy nhưng nó có nhược điểm là dòng vào không liên tục vì khóa điện tử được bố trí ở vị trí đầu vào, vì vậy cần phải có bộ lọc tốt. Mạch Buck thích hợp sử dụng khi điện áp pin cao hơn điện áp ắc quy. Dòng công suất được điều khiển bằng cách điều chỉnh chu kỳ đóng mở của khóa điện tử. 6 Bộ Buck có thể làm việc tại điểm MPP trong hầu hết điều kiện nhiệt độ, cường độ bức xạ. Nhưng bộ này sẽ không làm việc chính xác khi điểm MPP xuống thấp hơn ngưỡng điện áp nạp ắc quy dưới điều kiện nhiệt độ cao và cường độ bức xạ xuống thấp. Vì vậy để nâng cao hiệu quả làm việc, có thể kết hợp bộ Buck với thành phần tăng áp. b) Mạch Boost Sơ đồ nguyên lý mạch Boost như hình 1.2 [1,2] Hình 1. 2: Sơ đồ nguyên lý mạch Boost Giống như bộ Buck, hoạt động của bộ Boost được thực hiện qua cuộn kháng L. Chuyển mạch K đóng mở theo chu kỳ. Khi K mở cho dòng qua (t on) cuộn kháng tích năng lượng, khi K đóng (t off) cuộn kháng giải phóng năng lượng qua Điốt tới tải. 𝑈1 − 𝑈0 = 𝐿 𝑑𝐼𝐿 𝑑𝑡 (1.3) Mạch này tăng điện áp võng khi phóng của ắc quy lên để đáp ứng điện áp ra. Khi khóa K mở, cuộn cảm được nối với nguồn 1 chiều. Khóa K đóng, dòng điện cảm ứng chạy vào tải qua Điốt. Với hệ số làm việc D của khóa K, điện áp ra được tính theo: 𝑈𝑜𝑢𝑡 = 𝑈𝑖𝑛 1−𝐷 (1.4) Với phương pháp này cũng có thể điều chỉnh Ton trong chế độ dẫn liên tục để điều chỉnh điện áp vào V1 ở điểm công suất cực đại theo thế của tải Vo. 7 c) Mạch Buck – Boost Sơ đồ nguyên lý như hình 1.3 [1,2] Hình 1. 3: Sơ đồ nguyên lý mạch Buck - Boost Từ công thức (1.4): Do D < 1 nên điện áp ra luôn lớn hơn điện áp vào. Vì vậy mạch Boost chỉ có thể tăng áp trong khi mạch Buck đã trình bày ở trên thì chỉ có thể giảm điện áp vào. Kết hợp cả hai mạch này với nhau tạo thành mạch Buck – Boost vừa có thể tăng và giảm điện áp vào. Khi khóa đóng, điện áp vào đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời gian. Khi khóa ngắt điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp cảm ứng đủ để Điôt phân cực thuận. Tùy vào tỷ lệ giữa thời gian đóng khóa và mở khóa mà giá trị điện áp ra có thể nhỏ hơn, bằng hay lớn hơn giá trị điện áp vào. Trong mọi trường hợp thì dấu của điện áp ra là ngược với dấu của điện áp vào, do đó dòng điện đi qua điện cảm sẽ giảm dần theo thời gian. Ta có công thức: 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 𝐷 1−𝐷 (1.5) Công thức (1.5) cho thấy điện áp ra có thể lớn hơn hay nhỏ hơn điện áp vào tùy thuộc vào hệ số làm việc D: Khi D = 0.5 thì Uin = Uout; Khi D < 0.5 thì Uin > Uout; Khi D > 0.5 thì Uin < Uout 8 d) Mạch Cuk Sơ đồ nguyên lý như hình 1.4 Hình 1. 4: Sơ đồ biến đổi Cuk Bộ Cuk vừa có thể tăng, vừa có thể giảm áp. Cuk dùng một tụ điện để lưu giữ năng lượng vì vậy dòng điện vào sẽ liên tục. Mạch Cuk ít gây tổn hao trên khoá điện tử hơn và cho hiệu quả cao. Nhược điểm của Cuk là điện áp ra có cực tính ngược với điện áp vào nhưng bộ Cuk cho đặc tính dòng ra tốt hơn do có cuộn cảm đặt ở tầng ra. Chính từ ưu điểm chính này của Cuk (tức là có đặc tính dòng vào và dòng ra tốt) Nguyên lý hoạt động của Cuk là chế độ dẫn liên tục. Ở trạng thái ổn định, điện áp trung bình rơi trên cuộn cảm bằng 0, theo định luật điện áp Kiếchôp ở vòng mạch ngoài cùng hình vẽ 1.4 ta có: VC1 = VS + V0 Giả sử tụ C1 có dung lượng đủ lớn và điện áp trên tụ không gợn sóng mặc dù nó lưu giữ và chuyển một lượng năng lượng lớn từ đầu vào đến đầu ra. Điều kiện ban đầu là khi điện áp vào được cấp và khoá SW khoá không cho dòng chảy qua. Điốt D phân cực thuận, tụ C1 được nạp. Hoạt động của mạch được chia thành 2 chế độ. Chế độ 1: Khi khoá SW mở thông dòng, mạch như ở hình vẽ 1.5 [1,2] Hình 1. 5: Sơ đồ mạch bộ Cuk khi khóa SW mở thông dòng 9 Điện áp trên tụ C1 làm điôt D phân cực ngược và Điốt khoá. Tụ C1 phóng sang tải qua đường SW, C2, Rtải, và L2. Cuộn cảm đủ lớn nên giả thiết rằng dòng điện trên cuộn cảm không gợn sóng. Vì vậy ta có mỗi quan hệ sau: −𝐼𝐶1 = 𝐼𝐿2 (1.6) Chế độ 2: Khi SW khoá ngăn không cho dòng chảy qua, mạch có dạng như hình vẽ 1.6 [1,2] Hình 1. 6: Sơ đồ mạch bộ Cuk khi khóa SW đóng Tụ C1 được nạp từ nguồn vào VS qua cuộn cảm L1. Năng lượng lưu trên cuộn cảm L2 được chuyển sang tải qua đường D, C2, và R tải. Vì vậy ta có: 𝐼𝐶1 = 𝐼𝐿2 (1.7) Để hoạt động theo chu kỳ, dòng điện trung bình của tụ là 0. Ta có: (1.8) (1.9) (1.10) Trong đó: D là tỉ lệ làm việc của khoá SW (0 < D < 1) và T là chu kỳ đóng cắt. Giả sử rằng đây là bộ biến đổi lý tưởng, công suất trung bình do nguồn cung cấp phải bằng với công suất trung bình tải hấp thụ được. Pin= Pout (1.11) Vs.IL1= V0.IL2 (1.12) 𝐼𝐿1 𝐼𝐿2 = 𝑉0 𝑉𝑆 Kết hợp công thức (1.10) và (1.13) vào ta có: (1.13) 10 𝑉0 𝑉𝑆 = 𝐷 1−𝐷 (1.14) Từ công thức (1.14): Nếu 0 < D < 0.5: Đầu ra nhỏ hơn đầu vào. Nếu D = 0.5: Đầu ra bằng đầu vào. Nếu 0.5 < D < 1: Đầu ra lớn hơn đầu vào. Từ công thức (1.14) ta thấy rằng có thể điều khiển điện áp ra khỏi bộ biến đổi DC/DC bằng cách điều chỉnh tỉ lệ làm việc D của khoá SW. Như vậy nguyên tắc điều khiển điện áp ra của các bộ biến đổi trên đều bằng cách điều chỉnh tần số đóng mở khóa K. Việc sử dụng bộ biến đổi nào trong hệ là tùy thuộc vào nhu cầu và mục đích sử dụng. Để điều khiển tần số đóng mở của khóa K để hệ đạt được điểm làm việc tối ưu nhất, ta phải dùng đến thuật toán xác định điểm làm việc có công suất lớn nhất (MPPT) sẽ được trình bày chi tiết ở chương tiếp sau. 1.1.3. Bộ biến đổi DC- DC có cách ly Bộ chuyển đổi DC-DC được mô tả trong hình 1.7 [3]. Bộ chuyển đổi bao gồm một tụ lọc đầu vào C1, 6 chuyển mạch dùng MOSFET (M1-M6), sáu điôt xoay tự do, hai điôt chỉnh lưu, D1 và D2, một biến áp cao tần với hệ số biến áp bằng K và một tụ hóa C2. Hình 1. 7: Bộ chuyển đổi DC – DC có cách ly Máy biến áp cung cấp điện áp cách ly giữa bảng mạch PV và lưới, nâng cao độ an toàn cho toàn hệ thống. Điện cảm rò (Lk) được sử dụng như 1 phần tử chuyển đổi nguồn, loại bỏ những vấn đề quá áp thiết bị và cần thiết cho sự chống rung các
- Xem thêm -

Tài liệu liên quan