Đăng ký Đăng nhập
Trang chủ Nghiên cứu quy trình mạ không điện cực hướng đến ứng dụng chế tạo ăng-ten cho th...

Tài liệu Nghiên cứu quy trình mạ không điện cực hướng đến ứng dụng chế tạo ăng-ten cho thẻ rfid

.PDF
64
200
145

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH PTN CÔNG NGHỆ NANO TRẦN AN ĐỊNH NGHIÊN CỨU QUY TRÌNH MẠ KHÔNG ĐIỆN CỰC HƯỚNG ĐẾN ỨNG DỤNG CHẾ TẠO ĂNG-TEN CHO THẺ RFID Chuyên ngành: Vật liệu và Linh kiện Nano (Chuyên ngành đào tạo thí điểm) LUẬN VĂN THẠC SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Đặng Mậu Chiến Thành phố Hồ Chí Minh – 2014 LỜI CAM ĐOAN Tôi là Trần An Định, học viên cao học chuyên ngành Vật liệu và linh kiện Nano của Trường Đại học Công Nghệ ĐHQG Hà Nội và Phòng thí nghiệm Công nghệ Nano (LNT) ĐHQG Hồ Chí Minh đã hoàn thành luận văn này. Tôi xin cam đoan rằng số liệu, kết quả tính toán hoàn thành trong luận văn là trung thực và chưa có trong các công trình nào khác mà tôi không tham gia. Tác giả Trần An Định LỜI CẢM ƠN Sau nhiều tháng làm Luận văn Tốt nghiệp, tới nay em đã hoàn thành luận văn này. Ngoài sự nỗ lực cố gắng của bản thân, em còn nhận được sự giúp đỡ tận tình của nhiều cá nhân và tập thể. Trước hết, em xin trân trọng cảm ơn đến thầy giáo-PGS.TS Đặng Mậu Chiến và Th.S Đặng Thị Mỹ Dung, người đã quan tâm và trực tiếp hướng dẫn em hoàn thành bài Luận văn này. Em cũng xin chân thành gửi lời cảm ơn đến tất cả các anh chị trong Phòng thí nghiệm công nghệ Nano (LNT), A.Hoàng ở Viện nghiên cứu Vật lý đã chỉ bảo và tạo nhiều điều kiện thuận lợi cho em để có thể thực hiện bài luận văn của mình một cách tốt nhất. Nhân dịp này, em cũng xin tỏ lòng biết ơn sâu sắc tới những người thân, bạn bè đã giúp đỡ, động viên em trong suốt quá trình làm Luận văn. Đây là Luận văn với hướng nghiên cứu mới, thêm vào đó trong quá trình thí nghiệm, do hạn chế về thời gian nên không tránh khỏi sai sót, em kính mong được các Thầy cô chỉ bảo để em hoàn thiện hơn nữa kiến thức của mình. Em mong với nỗ lực của bản thân tuy nhỏ nhưng qua Luận này sẽ góp phần vào sự phát triển kỹ thuật ngành mạ nói riêng cũng như vào sự phát triển của khoa học kỹ thuật Việt Nam nói chung. Tp. Hồ Chí Minh, ngày 14 tháng 02 năm 2014. Sinh viên thực hiện Trần An Định MỤC LỤC TRANG PHỤ BÌA Trang LỜI CAM ĐOAN ......................................................................................................... LỜI CẢM ƠN ............................................................................................................... MỤC LỤC .................................................................................................................... DANH MỤC CÁC KÝ HIỆU VIẾT TẮT ................................................................... DANH MỤC CÁC BẢNG BIỂU................................................................................. DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ................................................................. MỞ ĐẦU .................................................................................................................... 1 Chương 1: TỔNG QUAN ........................................................................................ 2 1.1 Tình hình nghiên cứu phương pháp mạ không điện cực trong và ngoài nước .................................................................................................................................... 2 1.2 Lý thuyết mạ không điện cực ............................................................................ 3 1.2.1 Khái niệm chung .............................................................................................. 3 1.2.2 Cơ chế phản ứng hóa học ................................................................................ 4 1.2.3 Tốc độ quá trình mạ không điện cực ............................................................... 6 1.2.4 Các yếu tố ảnh hưởng đến tốc độ phản ứng mạ ............................................. 7 1.3 Mạ đồng không điện cực (Electroless copper-EC) ........................................ 11 1.3.1 Cơ chế mạ Electroless Copper ....................................................................... 13 1.3.2 Các tính chất lớp mạ Cu hóa học .................................................................. 15 1.4 Tổng quan công nghệ phún xạ tạo lớp nền kim loại đồng ............................ 15 Chương 2: THỰC NGHIỆM ................................................................................. 18 2.1 Chuẩn bị mẫu và dung dịch mạ ...................................................................... 18 2.1.1 Chuẩn bị lớp nền bằng đồng .......................................................................... 18 2.1.2 Dung dịch mạ hóa học ................................................................................... 18 2.1.3 Quy trình mạ đồng hóa học ........................................................................... 19 2.2 Các phương pháp phân tích ............................................................................ 22 2.2.1 Kính hiển vi điện tử quét (SEM) .................................................................... 22 2.2.2 Phương pháp nhiễu xạ tia X (X-Ray Diffraction – XRD) ............................ 24 2.2.3 Máy đo độ dày màng (Profilometer) .............................................................. 26 2.2.4 Máy đo điện trở bề mặt ................................................................................... 28 Chương 3: KẾT QUẢ............................................................................................ 30 3.1 Ảnh hưởng của các điều kiện môi trường ...................................................... 30 3.1.1 Ảnh hưởng của độ pH đến tốc độ mạ ............................................................ 30 3.1.2 Ảnh hưởng của nhiệt độ đến tốc độ mạ ........................................................ 32 3.2 Ảnh hưởng của nồng độ các chất thành phần đến tốc độ mạ ...................... 33 3.2.1 Ảnh hưởng của nồng độ PEG........................................................................ 34 3.2.2 Khảo sát nồng độ Nickel ................................................................................ 35 3.2.3 Khảo sát nồng độ Na2H2PO2 .......................................................................... 37 3.2.4 Khảo sát nồng độ EDTA ................................................................................ 38 3.2.5 Khảo sát nồng độ Na3C6H5O7 ........................................................................ 40 3.2.6 Khảo sát nồng độ H3BO3 ................................................................................ 41 3.3 Phổ XRD của Nickel trên mẫu mạ .................................................................. 43 3.4 Sự biến thiên tốc độ mạ theo thời gian ........................................................... 44 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ............................................................ 46 TÀI LIỆU THAM KHẢO ........................................................................................ 48 PHỤ LỤC 1 .............................................................................................................. 49 PHỤ LỤC 2 .............................................................................................................. 50 DANH MỤC CÁC KÝ HIỆU VIẾT TẮT RFID Radio Frequency Indentification TU Thiourea MBT Mercaptobenzotiazol EDTA Ethylene-dinitrilotetraacetic Acid CDTA Cyclohexane diaminetetraacetic Acid NTA Nitrilotriacetic Acid HEA Hydroxyethyl Acrylate TEA Triethanolamine TPA Terephthalic Acid EC Electroless Copper DMBA 7,12 Dimethylamin Borane LF Low Frequency HF High Frequency UHF Ultra High Frequency SEM Scanning Electron Microscopy XRD X-Ray Difraction DANH MỤC CÁC BẢNG BIỂU Trang Bảng 1.1 Một vài phức chất được sử dụng như là tác nhân phức trong mạ hóa học . 8 Bảng 1.2 Các hệ dung dịch mạ hóa học thường được sử dụng ................................ 10 Bảng 3.1 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên pH ............................ 30 Bảng 3.2 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên nhiệt độ.................... 32 Bảng 3.3 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên PEG ......................... 34 Bảng 3.4 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên Nickel ...................... 36 Bảng 3.5 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên Na2H2PO2 ................ 37 Bảng 3.6 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên EDTA ...................... 38 Bảng 3.7 Hệ số hình thành và thế oxi hóa khử mới của ion Cu2+ và Ni2+ khi tạo phức với EDTA ................................................................................................................. 39 Bảng 3.8 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên Na3C6H5O7 .............. 40 Bảng 3.9 Bảng số liệu khảo sát tốc độ mạ theo sự biến thiên H3BO3 ..................... 41 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Trang Hình 1.1 Đồ thị điện cực thế hỗn hợp ........................................................................ 3 Hình 1.2 Bản chất vật lý của quá trinhg phún xạ..................................................... 16 Hình 1.3 Mô hình quá trình phún xạ ........................................................................ 17 Hình 2.1 Sơ đồ quy trình mạ đồng cho thẻ RFID bằng phương pháp mạ hóa học ............................................................................................................................ 19 Hình 2.2 Thiết bị ăn mòn ion phản ứng Plasmalab80+/ Oxford Instrumet ............. 20 Hình 2.3 Thiết bị phún xạ Laybold Univex 350 ...................................................... 21 Hình 2.4 Mẫu đế đồng được phún xạ lên PET ........................................................ 21 Hình 2.5 Dải làm việc của các kỹ thuật hiển vi điện tử và quang học .................... 23 Hình 2.6 Nguyên lý cơ bản của kính hiển vi điện tử quét ....................................... 24 Hình 2.7 Sơ đồ nguyên lý cấu tạo máy XRD .......................................................... 26 Hình 2.8 Cấu trúc của máy đo bề dày bằng phương pháp cơ .................................. 27 Hình 2.9 Sơ đồ đơn giản hướng chuyên động của đầu dò ....................................... 27 Hình 2.10 Máy Dentak 6M của Veeco .................................................................... 28 Hình 2.11 Mô hình đầu dò bốn mũi ......................................................................... 29 Hình 2.12 Hệ thống đo điện trở bề mặt 4 điểm Pro4-440N – Lucas Labs Division .................................................................................................................... 29 Hình 3.1 Ảnh chụp bề mặt mẫu sau khi mạ ............................................................. 31 Hình 3.2 Ảnh SEM thể hiên ảnh hưởng của pH đến cấu trúc lớp mạ ..................... 31 Hình 3.3 Biểu đồ biến thiên tốc độ mạ khi thay đổi nhiệt độ .................................. 33 Hình 3.4 Biểu đồ biến thiên tốc độ mạ khi thay đổi nồng độ PEG ......................... 34 Hình 3.5 Biểu đồ biến thiên tốc độ mạ khi thay đổi nồng độ Nickel ...................... 36 Hình 3.6 Biếu đồ biến thiên tốc độ mạ khi thay đổi nồng độ Na2H2PO2 ................ 38 Hình 3.7 Biểu đồ biến thiên tốc độ mạ khi thay đổi nồng độ EDTA ...................... 39 Hình 3.8 Biểu đồ biến thiên tốc độ mạ khi thay đổi nồng độ Na3C6H5O7............... 40 Hình 3.9 Biểu đồ biến thiên tốc độ mạ khi thay đổi nồng độ H3BO3 ...................... 42 Hình 3.10 Giản đồ nhiễu xạ XRD của Nickel ......................................................... 43 Hình 3.11 Biểu đồ biến thiên tốc độ mạ theo thời gian ........................................... 44 1 MỞ ĐẦU Hiện nay, các ăng-ten cho thẻ RFID có thể được sản xuất bằng công nghệ quang khắc (photolithography) và phún xạ (sputtering) tại Phòng Thí nghiệm Công nghệ Nano (LNT) - Đại học quốc gia TP. HCM. Tuy nhiên, do một ăng-ten RFID hoàn chỉnh phải có độ dày lớp kim loại xấp xỉ 10µm trong khi một lớp phún xạ kim loại đồng chỉ dày khoảng vài trăm nanomet, chúng tôi quyết định chỉ dùng phương pháp phún xạ để chế tạo lớp nền. Bước tiếp theo để hoàn thiện ăng-ten là phủ đồng lên lớp nền đồng đã phún xạ bằng phương pháp mạ có sử dụng điện cực truyền thống. Quy trình này đã được nghiên cứu tại LNT và cho độ dày đồng đều trên toàn bộ ăng-ten. Bên cạnh đó, chúng tôi sẽ nghiên cứu sâu hơn về công nghệ chế tạo nhằm góp phần làm giảm chi phí sản xuất. Rõ ràng quy trình mạ điện cần sự kết nối giữa mạch cần mạ với nguồn dòng bên ngoài. Nhưng điều này lại không thực tế đối với một dây chuyền sản xuất bởi vì mỗi ăng-ten phải có giá thành rất rẻ và như vậy chúng phải được sản xuất liên tục với số lượng lớn. Phương pháp khả thi hơn là mạ không cần điện cực. Nguyên lý của phương pháp này là sử dụng bể hóa chất chứa các phần tử (đồng), được xúc tác bởi phần dẫn điện của mẫu sẽ mạ. Mặc dù có thể khó khăn hơn để ổn định vào thời gian đầu, nhưng kỹ thuật mạ không điện cực lại có ưu điểm là không cần phải có liên kết điện với nguồn cấp dòng bên ngoài, điều này sẽ đơn giản hóa quy trình đồng thời giúp giảm chi phí sản xuất. Công nghệ mạ đồng không dùng điện cực dựa trên sự khử ion đồng trong dung dịch thành nguyên tử đồng kim loại và mạ lên trên bề mặt xúc tác. Các kim loại quý có khả năng tự xúc tác, do vậy lớp đồng được phún xạ trước đó sẽ chịu trách nhiệm cho quy trình mạ đồng. Tuy nhiên, vẫn cần phải nghiên cứu một số yếu tố như sau: - Chất ổn định thông thường cho bể mạ đồng không cần điện cực. - Phản ứng giải phóng khí hydro và giải pháp cho sự tích lũy hydro trên bề mặt cần mạ. - Ion đồng trong bể mạ sẽ cạn dần theo thời gian do thiếu sự bổ sung (đối với quy trình mạ thông thường, anode sẽ bổ sung ion). - Kiểm soát tỉ lệ ion Cu2+/Ni2+ và các thành phần khác trong dung dịch. - Kiểm soát các phản ứng phụ gây ảnh hưởng xấu đến bề mặt lớp mạ. - Những vấn đề này đòi hỏi phải có sự nghiên cứu chuyên sâu để hoàn thiện dần hệ dung dịch cũng như quy trình mạ không điện cực. 2 Chương 1: TỔNG QUAN 1.1. Tình hình nghiên cứu phương pháp mạ hóa học trong và ngoài nước Phương pháp mạ hóa học (mạ không điện cực) đã được nghiên cứu từ rất lâu và đã được rất nhiều nghiên cứu cải tiến. Từ năm 1946, phương pháp này được giới thiệu lần đầu tiên bởi Brenner and Briddle, và từ đó nó trở thành một trong những đề tài được nghiên cứu ổn định trong một thời gian dài. Kỹ thuật phủ màng bằng phương pháp mạ hóa học là một kỹ thuật đơn giản dựa trên nguyên tắc một chất khử tự xúc tác tác động lên ion kim loại, biến nó thành nguyên tử kim loại và bám lên bề mặt đã được kích hoạt. Nickel, đồng và bạc là những kim loại được sử dụng nhiều trong phương pháp này, các bài báo công bố những tính chất vật lý và cơ tính tuyệt vời. Cho đến nay, các nhà khoa học trên thế giới đã tìm ra rất nhiều hệ dung dịch mạ hóa học hiệu quả và ứng dụng nhiều vào rất nhiều ngành công nghệ quan trọng, đặc biệt nó tỏ ra khá hiệu quả trong những ngành công nghệ cao như điện tử viễn thông, sản xuất bo mạch, không gian,….đòi hỏi độ chính xác cao. Hiện nay, có hai xu hướng nghiên cứu hệ dung dịch mạ: -Hướng thứ nhất, nghiên cứu hệ dung dịch sử dụng formaldehyde làm chất khử, hệ này cho tốc độ mạ cao tuy nhiên formaldehyde là một chất độc và bên cạnh đó các chất phụ gia kèm theo cho hệ này cũng là chất độc dễ bay hơi, đây là một nhược điểm. -Hướng thứ hai, nghiên cứu hệ dung dịch không sử dụng formaldehyde mà sử dụng các chất khử hữu cơ khác ít độc hại hơn. Ở Việt Nam, mạ hóa học vẫn là một ngành còn mới mẻ, hiện nay vẫn chưa có một công ty nào sản xuất màng phủ bằng phương pháp hóa học. Các trung tâm, viện nghiên cứu ít quan tâm đến mạ hóa học do nhiều nguyên nhân khác nhau. Tài liệu và những hiểu biết lý thuyết về phương pháp này vẫn còn rất hạn chế. Đặc biệt các nghiên cứu tìm cách ứng dụng phương pháp mạ đồng hóa học vào các lĩnh vực chế tạo linh kiện điện tử hầu như bỏ ngõ. Do đó ngành mạ hóa học ở Việt nam vẫn đang còn ở dạng tiềm năng. 3 Lý thuyết mạ không điện cực 1.2. 1.2.1 Khái niệm chung Quá trình kết tủa kim loại hay hợp kim lên bề mặt vật rắn nhờ phản ứng hóa học mà không cần đến dòng điện ngoài gọi là mạ hóa học hay còn gọi là mạ không điện cực. [1,2] Mạ hóa học có thể chia làm ba loại khác nhau:  Mạ tiếp xúc: Đặc điểm: Nhúng vật cần mạ là kim loại M1 vào dung dịch của một muối Mn+ thì xảy ra phản ứng đẩy : Mn+ + M1 = M + M1n+ Như vậy, M sẽ kết tủa thành lớp mạ hóa học lên M1, đồng thời một phần bề mặt của kim loại M1 bị tan vào dung dịch. Động lực của phản ứng này là hiệu số điện thế của hai kim loại này. Quá trình mạ chậm dần và ngừng hẳn khi bề mặt kim loại M 1 bị che lấp và phủ kín bởi kim loại M, khiến cho kim loại nền không tan được nữa. Cách này cho lớp mạ < 10µm, xốp và có độ bám kém.  Nội điện phân: Đặc điểm: Nhúng kim loại cần mạ vào dung dịch muối của ion kim loại Mn+ sẽ không xảy ra hiện tượng kết tủa như trên với < . Muốn có lớp mạ M trên M1 phải nhúng thêm thanh kim loại M vào dung dịch và nối ngắn mạch với M1. Khi đó thanh kim loại M tan ra và kết tủa trên nền M1: Anot trên thanh M: M – ne = Mn+ Catot trên nền M1 : Mn+ + ne = M Động lực thúc đẩy quá trình này là hiệu số điện thế giữa hai kim loại và kim loại âm hơn phải có cơ hội tan ra được. Khi bề mặt nền bị phủ kín cũng là lúc quá trình mạ kết thúc. Lớp mạ mỏng (< 10µm), xốp và mỏng.  Tự xúc tác: Đặc điểm: Quá trình mạ này dựa vào phản ứng oxi hóa khử, trong đó chất khử R là một hóa chất nằm trong thành phần của dung dịch mạ và kim loại kết tủa M phải có tác dụng xúc tác cho phản ứng ấy. Động lực của quá trình này là khả năng tự xúc tác của kim loại M đối với phản ứng oxi hóa khử: R – ne = O. Cách này cho lớp mạ dày từ 1 – 100 µm. 4 Luận văn này sẽ tập trung nghiên cứu quá trình mạ hóa học tự xúc tác. Còn mạ tiếp xúc hay mạ nội điện phân là công nghệ thu được lớp mạ nhờ phản ứng trao đổi. Đặc điểm của lớp mạ này là công nghệ đơn giản, lớp mạ mỏng, chỉ dùng cho trường hợp không cần độ dày lớp mạ hoặc lớp mạ lót trước khi mạ. Mạ hóa học theo kiểu tự xúc tác thì có những đặc điểm và yêu cầu sau: - Điện thế bị oxi hóa chất khử trong dung dịch cần nhỏ hơn điện thế bị khử ion kim loại, làm cho kim loại có thể kết tủa trên nền. - Phản ứng chỉ được tiến hành trên bề mặt chi tiết do tác dụng xúc tác, trong dung dịch phản ứng không được sinh ra để tránh sự phân hủy tự nhiên của dung dịch. - Điều chỉnh nhiệt độ, pH dung dịch có thể khống chế tốc độ khử kim loại, tức là điều chỉnh tốc độ mạ. - Kim loại bị khử tách ra, có tác dụng xúc tác, như vậy lớp mạ mới tăng độ dày. - Chất sinh ra trong phản ứng không cản trở quá trình mạ, tức là dung dịch có tuổi thọ sử dụng phù hợp. 1.2.2 Cơ chế phản ứng mạ không điện cực Thuyết hỗn hợp: Khi quá trình mạ không điện cực (mạ hóa học) xảy ra, ion phức kim loại MLmn+ sẽ bị khử thành nguyên tử kim loại M, đồng thời chất khử R bị oxi hóa thành dạng O n+. Các phản ứng này có bản chất giống như phản ứng điện hóa. Nó gồm các phản ứng catot và anot riêng biệt xảy xa đồng thời trên bề mặt nền: Phản ứng catot: MLmn+ + ne = M + mL (1.1) Phản ứng anot: On+ (1.2) Phản ứng tổng: MLmn+ + R - ne = On+ = M + mL + On+ (1.3) Hai phản ứng (1.1) và (1.2) xác lập nên thế hóa học, gọi là điện thế hỗn hợp. Hình 1.1 thể hiện khái niệm thế hỗn hợp dùng cho mô tả nguyên tắc phản ứng mạ hóa học. 5 Hình 1.1. Đồ thị điện cực thế hỗn hợp ( Trong đó i: dòng điện thực,ia: dòng anot, ic: dòng catot, ipl: dòng điện mạ hóa học tại thế hỗn hợp Epl ) Theo cách hiểu này thì phản ứng tổng hợp được xem là một tổ hợp đơn giản của hai phản ứng riêng phần được xác định một cách độc lập. Thực ra quá trình mạ hóa học xảy ra phức tạp hơn nhiều so với cơ chế đã trình bày ở trên do các phản ứng riêng phần không xảy ra một cách độc lập mà còn tương tác và phụ thuộc vào nhau, ngoài ra còn có các phản ứng phụ xảy ra đồng thời. Do đó, các đường riêng phần sẽ biến dạng và trở nên phức tạp hơn nhiều so với đường ghép đơn giản từ hai phản ứng độc lập như hình 1.1 . Mặc dù vẫn còn những hạn chế trên, thuyết thế hỗn hợp vẫn là công cụ rất tốt để nghiên cứu quá trình mạ hóa học. Cơ chế tổng quát Nhìn chung, quá trình mạ hóa học xảy ra rất phức tạp, đa dạng vì nó còn phụ thuộc vào nhiều đặc điểm của từng hệ mạ và từng loại chất khử khác nhau. Tuy nhiên, chúng vẫn có một số đặc điểm chung là: - Quá trình mạ hóa học luôn kèm theo hiện tượng thoát khí H2. - Các kim loại có khả năng mạ hóa học đều có khả năng xúc tác quá trình nhận – tách H2. - Các chất như thiourea (TU) hay mercaptobenzotiazol (MBT),… có khả năng làm ổn định dung dịch mạ hóa học - Các sản phẩm kết tủa hóa học thường được kích hoạt khi tăng pH 6 Từ các đặc điểm này, người ta xây dựng thành một cơ chế tổng quát chung cho mọi quá trình mạ hóa học như sau [10]: Quá trình anot: Tách hydro: RH  R + H Oxi hóa : R + OH  ROH + e (1.4) (1.5) Kết hợp : H + H  H2 (1.6) Oxi hóa : H + OH  H2O + e (1.7) Quá trình catot: Kết tủa kim loại : Mn+ + ne  M Thoát H2 : 2H2O + 2e  H2 + 2OH (1.8) (1.9) Trong đó: RH là chất khử, chúng hấp phụ lên bề mặt của kim loại mạ, phân ly thành gốc R và nguyên tử hydro theo phản ứng (1.4), e là điện tử cần thiết cho quá trình khử ion kim loại thành nguyên tử kim loại, được R cung cấp ở (1.5) hay H ở (1.7), H 2 – khí hydro thoát ra do các nguyên tử hydro hấp phụ kết hợp lại ở (1.6) và do phản ứng (1.9). Sản phẩm của chất khử sau phản ứng (như P từ hypophosphite, B từ dimetylamin boran …) tham gia vào thành phần lớp mạ. 1.2.3 Tốc độ quá trình mạ không điện cực Tốc độ của phản ứng mạ không điện cực (mạ hóa học), ví dụ trong một trường hợp cụ thể mạ đồng hóa học (1.10) có thể được viết như sau: Cu2+ + 2 H2PO2¯ + 2OH¯  Cu + 2H2PO3¯ + H2 (1.10) Tốc độ V của phản ứng này sẽ là: V = k[Cu2+]a.[OH¯]b.[HCHO]c.[L]d. (P1.1) Trong đó: k là hằng số tốc độ, L là ligan tạo phức với ion kim loại, a,b,c,d là bậc phản ứng, E là năng lượng hoạt hóa, T là nhiệt độ tuyệt đối (K) Biến đổi hàm mũ (P1.1) thành hàm bậc nhất: logV = logK + alog[Cu2+] + blog[OH¯] + clog[HCHO] + dlog[L] – E/2,3T (P1.2) Từ (P1.2) có thể bằng thực nghiệm xác định các thông số động học sau : - a, b, c, d từ độ nghiêng đường “ logV – nồng độ từng chất phản ứng” - E từ độ nghiêng đường “logV – 1/T” 7 1.2.4 Các yếu tố ảnh hưởng đến tốc độ phản ứng mạ  Nhiệt độ: Nhiêt độ có ảnh hưởng mạnh đến tốc độ phản ứng mạ hóa học, một ví dụ rõ nhất là trong trường hợp mạ nickel hóa học trong dung dịch acid. Khi nhiệt độ chưa vượt quá 700C quá trình kết tủa nickel chưa xảy ra, nhưng khi nhiệt độ vượt quá 700C lập tức tốc độ mạ tăng vọt và đạt giá trị 20µm tại 920C, còn trên 920C dung dịch phản ứng không bền vững nữa, lúc ấy kim loại kết tủa cả lên đồ gá, thậm chí trong toàn khối dung dịch. [1,2]  pH dung dịch: pH dung dịch ảnh hưởng đến hiệu số điện thế giữa các phản ứng anot và catot, mà điện thế này lại ảnh hưởng mạnh đến tốc độ mạ. Cụ thể khi pH tăng, tốc độ mạ tăng. Tuy nhiên, khi pH tăng quá cao xuất hiện kết tủa trong toàn khối dung dịch nguyên nhân là tại pH cao xuất hiện các hạt rắn trong dung dịch ( như Nickel phosphit, đồng oxit…). Các hạt này sẽ trở thành trung tâm hoạt động, dẫn đến các phản ứng tạo bột kim loại trong dung dịch, kết quả là toàn bộ ion kim loại trong khối dung dịch đồng loạt bị khử thành bột kim loại. Ngoài ra, độ pH còn ảnh hưởng đến khả năng hoạt động của các chất khử, một số chất khử chỉ hoạt động mạnh ở pH thấp và ngược lại một số chất khử thì lại hoạt động tốt ở pH cao. [12]  Chất tạo phức: Chức năng của chất tạo phức là giữ ion kim loại ở trong dung dịch ở một độ pH kiềm. Khi cho chất tạo phức vào dung dịch, số lượng ion kim loại sẽ giảm đi và phản ứng mạ phụ thuộc rất nhiều vào chất tạo phức. Tốc độ mạ tăng khi sử dụng chất tạo phức theo thứ tự sau: Tartrate < EDTA < Quadrol < CDTA. Nồng độ của chất tạo phức cũng có những ảnh hưởng đặc trưng đến dung dịch mạ, khi nồng độ chất tạo phức tăng lên thì tốc độ mạ giảm xuống. [4,5] Các chất tạo phức có thể được chia thành ba nhóm: - Nhóm thứ nhất bao gồm EDTA và NTA – những chất này đều có chứa nhóm carboxyl. - Nhóm thứ hai bao gồm Quandrol và HEA – những chất này có chứa nhóm diamine và hydroxyl. - Nhóm thứ ba bao gồm TEA và TPA – những chất này chứa monoamine và nhóm hydroxyl. 8 Trong ba nhóm trên thì nhóm đầu tiên có nồng độ chất tạo phức tự do ảnh hưởng rất nhẹ đến tốc độ mạ. Mặt khác, khi xét đến khía cạnh tác động đến môi trường, EDTA là chất dễ dàng tìm thấy trong tự nhiên và có khả năng tự phân hủy một phần, trong dung dịch thì EDTA dễ dàng bị kết tủa khi dung dịch bị acid hóa. Việc chọn ligan tạo phức và nồng độ của nó cũng rất quan trọng, do chúng tạo phức rất bền với ion kim loại mạ thì rất có thể sẽ không đủ ion kim loại tự do để khử thành lớp mạ. Ví dụ: EDTA thường tạo phức có hằng số bền rất lớn nên phải khống chế chặt chẽ nồng độ của nó và ion kim loại kết tủa nếu không quá trình mạ sẽ có tốc độ tương đối thấp. Bảng 1.1. Các chất được sử dụng như là tác nhân tạo phức trong mạ hóa học Designation Chemical formula EDTA NTA EDTP Quadrol Malic acid Citric acid Lactic acid (HOOC-CH2)2N-CH2-CH2-N(CH2COOH)2 N(CH2-COOH)3 ((HO)2PO-CH2)2N-CH2-CH2-N(CH2-PO(OH)2)2 ((CH3CH(OH)CH2)2N-CH2-CH2-N(CH2CH(OH)CH3)2 HOOC-CH(OH)-CH2-COOH HOOC-CH2-C(OH)(COOH)-CH2-COOH HOOC-CHCOH-CH3  Chất ổn định: Chức năng của chất ổn định là bảo vệ các bề mặt không được kích hoạt không xảy ra hiện tượng mạ lên chúng, các bề mặt không được kích hoạt thường là những phần không dẫn điện. Chất ổn định giúp tránh các phản ứng mạ tự phát và không kiểm soát được. Nồng độ của chúng thường rất nhỏ nhưng hiệu quả kiểm soát phản ứng mạ hóa học lại rất tốt, do đó việc lựa chọn loại chất ổn định và nồng độ của nó đòi hỏi phải được đặc biệt quan tâm. Nhu cầu sử dụng chất ổn định cho dung dịch mạ đồng hóa học là rất lớn và đòi hỏi nhiều loại chất ổn định khác nhau hoặc sự kết hợp các loại chất ổn định với nhau. Khi chất ổn định được thêm vào, không chỉ tính chất của dung dịch mạ thay đổi mà tính chất của lớp đồng mạ cũng bị thay đổi theo. Trong hầu hết các trường hợp các chất ổn định thường tham gia vào lớp mạ dẫn đến sự thay đổi tính chất lớp mạ không mong muốn, tuy nhiên sự thay đổi tính chất này ít khi khiến lớp mạ bị suy giảm tính chất.Trong phần lớn các ứng dụng, điều này hầu như không ảnh hưởng trừ khi lớp mạ 9 được ứng dụng cho các lớp mạ cực mỏng thì sự thay đổi tính chất lớp mạ này nếu xét về toàn diện sẽ gây ra sự ảnh hưởng nhẹ.  Chất khử: Ảnh hưởng của chất khử thường phụ thuộc vào pH của dung dịch. Lấy hypophosphite làm ví dụ, nó là chất khử mạnh trong môi trường axit, trong khi đó formaldehyde lại có tính khử mạnh trong môi trường kiềm nhưng lại không có tính khử yếu trong môi trường acid. Chất khử ảnh hưởng đến quá trình xúc tác và mức độ xúc tác cho các kim loại. Các chất khử khác nhau sẽ thích hợp cho các ion kim loại khác nhau. Nhằm đánh giá khả năng xúc tác của các kim loại đối với quá trình khử hydro của các chất khử, người ta có thể dựa trên tiêu chí điện thế khử hydro của các chất khử trên các kim loại đó. Khi tốc độ phóng điện không đổi, hoạt tính xúc tác của kim loại càng cao khi điện thế khử càng lớn. Trên các cơ sở kết quả thí nghiệm đo điện thế sử dụng mật độ dòng i=10-4 A/cm2, tác giả Izumi Ohno, Osamu Wakabayshi qua nghiên cứu đã thiết lập được dãy hoạt tính xúc tác của các kim loại như sau: NaH2PO2 : Au > Ni > Pd > Co > Pt HCHO : Cu > Au > Ag > Pd > Ni > Co NaBH4 : Ni > Co > Pd > Pt > Au > Ag > Cu DMBA : Ni > Co > Pd > Au > Pt > Ag NH2NH2 : Co > Ni > Pt > Pd > Cu > Ag > Au Kết quả này gợi ý cho việc chọn chất khử phù hơp với kim loại mạ và chọn hoạt chất xúc tác cho nền không có tính xúc tác. Hầu hết tất cả các dung dịch mạ hóa học thương mại ngày nay đều là hệ xút, chúng chứa formaldehyde với tác dụng như là chất khử. Bên cạnh formaldehyde, hypophosphite và borohydride cũng được sử dụng như là chất khử. Hypophosphite được sử dụng rộng rãi trong mạ nickel hóa học, nhưng nó lại không phù hợp cho dung dịch mạ đồng trừ khi dung dịch mạ có chứa một lượng nhỏ ion nickel đóng vai trò là chất xúc tác cho quá trình mạ đồng hóa học. 10 Bảng 1.2. Các hệ dung dịch mạ hóa học thường được sử dụng Reducing agent Chemical Formula Medecular Weight (g/mol) 106.90 Available Electrons Sodium hypophosphite NaH2PO2H2 O Sodium borohydride Formaldehyde NaBH4 37.80 8 HCHO 30.03 2 Dimethylaminoborne (CH3)2NHBH3 58.90 6 Hydrazine N2 H4 32.00 4 0 Redox potential (V) -1.57 alkaline -1.38 acidic -1.24 alkaline -1.11 alkaline -1.18 alkaline Used for -1.16 alkaline Nickel, Cobalt Nickel, Cobalt Copper, Silver Nickel, Copper, Silver Nickel Các phản ứng ở Anod và cơ chế của các tác nhân khử Borohydride (1) BH4¯ + 4 OH¯  BO2¯ + 2 H2O + 2 H2 + 4e- (2) BH4¯ + 8 OH¯  BO2¯ + 6 H2O + 8e- Dialkylborane (1) 2R2NHBH3 + 8 OH¯  2R2NH + 2 BO2¯ + 4 H2O + 3 H2 +6e- (2) R2NHBH3 + 7 OH¯  R2NH + BO2¯ + 5 H2O + 6e- (1) N2H4 + 2 OH¯  N2 + 2 H2O + H2 + 2e- (2) N2H4 + 4 OH¯  N2 + 4 H2O + 4e- Hydrazine Formaldehyde (1) 2 HCHO + 4 OH¯  2HCOO¯ + 2 H2O + H2 + 2e- (2) HCHO + 3 OH¯  HCOO¯ + 2 H2O + 2e- Hypophosphite (1) 2H2PO2¯ + 2 OH¯  2H2PO3¯ + H2 + 2e- (2) H2PO2¯ + 2 OH¯  H2PO3¯ + H2O + 2e- 11  Chất làm nhẵn và sáng bóng bề mặt Một số lượng lớn các chất hay hợp chất hóa học hữu cơ đã được tìm ra với chức năng là chất phụ gia cho dung dịch mạ. Các chất này được sử dụng rộng rãi trong ngành mạ bảng mạch điện tử với khả năng làm nhẵn bề mặt lớp mạ và đồng thời làm bề mặt của chúng có màu sắc sáng hơn. Những hợp chất hữu cơ này đã được nghiên cứu và phát triển kĩ lưỡng trong một thời gian dài ở phòng thí nghiệm. Một số các chất hay hợp chất hữu cơ đã được tìm ra là : - Polyethylene glycol and polypropylene glycol compounds - Polyvinyl alcohols - Derivatives of thioutrea, thiosemicarbazides and thiohydantoins - Polymeric phenazonium compounds - Organic sulphur compounds as sulphates sulphonates - Organic phosphorus compounds  Tạp chất Trong dung dịch mạ có rất nhiều thành phần và trong quá trình mạ xảy ra rất nhiều phản ứng phức tạp đồng thời nên một điều tất yếu là sẽ có các tạp chất đi vào lớp mạ và ảnh hưởng đến cấu trúc cũng như tính chất của lớp mạ. Một số tạp chất sẽ khiến lớp mạ thay dổi màu sắc hay khiến sau khi mạ xong xuất hiện các vệt “cháy” khó giải thích trên bề mặt lớp mạ. Tuy nhiên, do tỉ lệ của các chất này trong lớp mạ là khá nhỏ nên nếu lớp mạ không quá mỏng thì sự ảnh hưởng này là không đáng kể. 1.3 Mạ Đồng không điện cực (Electroless copper – EC) Phản ứng khử đồng từ dung dịch muối của kim loại này được thực hiện lần đầu tiên bởi Fehling vào năm 1850. Ông đã trộn hai dung dịch lại với nhau: một là dung dịch đồng sulphate và dung dịch kia là potassium sodium tartrate ( Seignette salt) với caustic soda ( natri hydroxide). RCHO + 2Cu2+ + NaOH + H2O  RCOONa + Cu2O + 4H+ Trong suốt phản ứng, andehyde bị oxi hóa thành axit và Cu(II) bị khử thành Cu(I). Ban đầu người ta nghĩ rằng phản ứng này chỉ xảy ra đặc biệt với nhóm andehyde. Tuy nhiên, các hợp chất như là nhóm ketone và dextrose cũng phản ứng tương tự với dung dịch Fehling. Theo quan điểm ngày nay những phản ứng này là những phản ứng cơ bản cho phương pháp mạ đồng hóa học hiện đại. 12 Việc khử Cu(II) thành Cu(I) xảy ra ở -80mV (NHE), trong khi việc khử thành đồng kim loại xảy ra chỉ khi ở dưới -222mV. Việc sử dụng tác nhân khử mạnh hơn là một hướng giải quyết để đáp ứng với sự thay đổi điện thế. Mạ đồng hóa học bao gồm việc khử ion Cu2+ thành Cu kim loại và việc xúc tác bề mặt của tác nhân khử. Những quá trình này đã được cải tiến nhanh chóng trong những năm gần đây và ứng dụng rộng rãi trong nhiều mảng như là việc mạ trên bo mạch và các thiết bị điện tử khác bởi vì tính chất mạ phù hợp, giá thành thấp, độ dẫn điện cao của đồng và hệ thống thiết bị đơn giản. Dung dịch mạ đồng hóa học thương mại thường sử dụng formaldehyde hoặc các dẫn xuất như là tác nhân khử và ở pH trên 11. Hơn nữa, trong bể mạ hóa học có giải phóng khí độc trong suốt quá trình phản ứng. Vì vậy, trước đây đã có nhiều công trình nghiên cứu sử dụng các tác nhân khử không phải là formaldehyde như là dimethylamin borane (DMBA), sodium hypophosphite, và cobalt(II)-enthylenediamine complex. Trong số những chất này sodium hypophosphite đặc biệt thu hút bởi vì tính an toàn, giá thành thấp và sử dụng ở pH thấp. Tuy nhiên, quy trình mạ đồng hóa học trên cơ sở sử dụng hypophosphite là rất phức tạp bởi vì đồng xúc tác rất tốt cho quá trình oxi hóa của hypophosphite và kết quả là chỉ có một lượng rất nhỏ hoặc hầu như không xảy ra quá trình mạ đồng nguyên chất. Một hướng giải quyết là cho thêm ion nickel vào dung dịch mạ và kết quả là có một lượng rất nhỏ nickel tham gia vào lớp mạ. Nickel hoạt động như là một chất xúc tác cho quá trình oxi hóa của hypophosphite, nó cho phép quá trình mạ đồng xảy ra liên tục. Khi tỷ lệ nồng độ mol của (Ni2+/Cu2+) trong bể mạ xuống thấp, tốc độ mạ đồng cũng sẽ giảm theo thời gian và cuối cùng sẽ dừng hẳn bởi vì hoạt tính xúc tác bề mặt không được bổ sung. Vì vậy, việc đảm bảo nồng độ mol của (Ni2+/Cu2+) ở trên giá trị tiêu chuẩn là thật sự cần thiết để duy trì tốc độ mạ. Tuy nhiên, tính chất của lớp mạ đồng bị suy giảm và lớp mạ trở nên tối hơn khi gia tăng nồng độ của (Ni2+/Cu2+) . Do đó, việc cải thiện vi cấu trúc và tính chất của lớp mạ là rất quan trọng trong khi vẫn đảm bảo nồng độ nickel trong bể mạ.  Những thành phần cơ bản của dung dịch mạ đồng hóa học là: Muối kim loại Copper sulphate Copper acetate Copper carbonate Copper formate
- Xem thêm -

Tài liệu liên quan