Tài liệu .nghiên cứu hoàn thiện công nghệ chế tạo oxit nhôm hoạt tính chất lượng cao ứng dụng trong công nghiệp lọc-hoá dầu

  • Số trang: 88 |
  • Loại file: PDF |
  • Lượt xem: 77 |
  • Lượt tải: 1
nguyetha

Đã đăng 8489 tài liệu

Mô tả:

TẬP ĐOÀN CÔNG NGHIỆP HOÁ CHẤT VIỆT NAM VIỆN HOÁ HỌC CÔNG NGHIỆP VIỆT NAM VIIC NGHIÊN CỨU HOÀN THIỆN CÔNG NGHỆ CHẾ TẠO OXIT NHÔM HOẠT TÍNH CHẤT LƯỢNG CAO ỨNG DỤNG TRONG CÔNG NGHIỆP LỌC - HÓA DẦU Thuộc Nhiệm vụ nghiên cứu thường xuyên Phòng thí nghiệm trọng điểm Công nghệ lọc-hóa dầu 2009 Chủ nhiệm đề tài : TS. Vũ Thị Thu Hà 8074 HÀ NỘI 4/2010 DANH SÁCH NHỮNG NGƯỜI THAM GIA NHIỆM VỤ STT Họ và tên Học hàm, học vị Cơ quan công tác chuyên môn 1 Vũ Thị Thu Hà TS Viện Hoá học Công nghiệp VN 2 Mai Ngọc Chúc PGS. TS Viện Hoá học Công nghiệp VN 3 Nguyễn Huy Phiêu TS Viện Hoá học Công nghiệp VN 4 Phạm Thế Trinh PGS. TS Viện Hoá học Công nghiệp VN 5 Đỗ Mạnh Hùng KS Viện Hoá học Công nghiệp VN 6 Nguyễn Thị Phương Hòa KS Viện Hoá học Công nghiệp VN 7 Nguyễn Thị Thu Trang ThS Viện Hoá học Công nghiệp VN 8 Tạ Quang Minh ThS Tổng Công ty Dung dịch khoan và Hóa phẩm Dầu khí 9 Đỗ Thanh Hải NCS Viện Hoá học Công nghiệp VN 10 Vũ Thị Thu Thủy KS Viện Hoá học Công nghiệp VN 11 Nguyễn Mạnh Dương KS Viện Hoá học Công nghiệp VN 2 Lời cám ơn Nhóm cán bộ thực hiện đề tài xin trân trọng cám ơn Bộ Khoa học và Công nghệ, Bộ Công Thương đã cấp kinh phí để thực hiện đề tài. Cám ơn sự hợp tác của Viện Nghiên cứu Quá trình xúc tác và Môi trường (IRCE Lyon), Cộng hoà Pháp đã giúp thực hiện một số phép phân tích trong quá trình thực hiện đề tài. Cám ơn các Phòng nghiệp vụ Viện Hoá học Công nghiệp Việt Nam đã tạo điều kiện về thủ tục hành chính để đề tài được thực hiện. Xin chân thành cám ơn các hội đồng nghiệm thu đã tham gia phản biện và đóng góp ý kiến cho đề tài. 3 MỤC LỤC MỞ ĐẦU 8 PHẦN I: TỔNG QUAN TÀI LIỆU 9 I. CƠ SỞ PHÁP LÝ CỦA ĐỀ TÀI 9 II. TÍNH CẤP THIẾT VÀ MỤC TIÊU NGHIÊN CỨU 9 III. NỘI DUNG NGHIÊN CỨU CỦA ĐỀ TÀI 9 IV. TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU TRONG VÀ 10 NGOÀI NƯỚC IV. 1 TÌNH HÌNH NGHIÊN CỨU Ở NƯỚC NGOÀI 10 IV.1.1 Phân loại nhôm oxit 10 IV.1.2 Cấu trúc của nhôm oxit 13 IV.1.3 Tính axit của nhôm oxit 15 IV.1.4. Bề mặt riêng của nhôm oxit 15 IV.1.5. Cấu trúc xốp của nhôm oxit 16 IV.1.6. Một số ứng dụng của nhôm oxit 16 IV.1.7 Quá trình tổng hợp nhôm oxit 18 V.1.7.1 Tổng hợp nhôm oxit bằng phương pháp kết tủa 18 V.1.7.2 Tổng hợp nhôm oxit bằng phương pháp sol-gel 21 IV.1.8 Phương pháp tạo hạt nhôm oxit 22 IV.1.8.1 Tạo hạt bằng phương pháp tầng sôi 22 IV.1.8.2 Tạo hạt bằng phương pháp nhỏ giọt trong dầu 22 IV.1.8.3 Tạo hạt bằng phương pháp ép đùn 23 IV.1.8.4 Tạo hạt bằng thiết bị vo viên 24 IV.2 TÌNH HÌNH NGHIÊN CỨU TRONG NƯỚC 26 V. KẾT LUẬN TRÊN CƠ SỞ TỔNG QUAN TÀI LIỆU 29 PHẦN II: THỰC NGHIỆM, KẾT QUẢ VÀ THẢO LUẬN 32 I. LỰA CHỌN NGUYÊN LIỆU 32 II. NGHIÊN CỨU HOÀN THIỆN QUI TRÌNH CÔNG NGHỆ 33 4 II.1. Nghiên cứu, hoàn thiện qui trình tổng hợp nhôm oxit hoạt 37 tính chất lượng cao II.1.1 Qui trình thực nghiệm 37 II.1.2 Nghiên cứu sự ảnh hưởng của tốc độ khuấy 38 II.1.3 Nghiên cứu sự ảnh hưởng của nhiệt độ phản ứng axit hóa 39 II.1.4 Nghiên cứu sự ảnh hưởng của tốc độ nhỏ giọt axit và pH môi trường 40 II.1.5 Nghiên cứu sự ảnh hưởng của thời gian già hóa 42 II.2 Nghiên cứu hoàn thiện qui trình tinh chế sản phẩm nhằm 43 thu được nhôm oxit hoạt tính chất lượng cao II.3 Xác định các đặc trưng tính chất hoá lý của nhôm oxit hoạt 44 tính II.4 Đánh giá chất lượng sản phẩm III. NGHIÊN CỨU QUI TRÌNH CÔNG NGHỆ TẠO VIÊN OXIT NHÔM 46 46 III.1 Qui trình thực nghiệm 46 III.2 Nghiên cứu qui trình peptit hóa 47 III.2.1. Nghiên cứu sự ảnh hưởng của loại axit đến quá 47 trình peptit hóa III.2.2. Nghiên cứu sự ảnh hưởng của nồng độ đến độ bền 48 cơ học của viên nhôm oxit III.2.3. Nghiên cứu sự ảnh hưởng của thời gian peptit hóa 49 đến độ bền cơ của viên nhôm oxit III.2.4. Nghiên cứu sự ảnh hưởng của tỷ lệ nước/bột nhôm oxit 50 đến quá trình peptit hóa III.3 Nghiên cứu quá trình tạo hạt III.3.1 Nghiên cứu sự ảnh hưởng của các phụ gia 50 50 III.3.2 Nghiên cứu sự ảnh hưởng của chế độ làm việc của máy 51 ép đùn, vo viên III.4 Nghiên cứu quá trình xử lý sau tạo hạt 52 5 III.4.1 Nghiên cứu sự ảnh hưởng của chế độ sấy hạt nhôm oxit 52 III.4.2 Nghiên cứu sự ảnh hưởng của chế độ nung hạt nhôm 53 oxit III.5 Xác định các đặc trưng hóa lý của hạt nhôm oxit hoạt tính 54 III.5.1 Xác định độ bền cơ 54 III.5.2 Cấu trúc của mẫu trước và sau quá trình tạo viên 55 III.5.3 Cấu trúc xốp của nhôm oxit hoạt tính trước và sau 56 quá trình tạo viên III.5.4 Định lượng các tạp chất trong sản phẩm 58 III.5.5 Xác định độ bền với hơi nước 59 III.6 Đánh giá chất lượng sản phẩm IV. THỬ NGHIỆM KHẢ NĂNG ỨNG DỤNG SẢN PHẨM IV.1 Ứng dụng làm chất mang xúc tác chuyển hóa CO với hơi nước IV. 1.1 Điều chế xúc tác Co-Mo/Al2O3 60 61 61 62 IV. 1.2 Thử hoạt tính xúc tác Co-Mo/Al2O3 cho quá trình 63 chuyển hóa CO với hơi nước IV.2 Ứng dụng làm chất mang xúc tác hydrodesulfua hóa 67 IV.3 Ứng dụng làm chất mang xúc tác trong phản ứng chuyển 68 hóa khí tổng hợp thành nhiên liệu IV.4 Ứng dụng làm chất mang xúc tác cho quá trình transeste 69 hóa dầu thực vật IV.5 Ứng dụng nhôm oxit làm chất hấp phụ 71 V. SẢN XUẤT THỬ NGHIỆM 50 kg SẢN PHẨM 72 VI. ĐỀ XUẤT QUI TRÌNH CÔNG NGHỆ QUI MÔ PILOT 75 VI.1 Đề xuất qui trình tổng hợp nhôm oxit hoạt tính 75 VI.2 Đề xuất qui trình tạo hạt nhôm oxit hoạt tính 75 VII. SƠ BỘ ĐÁNH GIÁ GIÁ THÀNH SẢN PHẨM 76 VIII. ĐIỀU CHẾ NHÔM OXIT HOẠT TÍNH CÓ DIỆN TÍCH BỀ 77 6 MẶT RIÊNG CAO VỚI CHI PHÍ THẤP PHẦN IV. KẾT LUẬN 78 KIẾN NGHỊ 81 TÀI LIỆU THAM KHẢO 82 PHỤ LỤC 89 7 MỞ ĐẦU Nhôm oxit hoạt tính được sử dụng rộng rãi trong các ngành công nghiệp, đặc biệt trong công nghiệp dầu khí như: sử dụng làm chất hấp phụ trong quá trình chế biến khí thiên nhiên, chất mang xúc tác hoặc xúc tác trong quá trình chế biến các phân đoạn dầu mỏ và xúc tác cho phản ứng chuyển hoá hydrocacbon (cracking xúc tác, reforming, isome hóa, hydrotreating...). Hiện tại, toàn bộ lượng ôxit nhôm hoạt tính chất lượng cao để phục vụ cho nhu cầu trong nước phải nhập ngoại hoàn toàn. Về lâu dài, chúng ta cần chủ động trong việc cung cấp oxit nhôm hoạt tính làm chất mang, chất xúc tác, chất hấp phụ để tránh bị phụ thuộc vào các đối tác nước ngoài, giảm ngoại tệ nhập khẩu, đồng thời làm tăng giá trị nguồn nguyên liệu sẵn có trong nước. Việc nghiên cứu tổng hợp oxit nhôm hoạt tính đã được thực hiện ở Việt Nam từ lâu nhưng mới chỉ ở qui mô nhỏ trong phòng thí nghiệm. Hơn nữa, phần lớn các công trình tập trung nghiên cứu tổng hợp oxit nhôm dạng bột trong khi việc tạo hạt oxit nhôm ở các hình dạng khác nhau (trụ, cầu) để tăng tính ứng dụng trong công nghiệp giữ một vai trò rất quan trọng. Trong thời gian quan, nhóm nghiên cứu của Phòng Thí nghiệm trọng điểm quốc gia về công nghệ lọc và Hóa dầu – Viện Hóa học công nghiệp Việt Nam đã có những kết quả đặc biệt về nghiên cứu qui trình tổng hợp nhôm oxit hoạt tính chất lượng cao từ nguồn nhôm trong nước để ứng dụng làm chất mang xúc tác và chất xúc tác trong lọc hóa dầu. Tiến hành nghiên cứu hoàn thiện qui trình công nghệ tổng hợp và qui trình tạo hạt oxit nhôm hoạt tính ở qui mô pilot trong phòng thí nghiệm nhằm làm chủ công nghệ để tiến tới việc triển khai sản xuất, đáp ứng nhu cầu trong nước, đặc biệt là trong quá trình hấp phụ, lọc hóa dầu là hết sức cần thiết trong thời điểm này. Đây cũng chính là mục tiêu nghiên cứu của Nhiệm vụ này. 8 PHẦN I. TỔNG QUAN I. CƠ SỞ PHÁP LÝ CỦA ĐỀ TÀI - Hợp đồng Nghiên cứu khoa học và phát triển công nghệ số 025.09.RD.BS/HĐ-KHCN ngày 30 tháng 03 năm 2009 của Bộ Công Thương - Quyết định giao nhiệm vụ bổ sung số 150/QĐ-VHCNVN ngày 31 tháng 03 năm 2009 của Viện trưởng Viện Hoá học Công nghiệp Việt Nam II. TÍNH CẤP THIẾT VÀ MỤC TIÊU NGHIÊN CỨU CỦA ĐỀ TÀI Hiện nay, nhà máy lọc dầu Dung Quất đã đi vào hoạt động và vận hành ổn định; nhà máy lọc dầu Nghi Sơn cũng đang trong giai đoạn đầu tư, trong tương lai nhu cầu sử dụng xúc tác ở Việt Nam ngày một lớn. Việc nghiên cứu hoàn thiện công nghệ chế tạo oxit nhôm hoạt tính chất lượng cao để chủ động phần nào nguồn xúc tác là việc làm cấp thiết góp phần thúc đẩy sự phát triển của ngành công nghiệp lọc-hóa dầu Việt Nam. Vì những lý do đó, trong khuôn khổ đề tài này, chúng tôi đặt ra mục tiêu nghiên cứu tạo ra qui trình công nghệ hoàn thiện điều chế oxit nhôm hoạt tính dạng hạt, sử dụng trong công nghiệp lọc, hóa dầu trên cơ sở kế thừa các kết quả nghiên cứu trước đây để có thể triển khai sản xuất thử nghiệm qui mô lớn NỘI DUNG NGHIÊN CỨU CỦA ĐỀ TÀI Đề tài sẽ tiến hành nghiên cứu các nội dung chính sau: 1. Xác định và lựa chọn nguyên liệu phù hợp 2. Hoàn thiện qui trình điều chế oxit nhôm hoạt tính, đảm bảo chất lượng sử dụng trong công nghiệp lọc, hóa dầu 3. Nghiên cứu công nghệ tạo viên oxit nhôm phục vụ làm chất mang xúc tác và chất hấp phụ 9 4. Thử nghiệm khả năng ứng dụng sản phẩm 5. Điều chế thử 50 kg sản phẩm 6. Đề xuất qui trình công nghệ sản xuất oxit nhôm qui mô pilot IV. TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC IV.1. TÌNH HÌNH NGHIÊN CỨU Ở NƯỚC NGOÀI Nhôm oxit hoạt tính được sử dụng rộng rãi trong các ngành công nghiệp, đặc biệt trong công nghiệp dầu khí: chất hấp phụ trong quá trình chế biến khí thiên nhiên, chất mang xúc tác hoặc xúc tác trong quá trình chế biến các phân đoạn dầu mỏ và xúc tác cho phản ứng chuyển hoá hydrocacbon. Diện tích bề mặt riêng, phân bố lỗ xốp và độ axit là các yếu tố quan trọng của nhôm oxit. IV.1.1 Phân loại nhôm oxit Phân loại dựa vào nhiệt độ chuyển hóa từ nhôm hydroxit Nhôm oxit được phân loại dựa vào nhiệt độ chuyển hoá từ nhôm hydroxit và được chia thành [45, 46] : - Nhôm oxit tạo thành ở nhiệt độ thấp (Al2O3. nH2O) 0 < n < 0,6; chúng được tạo thành ở nhiệt độ không vượt quá 6000C và được gọi là nhóm gama nhôm oxít, gồm có: χ, η và γ-Al2O3. - Nhôm oxít tạo thành ở nhiệt độ cao từ 900 đến 1000OC được gọi là nhóm delta nhôm oxit (δ-Al2O3), gồm κ, θ và δ-Al2O3. Trong khuôn khổ đề tài này, chúng ta quan tâm đến các nhôm oxit tạo thành ở nhiệt độ thấp nên chúng tôi sẽ chỉ đi sâu phân tích các dạng χ, η và γ-Al2O3. η- Al2O3: Khối lượng riêng của η- Al2O3: 2,50 ÷ 3,60 g/cm3. 10 η- Al2O3 được tạo thành khi nung Bayerit ở nhiệt độ lớn hơn 230oC, cấu trúc của η- Al2O3 gần giống như cấu trúc của γ- Al2O3 và được ổn định bằng một số ít nước tinh thể. Tuy nhiên lượng nước dư trong η-Al2O3 nhỏ hơn trong γ- Al2O3 Khi nung lượng nước dư trong η- Al2O3 tồn tại đến 900oC. η-Al2O3 và γ-Al2O3 khác nhau về kích thước lỗ xốp, bề mặt riêng, tính axit. Mặc dù chúng có số tâm axit như nhau, nhưng lực axit ở η-Al2O3 lớn hơn. η- Al2O3 kết tinh trong khối lập phương, mạng tinh thể thuộc dạng spinel. Trong cấu trúc tinh thể của η-Al2O3, ion nhôm Al3+ phân bố chủ yếu trong khối tứ diện, đối với γ-Al2O3 phần lớn Al3+ ở khối bát diện. η-Al2O3 khác với γ- Al2O3 ở mức độ cấu trúc trật tự hơn và cấu trúc oxy bú chặt hơn. Trong khoảng nhiệt độ 800- 850oC, η-Al2O3 chuyển hoá thành θ-Al2O3. χ-Al2O3: Khối lượng riêng của χ-Al2O3: 3,00 g/cm3 χ-Al2O3 tạo thành trong quá trình nung Gibbsit trong không khí hoặc nitơ ở nhiệt độ 230 - 300oC. Có ý kiến cho rằng χ-Al2O3 là trạng thái trung gian của quá trình kết tinh γ-Al2O3. χ-Al2O3 kết tinh trong hệ lục diện, ô mạng cơ sở là giả lập phương. Nguyên tử nhôm nằm trong bát diện được bó chặt bằng các nguyên tử oxy. Khi nung tới nhiệt độ 800 - 1000oC, χ-Al2O3 biến đổi thành κAl2O3. γ-Al2O3 Khối lượng riêng của γ-Al2O3: 3,20 ÷ 3,77 g/cm3 Khối lượng riêng của γ-Al2O3 bằng 72% của α- Al2O3 Dạng γ-Al2O3 không tìm thấy trong tự nhiên mà nó được tạo thành khi nung Gibbsit, Bayerit, Nordstrandit và Boehmite ở nhiệt độ khoảng 400 ÷ 600oC hay trong quá trình phân huỷ muối nhôm từ 900 ÷ 950oC. 11 Nhiều thí nghiệm đã chứng minh rằng γ-Al2O3 chứa một lượng nhỏ nước trong cấu trúc ngay cả khi chúng được nung lâu ở nhiệt độ xấp xỉ 1000oC [46 - 48]. Khi nung ở 1000oC trong 12 giờ, lượng nước còn lại khoảng 0,2 % [49]. Có thể chuyển hoá một phần hoặc hoàn toàn γ-Al2O3 thành α-Al2O3 không cần nung nóng mà chỉ cần tác động bằng sóng va chạm có áp suất và thời gian tác động khác nhau. Nguyên nhân làm chuyển pha ở đây là sự tăng nội năng và sự thay đổi cấu trúc không gian hoàn thiện của mạng tinh thể γ-Al2O3. Trên bề mặt của γ-Al2O3 tồn tại hai loại tâm axit, đó là tâm axit Lewis và tâm Bronsted. Tâm axit Lewis có khả năng tiếp nhận điện tử từ phân tử chất hấp phụ, còn tâm axit Bronsted có khả năng nhường proton cho phân tử chất hấp phụ. Tính axit của γ-Al2O3 liên quan với sự có mặt của các lỗ trống trên bề mặt của nó. Tính bazơ do ion nhôm trong lỗ trống mang điện tích dương không bão hoà quyết định [50]. Việc nghiên cứu sơ đồ phân huỷ nhiệt cho người ta thấy có sự chuyển pha γAl2O3 sang các dạng nhôm oxit khác. Vì vậy, trong quá trình điều chế cần có chế độ nhiệt độ thích hợp để thu được γ- Al2O3 có hàm lượng tinh thể cao. Phân loại theo cấu trúc Người ta cũng có thể phân loại nhôm oxit tùy theo cấu trúc của chúng : - Nhóm α: Có cấu trúc mạng lưới bát diện bó chặt, nhóm này duy nhất chỉ có α- Al2O3. - Nhóm β: Có cấu trúc mạng lưới bó chặt luân phiên, nhóm này có β-Al2O3, trong đó gồm oxít kim loại kiềm, kiềm thổ và sản phẩm phân huỷ Gibbsit có cùng họ cấu trúc χ và κ- Al2O3. - Nhóm γ: Với cấu trúc mạng khối bó chặt, trong đó bao gồm sản phẩm phân huỷ nhôm hydroxit dạng Bayerit, Nordstrandit, và Boehmite. Nhóm này 12 bao gồm η, γ-Al2O3 được tạo thành ở nhiệt độ thấp và δ, θ-Al2O3 tạo thành ở nhiệt độ cao. Nhìn chung, trong các quá trình xúc tác và hấp phụ người ta thường sử dụng nhóm γ-Al2O3 hoặc nhóm các nhôm oxit tạo thành ở nhiệt độ thấp. IV.1.2 Cấu trúc của nhôm oxit Cấu trúc của nhôm oxit được xây dựng từ các đơn lớp của các quả cầu bị bó chặt [51]. Lớp này có dạng tâm đối mà ở đó mọi ion O2- được định vị ở vị trí 1 như hình 1. Lớp tiếp theo được phân bố trên lớp thứ nhất, ở đó tất cả những quả cầu thứ hai nằm ở vị trí lõm sâu của lớp thứ nhất (vị trí 2). Đối với lớp thứ 3 có thể xảy ra 2 khả năng sau: + Khả năng 1: Độ bó chặt khối lục giác Lớp thứ 3 được phân bố ở vị trí như lớp thứ nhất, và tiếp tục như vậy ta sẽ được thứ tự phân bố của các lớp như sau: 1,2; 1,2; 1,2; 1,2; ... Cấu trúc này đặc trưng cho α- Al2O3. + Khả năng 2: Độ bó chặt khối lập phương. Lớp thứ 3 được phân bố trên những hố sâu khác của lớp thứ nhất (vị trí 3), còn lớp thứ 4 phân bố tại vị trí 1. Như vậy, ta sẽ có sự phân bố của các lớp như sau: 1,2,3;1,2,3;1,2,3; ... Độ bó chặt khối lập phương đặc trưng cho η và γ-Al2O3. Hình 1: Cấu trúc khối của nhôm oxit 13 Vị trí của các ion Al3+: Các cation trong đó Al3+ nhất thiết được phân bố trong không gian giữa các lớp bó chặt anion. Lỗ hổng duy nhất mà ion Al3+ có thể phân bố là ở giữa 2 lớp. Một khả năng, các ion Al3+ nằm ở vị trí trên lỗ hổng tam giác ; lớp oxy thứ hai thuộc vị trí 2 được phân bố trên ion Al3+. Ion Al3+ trong trường hợp này nằm ở vị trí tâm bát diện. Lớp oxy thứ hai của oxit trong vị trí 2 phân bố trên Al3+. Nếu tiếp tục sắp xếp bằng phương pháp này : O2-, Al3+, O2-,và Al3+ trong sự bó chặt lục giác như trường hợp thì thấy rằng có bao nhiêu vị trí dành cho cation thì có bấy nhiêu vị trí dành cho O2- ở lớp anion. Sự bố trí này không thoả mãn tính trung hoà điện tích. Để thoả mãn độ trung hoà điện tích thì cần thiết trống 1 trong 3 vị trí của cation. Sự thiếu trống này đưa đến khả năng khác nhau trong sự đối xứng ion Al3+. Vị trí cation trong α-Al2O3 cũng giống như trong Al(OH)3 (hình 2). Hình 2: Vị trí của ion Al3+ trong cấu trúc bó chặt anion Trong nhôm ôxit, oxy được bao gói theo kiểu khối lập phương bó chặt, còn đối với cation thì một trong hai cation nằm ở khối tứ diện, cation kia nằm trong khối bỏt diện (cấu trúc spinel), ở trường hợp này khi có mặt hydro (H) trong η và γAl2O3 công thức của chúng có thể viết tương ứng: (H1/2Al1/2)Al2O4 hay Al(H1/2Al3/4)O4, trong đó các ion nhôm nằm trong khối tứ diện. Proton không nằm trong lỗ trống tứ diện mà nằm trên bề mặt dưới dạng nhóm OH-. Suy diễn ra rằng một trong 8 ion O2- nằm trên bề mặt trong dạng OH-. Điều đó có nghĩa tinh thể bé và phần lớn các nhóm OH- nằm trên bề mặt. Giả thiết này phù hợp 14 với kết quả thực nghiệm thu được η và γ-Al2O3 có diện tích bề mặt lớn và trên bề mặt chứa nhiều OH- liên kết. Các nhôm oxit khác nhau về tỷ lệ ion nhôm trong khối bát diện và tứ diện, cũng như mức độ bao bọc đối xứng ion Al3+ trong lỗ trống tứ và bát diện. η-Al2O3 chứa ion Al3+ trong tứ diện lớn hơn trong γ-Al2O3. Đặc điểm cấu trúc bề mặt của nhôm oxit có vai trò quan trọng trong xúc tác. Do nhôm oxit có cấu trúc lớp nên có thể trên mỗi bề mặt chỉ có một dạng xác định bề mặt tinh thể. η-Al2O3 có độ axit lớn hơn do mật độ Al3+ lớn hơn trong vị trí tứ diện trên bề mặt. Trong quá trình nung nhôm oxit đến khoảng 900oC, gần như toàn bộ nước được giải phóng, kéo theo sự thay đổi cơ bản nước bề mặt. Rõ ràng ở đây đồng thời xảy ra sự tương tác giữa các bề mặt tinh thể tạo nên tinh thể lớn hơn. Bề mặt các oxit hoàn toàn mất proton, do vậy chúng được cấu tạo hoàn toàn từ các ion O2và các lỗ trống anion. Nhiều tính chất của chúng khác hẳn với nhôm oxit khác. IV.1.3. Tính axit của nhôm oxit Trên bề mặt nhôm oxit hydrat hoá toàn phần, tồn tại một số tâm axit Bronsted do có nhóm OH - [50, 51]. Bề mặt của δ-Al2O3 và θ-Al2O3 có tâm axit Lewis, không có tâm Bronsted, η-Al2O3 và γ-Al2O3, phụ thuộc vào mức độ dehydrat hoá có cả hai loại tâm axit. Nói chung nhôm oxit và nhôm hydroxit hoá không biểu hiện tính axit mạnh. Chính vì vậy nhôm oxit rất thích hợp làm chất mang cho một số phản ứng không đòi hỏi xúc tác axit, ví dụ phản ứng khử lưu huỳnh của nhiên liệu bởi vì chất mang có tính axit cao sẽ thúc đẩy các phản ứng cracking tạo cốc, cặn cacbon làm giảm hoạt tính và thời gian sống của xúc tác. IV.1.4. Bề mặt riêng của nhôm oxit Thông thường diện tích bề mặt riêng của nhôm oxit khoảng từ 100-300 m2/g. Diện tích bề mặt riêng của γ-Al2O3 khoảng từ 150-280 m2/g còn diện tích bề mặt riêng của α- Al2O3 rất bé chỉ khoảng vài m2/g. 15 Theo tác giả Lippen, Bayerit và Gibbsit ban đầu có diện tích bề mặt riêng thấp khoảng 3-5 m2/g, trái lại dạng gel Boehmite có thể có diện tích bề mặt riêng lớn. γ-Al2O3 đi từ gel Boehmite có diện tích bề mặt riêng khoảng 280-325 m2/g, dạng δ-Al2O3 và θ-Al2O3 cũng được tạo thành từ dạng gel Boehmite và có diện tích bề mặt riêng trong khoảng 100-150 m2/g. Dạng γ-Al2O3 có diện tích bề mặt lớn có thể đi từ Gibbsit và phụ thuộc vào nhiệt độ và thời gian nung, diện tích bề mặt có thể đạt tới 300 m2/g. α- Al2O3 có diện tích bề mặt lớn có thể được điều chế bằng phương pháp nung gel Boehmite ở 10000C trong một khoảng thời gian nhất định. IV.1.5. Cấu trúc xốp của nhôm oxit Dạng γ-Al2O3 được tạo thành khi nung Gibbsit, Bayerit, Nordtrandit và Boehmite ở nhiệt độ 450 - 6000C [51]. Tuy nhiên, γ-Al2O3 thu được từ quá trình nhiệt phân Boehmite, dạng thù hình của mono nhôm hydroxit là tốt nhất, chứa nhiều lỗ xốp có đường kính vào khoảng 30 - 120 A0, thể tích lỗ xốp 0,5 - 1 cm3/g. Diện tích bề mặt phụ thuộc vào cả nhiệt độ nung, thời gian nung và môi trường khí khi nung. γ-Al2O3 thường được sử dụng làm chất mang cho xúc tác lưỡng chức hoặc chất mang tương tác [52, 53]. Với vai trò làm chất mang tương tác, nhôm oxit hoạt tính tác dụng với các pha hoạt tính làm cho chúng phân tán tốt hơn đồng thời làm tăng độ bền cho xúc tác. Thực tế sự tương tác này tạo ra một bề mặt xúc tác tối đa so với chất mang, nghĩa là tương tác giữa xúc tác và chất mang có vai trò ngăn chặn sự chuyển động của các tinh thể chất xúc tác trên bề mặt chất mang để tạo ra các kết tụ. IV.1.6. Một số ứng dụng của nhôm oxit γ-Al2O3 được sử dụng rộng rãi nhất trong nhiều lĩnh vực như lọc hoá dầu, xúc tác cho các phản ứng hoá học, trong vấn đề xử lý ô nhiễm môi trường, ...[54 – 57] do đặc tính có bề mặt riêng lớn, hoạt tính cao, bền cơ, bền nhiệt. 16 Ứng dụng của γ-Al2O3 trong công nghệ lọc hoá dầu Mục đích của nhôm oxit trong các nhà máy lọc dầu là tách những cấu tử không mong muốn, bảo vệ thiết bị lọc dầu, tăng chất lượng sản phẩm. Xúc tác này cũng được dùng để tăng hiệu suất sản phẩm, trong đó nhôm oxit dạng gama là được dùng phổ biến hơn cả. + Xúc tác cho quá trình Clause: Trong quá trình này nhôm oxit được sử dụng như một chất xúc tác nhằm chuyển hoá H2S thành muối sunfua. γ-Al2O3 được sử dụng với một số lượng lớn vào ứng dụng này. + Xúc tác trong quá trình xử lý bằng hydro [52 - 54]: γ-Al2O3 được sử dụng làm chất mang xúc tác cho các quá trình tách những hợp chất hữu cơ có chứa lưu huỳnh (quá trình HDS), nitơ trong quá trình lọc dầu. Ngoài ra, chúng còn dùng để tách những tạp chất kim loại có trong nhiên liệu. + Xúc tác trong quá trình Reforming [52, 53]: trong quá trình này, γAl2O3 đóng vai trò vừa là chất mang vừa là xúc tác. Chất mang γ-Al2O3 kết hợp với các cấu tử kim loại quý, tạo ra xúc tác lưỡng chức năng. Mục đích của quá trình là nâng cao trị số octan của gasoline. + Xúc tác cho quá trình hydrocracking [52]: Trong quá trình này, γ-Al2O3 được dùng làm chất mang cho các xúc tác Pt/γ-Al2O3, Pd/γ-Al2O3. + Xúc tác cho quá trình isome hoá [52, 53]: nhờ có tính axit phù hợp mà γ-Al2O3 được sử dụng làm chất mang xúc tác thế hệ mới Pt/γ-Al2O3 cho phản ứng này. Ứng dụng trong vấn đề xử lý ô nhiễm môi trường Một lượng lớn nhôm oxit được ứng dụng trong quá trình xử lý khí thải với vai trò chất mang, thường là θ hoặc là hỗn hợp của θ với α, hoặc δ với θ. 17 Ứng dụng làm chất hấp phụ Ngoài vai trò được sử dụng làm chất xúc tác, chất mang, γ-Al2O3 còn được sử dụng làm chất hấp phụ để tách loại một số cấu tử khỏi các cấu tử khác hay làm chất hút ẩm [54 - 58]. Ví dụ, dùng làm chất hấp phụ trong quá trình sấy khí, làm khô chất lỏng hữu cơ, tách SOx có trong khí, làm lớp chất hấp phụ bảo vệ chất xúc tác trong thiết bị phản ứng khỏi các chất gây ngộ độc xúc tác. Việc chọn nhôm oxit cho ứng dụng xúc tác phải đảm bảo một số chỉ tiêu như: tính sẵn có, dễ sản xuất, giá thành hợp lý. Ngoài việc đáp ứng được các tiêu chuẩn này thì nhôm oxit được chọn cũng cần phải có những đặc tính như: tính axit, diện tích bề mặt riêng, cấu trúc lỗ xốp, độ tinh khiết và độ bền vật lý. Tuỳ thuộc vào mỗi loại ứng dụng mà nhôm oxit có thể được sử dụng như một chất mang, chất xúc tác, chất kết dính, hay chất hấp phụ và mức độ quan trọng của những chỉ tiêu trên có thể thay đổi theo từng ứng dụng. Bên cạnh đó độ tinh khiết của nhôm oxit cũng rất quan trọng. Độ tinh khiết cao sẽ tạo xúc tác có hoạt tính cao và tránh được ngộ độc trong quá trình phản ứng. So với các nhôm oxit khác thì nhôm oxit đi từ gel Boehmite hoặc giả Boehmite có độ tinh khiết cao nhất nên chúng thường được quan tâm đến nhiều hơn [50, 51, 59 - 65]. Từ gel Boehmite có thể điều chế ra nhiều loại nhôm oxit có thể đáp ứng được đầy đủ những chỉ tiêu trên. Do vậy, gel Boehmite (hoặc giả Boehmite) thường được chọn là tiền chất nhôm oxit cho nhiều loại xúc tác. IV.1.7 Quá trình tổng hợp nhôm oxit Có nhiều phương pháp tổng hợp nhôm oxit hoạt tính. Các phương pháp tổng hợp khác nhau tạo ra các nhôm oxit có cấu trúc xốp khác nhau. Chẳng hạn, với phương pháp kết tủa, nhôm oxit hoạt tính thu được bằng cách nung Boehmite tinh thể có diện tích bề mặt riêng khoảng 150 - 250 m2/g [50, 51]. Nhôm oxit 18 hoạt tính tổng hợp theo phương pháp sol-gel có bề mặt riêng lớn hơn, có thể tới 300 – 400 m2/g [59 - 66]. IV.1.7.1 Tổng hợp nhôm oxit bằng phương pháp kết tủa [50, 51, 67 – 70] Phần lớn các công trình nghiên cứu về γ-Al2O3 dùng làm chất mang xúc tác hoặc chất xúc tác, hấp phụ đều theo phương pháp tổng hợp chung là kết tủa nhôm hydroxit từ dung dịch muối nhôm nhưng chủ yếu là phân giải natri aluminat bằng axit hoặc muối nhôm như: HCl, H2SO4, HNO3, Al(OH)Cl2 [67]. Thành phần của dung dịch ban đầu, điều kiện kết tủa hydroxit, già hoá và rửa kết tủa có ảnh hưởng rất lớn không những đến thành phần pha của nhôm hydroxit (Boehmite, giả Boehmite, Bayerit hoặc pha vô định hình) mà cả về hình dạng và kích thước tinh thể, đặc tính cấu trúc không gian… Tiến hành khử nước của nhôm hydroxit sẽ thu được nhôm oxit và sản phẩm này thường thừa kế cấu trúc của nhôm hydroxit ban đầu do hiệu ứng giả hình, nhất là với dạng giả Boehmite và Boehmite [68]. Chính vì vậy, người ta cho rằng những đặc trưng cấu trúc cơ học cơ bản của nhôm oxit (diện tớch bề mặt riêng, thể tích và bán kính trung bình của lỗ xốp, sự phân bố lỗ xốp theo kích thước, độ bền cơ học) được khởi thảo ngay ở giai đoạn điều chế nhôm hydroxit. Phần lớn khung của nhôm hydroxit được hình thành ở giai đoạn kết tủa và già hoá, nói chung chúng chỉ bị biến dạng qua các quá trình tiếp theo. Trong thực tế, sau khi kết tủa, già hoá và rửa còn một số công đoạn xử lý thêm để nhôm hydroxit có tính chất cần thiết cho tạo hình. Các phương pháp xử lý bổ sung có thể là hoá học (dùng axit hoặc kiềm), nhiệt (sấy và làm đậm đặc), cơ học (đảo trộn trong máy trộn). Giai đoạn kết tủa Khi kết tủa nhôm hydroxit, nồng độ dung dịch aluminat tối ưu là 45 ÷ 60 g/l tính theo Al2O3. Ở nồng độ 270 g/l sẽ thu được kết tủa gel rất nhớt, gây khó khăn cho việc kết tinh do tốc độ chuyển khối thấp. 19 Khi pH của môi trường phản ứng từ 8 ÷ 11, nhiệt độ 10 ÷ 50 0C trong thời gian đến 1,5 h thường thu được nhôm hydroxit ở dạng vô định hình có lẫn một số ít giả Boehmite. Việc nạp liệu có thể tiến hành đồng thời hoặc bổ sung nhanh dung dịch axit vào dung dịch natri aluminat trong thời gian 1 phút và tăng cường khuấy trộn. Tăng thời gian kết tủa từ 2 đến 48 giờ ảnh hưởng không đáng kể đến khối lượng riêng của nhôm hydroxit. Trong khoảng nhiệt độ từ 25 ÷ 70 0C và pH = 10 sẽ tạo thành giả Boehmite, khi nâng cao nhiệt độ sẽ làm tăng diện tớch bề mặt riêng và thể tích lỗ xốp. Lọc và rửa Trong quá trình kết tủa thường tạo ra sản phẩm phụ như NaCl, NaNO3… Sự có mặt của NaCl sẽ làm giảm bề mặt riêng và thể tích lỗ xốp của nhôm hydroxit. Vì vậy, loại bỏ tạp chất khỏi kết tủa nhôm hydroxit là giai đoạn quan trọng của quá trình tổng hợp chất mang xúc tác. Quá trình cụng nghiệp lọc rửa kết tủa thường dùng máy lọc tang trống với vải lọc lavsan, dùng hơi nước ngưng tụ để bùn hoá kết tủa. Nhiệt độ nước rửa từ 50 ÷ 60 0C và lượng nước dùng từ 54 ÷ 70 lít cho 1 kg Al2O3 cho phép thu được nhôm hydroxit chứa 0,2 ÷ 0,3 % khối lượng Na2O (tính theo Al2O3). Nếu rửa thêm nhôm hydroxit đã sấy ở 200 0C có thể làm giảm hàm lượng Na2O xuống 0,05 % và làm tăng thể tích lỗ xốp. Dùng máy lọc ép có thể làm giảm hàm ẩm của bùn từ hơn 80 % xuống còn 76 ÷ 79 %. Quan sát bằng kính hiển vi điện tử thấy nhôm hydroxit này là những agregat lớn đến 100 nm (tinh thể thứ sinh) gồm những phần tử chủ yếu ở dạng hình kim và dạng phiến (tinh thể nguyên sinh). Phân tích bằng phương pháp XRD đã xác định được nhôm hydroxit là giả Boehmite, nhưng hình thái của agregat kết tủa ở 102 0C gần với Boehmite. Phần lớn nước chứa trong cấu trúc như vậy liên kết ở dạng vỏ bọc ion - solvat của các 20
- Xem thêm -