Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu chuyển hóa dầu ăn thải thành nhiên liệu lỏng bằng phương pháp crackin...

Tài liệu Nghiên cứu chuyển hóa dầu ăn thải thành nhiên liệu lỏng bằng phương pháp cracking xúc tác.

.PDF
111
531
111

Mô tả:

Trong những năm gần đây, cùng với sự phát triển của nền công nghiệp và sự gia tăng dân số thế giới, lượng dầu mỡ thải hoặc đã qua sử dụng từ các nhà máy chế biến thực phẩm, sản xuất dầu ăn, từ các nhà hàng khách sạn và các hộ gia đình ngày một tăng lên.Theo một khảo sát sơ bộ, chỉ riêng thành phố Hồ Chí Minh, lượng dầu ăn thải từ các cơ sở chế biến như nhà máy dầu ăn Nhà Bè, nhà máy dầu ăn Tân Bình, công ty Masan – Mì ăn liền Chinsu, công ty Vietnam Northern Viking Technologies NVT và một số nhà hàng quán ăn, cơ sở chế biến thực phẩm nhỏ (Saigon New World, KFC…) có thể lên đến 4-5 tấn/ngày. Lượng dầu ăn thải này được các cơ sở tư nhân thu gom, sau khi đã tái sử dụng nhiều lần sẽ được thải ra môi trường, gây ô nhiễm và ảnh hưởng đến sức khỏe con người. Nhằm tận dụng nguồn dầu ăn thải sẵn có các nhà khoa học đã nghiên cứu chuyển hóa chúng thành nhiên liệu lỏng bằng nhiều phương pháp khác nhau và một trong số đó là cracking xúc tác. Thông thường, để thu sản phẩm lỏng thì xúc tác sử dụng cho quá trình cracking cần có tính axit, ví dụ như zeolit HZSM-5, zeolit X, Y, REY,…. Tuy nhiên các loại xúc tác trên không phải là xúc tác lý tưởng cho quá trình cracking dầu ăn thải bởi những hạn chế về độ chọn lọc hình dáng. Mặc dù có cấu trúc tinh thể vi mao quản đồng đều và có tâm axit mạnh nhưng do có kích thước mao quản nhỏ nên zeolit bị hạn chế do dầu ăn thải có kích thước phân tử cồng kềnh và lớn hơn kích thước mao quản của chúng. Vì vậy, việc tổng hợp vật liệu có kích thước mao quản trung bình cho phép các phân tử lớn có thể dễ dàng khuếch tán và tham gia phản ứng bên trong mao quảnđã và đang thu hút nhiều sự quan tâm của các nhà khoa học. Một số loại vật liệu mao quản trung bình đã được tìm ra như MCM41, SBA-15,… nhưng các vật liệu này có nhược điểm là tính axit yếu và độ bền nhiệt, thuỷ nhiệt kém. Do đó, việc nghiên cứu tổng hợp được loại vật liệu kết hợp các ưu điểm về độ axit của zeolit và vật liệu mao quản trung bình đang được khuyến khích nghiên cứu và phát triển. Để thực hiện mục tiêu đặt ra, luận án đã nghiên cứu tổng hợp các loại xúc tác cho quá trình cracking dầu ăn thải; Nghiên cứu các yếu tố ảnh hưởng đến quá trình tổng hợp xúc tác; So sánh và tìm ra loại vật liệu có hoạt tính cao nhất để phối trộn tạo hệ xúc tác cho quá trình cracking dầu ăn thải; Khảo sát và sử dụng quy hoạch thực nghiệm để tìm điều kiện tối ưu cho quá trình cracking dầu ăn thải thu nhiên liệu. Việc nghiên cứu chuyển hóa dầu ăn thải thành các sản phẩm có ích mang ý nghĩa khoa học và thực tiễn lớn, giúp nâng cao khả năng ứng dụng của xúc tác trong công nghiệp, tăng hiệu suất phản ứng và thu được nhiều sản phẩm lỏng trong quá trình cracking dầu ăn thải, đồng thời, góp phần tạo ra được nhiên liệu thay thế, lại sử dụng được nguồn phế thải sẵn có, không làm ảnh hưởng tới an ninh lương thực, nâng cao hiệu quả kinh tế và bảo vệ môi trường. 1 CHƯƠNG 1 TỔNG Q AN 1.1. NHIÊN LIỆ SINH HỌC 1.1.1. Khái quát chung Nhiên liệu sinh học được định nghĩa là bất kỳ loại nhiên liệu nào nhận được từ sinh khối, ví dụ như bioetanol, biodiesel, biogas, nhiên liệu xăng pha etanol, dimetylete sinh học và dầu thực vật [1,15,124]. Trước đây, nhiên liệu sinh học hoàn toàn không được chú trọng và chỉ được tận dụng ở quy mô nhỏ như một loại nhiên liệu phụ dùng để thay thế. Tuy nhiên, sau khi xuất hiện tình trạng khủng hoảng nhiên liệu ở quy mô toàn cầu cũng như ý thức bảo vệ môi trường lên cao, nhiên liệu sinh học bắt đầu được chú ý phát triển ở quy mô lớn hơn do những lợi ích mà nó mang lại so với các loại nhiên liệu truyền thống như [125]: - Bảo đảm an ninh năng lượng và giảm thiểu sự phụ thuộc vào nhiên liệu hóa thạch. - Giảm thiểu ô nhiễm và khí CO2 gây hiệu ứng nhà kính. - Sản xuất và ứng dụng nhiên liệu sinh học tương đối đơn giản. - Đóng góp vào phát triển kinh tế - xã hội của các cộng đồng địa phương và các ngành kinh tế đang phát triển. - Phát triển kinh tế nông nghiệp. - Góp phần hình thành sự tham gia của các xí nghiệp nhỏ và vừa (SMEs) Như vậy việc phát triển nhiên liệu sinh học có lợi về nhiều mặt như giảm đáng kể các khí độc hại như: SO2, CO, CO2, các hydrocacbon thơm, giảm cặn trong buồng đốt,… mở rộng nguồn năng lượng, đóng góp vào an ninh năng lượng, giảm sự phụ thuộc vào nhiên liệu nhập khẩu, đồng thời cũng đem lại lợi nhuận và việc làm cho người dân. Tuy nhiên, việc ứng dụng và sử dụng nhiên liệu sinh học vào đời sống chưa được rộng rãi do giá thành sản xuất loại nhiên liệu này vẫn còn cao hơn so với nhiên liệu truyền thống. 1.1.2. Phân loại nhiên liệu sinh học Nhiên liệu sinh học có thể được phân loại theo hai cách: - Theo trạng thái: rắn, lỏng, khí. - Theo nguồn nguyên liệu sản suất: thế hệ thứ nhất, thế hệ thứ hai và thế hệ thứ ba. 1.1.2.1. Phân loại theo trạng thái Theo bảng phân loại của Wikipedia [124], nhiên liệu sinh học được chia thành ba loại: - Dạng rắn (sinh khối rắn dễ cháy): như củi, gỗ và than bùn, thường được sử dụng trong công việc nấu nướng hay sưởi ấm. - Dạng lỏng : Các chế phẩm dạng lỏng nhận được trong quá trình chế biến vật liệu nguồn gốc sinh học như:  Xăng sinh học: bao gồm bioetanol, biobutanol,… Trong đó, bioetanol là loại nhiên liệu sinh học thông dụng nhất hiện nay do có khả năng sản xuất ở quy mô công nghiệp từ các nguyên liệu chứa đường như mía, củ cải đường và nguyên liệu chứa tinh bột như ngũ cốc, sắn, khoai tây,… 2  Diesel sinh học: Diesel sinh học là một loại nhiên liệu có tính chất tương đương với nhiên liệu diesel khoáng được sản xuất từ dầu thực vật hay mỡ động vật.  Một số dạng khác: Dầu thực vật sử dụng trực tiếp (SVO) làm nhiên liệu; các loại dung môi, dầu nhựa thu được trong quá trình nhiệt phân gỗ,… - Dạng khí: Các loại khí nguồn gốc sinh học cũng đã được sử dụng và ngày càng phổ biến như:  Biogas: là hỗn hợp khí gồm metan và các đồng đẳngthu được từ quá trình phân hủy tự nhiên các loại chất thải nông nghiệp hoặc rác thải. Biogas có thể dùng làm nhiên liệu khí thay cho sản phẩm khí gas từ sản phẩm dầu mỏ.  Hydro: thu được nhờ cracking hydrocacbon, khí hóa các hợp chất chứa cacbon (kể cả sinh khối), phân ly nước bằng dòng điện hoặc thông qua quá trình quang hóa dưới tác dụng của một số vi sinh vật.  Các sản phẩm khí khác: từ quá trình nhiệt phân và khí hóa sinh khối (các loại khí cháy thu được trong quá trình nhiệt phân gỗ). 1.1.2.2. Phân loại dựa theo nguồn nguyên liệu sản xuất Trên cơ sở nguồn nguyên liệu sản xuất, nhiên liệu sinh học có thể được phân loại thành thế hệ thứ nhất, thế hệ thứ hai, thế hệ thứ ba và sự phân loại này chỉ mang tính chất tương đối [1,15,16,125]. - Nhiên liệu sinh học thế hệ thứ nhất: thường làm từ các loại nguyên liệu sử dụng làm thực phẩm như từ các loại cây trồng có hàm lượng đường và tinh bột cao, dầu thực vật hoặc mỡ động vật. Nhiên liệu sinh học thế hệ thứ nhất được sản xuất có tính thương mại cao và đã được áp dụng tại nhiều nước trên thế giới. - Nhiên liệu sinh học thế hệ thứ hai: nói chung được sản xuất từ các nguyên liệu sinh khối có nguồn gốc từ phụ phẩm, phế thải nông lâm nghiệp, chất thải rừng, chất thải rắn đô thị, các sản phẩm phụ từ quá trình chế biến thực phẩm hoặc loại cỏ sinh trưởng nhanh như rơm, rạ, mùn cưa, vỏ trấu, lõi ngô, …. Ưu điểm của nhiên liệu sinh học thế hệ thứ hai là sử dụng nguồn nguyên liệu sinh khối không ảnh hưởng đến an ninh lương thực. Các nguyên liệu này được gọi là “sinh khối xenluloza”. Nguồn nguyên liệu dầu mỡ thải có thể xếp vào thế hệ thứ hai, cũng có thể xếp vào thế hệ thứ ba. - Nhiên liệu sinh học thế hệ thứ ba: sử dụng nguyên liệu là dầu mỡ động thực vật phi thực phẩm như: dầu mỡ thải, tảo biển,… Nguồn nguyên liệu này có ưu điểm là không ảnh hưởng tới nguồn thực phẩm nuôi sống con người và gia súc, đồng thời góp phần tận dụng nguồn phế thải, giảm ô nhiễm môi trường. Bảng 1.1. Phân loại nhiên liệu sinh học [1,15,16] Nhiên liệu sinh học thế hệ thứ nhất Nhiên liệu sinh học thế hệ thứ hai Nhiên liệu sinh học thế hệ thứ ba * Thay thế nhiên liệu xăng: - Etanol hoặc butanol từ quá trình lên men tinh bột (ngô, lúa mì, khoai tây) hay đường (củ cải đường, đường mía) * Thay thế nhiên liệu diesel: - Biodiesel sản xuất từ * Sản phẩm từ phản ứng sinh hóa thay thế nhiên liệu xăng: - Etanol hoặc butanol từ quá trình thủy phân với sự có mặt của enzym. * Sản phẩm phản ứng nhiệt thay thế nhiên liệu xăng. * Thay thế nhiên liệu diesel: - Biodiesel sản xuất từ tảo, dầu mỡ thải. * Sản phẩm của phản ứng cracking dầu mỡ thải: khí, diesel xanh, xăng xanh, kerosen xanh. 3 quá trình trao đổi este dầu thực vật hay còn gọi là FAME hay FAEE (từ hạt cây cải dầu RME, hạt đậu nành SME, hạt hướng dương, dừa, cọ, jatropha, dầu ăn thải và mỡ động vật). - Dầu thực vật nguyên chất (sử dụng ngay dầu thực vật). - Metanol. Xăng FischerTropsch. - Rượu phối trộn. * Sản phẩm từ phản ứng nhiệt thay thế nhiên liệu diesel - Diesel Fischer – Tropsch. - Dimetyl ete. - Diesel xanh. Một số loại nhiên liệu sinh học chính được đề cập dưới đây. a. Xăng sinh học Bioetanol: Bioetanol có thể sản xuất từ bất kỳ nguồn nguyên liệu hữu cơ nào có chứa đường (nguyên liệu chính là đường mía, đường từ cây củ cải), hoặc các chất có thể chuyển hóa thành đường như tinh bột (ngô, lúa mì, lúa mạch và các cây ngũ cốc khác), xenlulozơ hay hemi-xenlulozơ (rơm rạ, cành cây nhỏ, củi tre…). Brazil và một số nước nhiệt đới khác thường sử dụng đường mía là nguyên liệu chủ yếu sản xuất etanol, trong khi đó châu Âu và Mỹ đi từ tinh bột, Mỹ thường sử dụng lúa mạch và ngô, còn ở châu Âu là lúa mạch và lúa mạch đen. Do etanol được sản xuất từ nguyên liệu cây trồng nên nó mang lại nhiều lợi ích như an toàn năng lượng, giá nhiên liệu thấp, giảm khí CO2, nguyên liệu có thể tái sinh, tạo thêm nhiều việc làm cho nông dân [15,17,125]. b. Biodiesel Phần lớn nhiên liệu xanh được sử dụng hiện nay là nhiên liệu ở dạng lỏng, bao gồm dầu thực vật nguyên chất (pure plant oil – PPO) và biodiesel. Người ta nghiên cứu sản xuất PPO và biodiesel từ các nguồn nguyên liệu khác nhau theo nhiều hướng như các hạt dầu (hạt cải, hạt đậu nành,…), cũng có thể là dầu vi tảo, mỡ động vật và dầu ăn thải, nhưng những loại dầu này vẫn chưa được sử dụng rộng rãi. Nguồn nhiên liệu được nghiên cứu gần đây phổ biến là biodiesel vì so với xăng dầu thông thường, biodiesel cháy sạch hơn, ít gây ô nhiễm môi trường, nó có thể tự phân hủy và tăng khả năng bôi trơn, tăng tuổi thọ động cơ. Biodiesel có chỉ số xetan cao hơn nhiên liệu diesel thông thường, hầu như không có aromatic, hợp chất thơm và chứa 10-11% oxy theo khối lượng. Có bốn phương pháp sản xuất biodiesel từ dầu thực vật là: sử dụng trực tiếp và pha trộn, tạo nhũ tương, cracking nhiệt và phương pháp phổ biến nhất là trao đổi este [15,17-19]. c. Nhiên liệu BtL (Biomass – to – Liquid) Nhiên liệu BtL (nhiên liệu sinh khối) được sản xuất từ nguồn nguyên liệu dồi dào, không phải cạnh tranh với ngành lương thực, thực phẩm, vì vậy hiện nay đang được nghiên cứu. BtL cũng thuộc nhóm nhiên liệu tổng hợp giống như GTL (Gas – To – Liquid) và CTL (Coal – To – Liquid) [17]. d. Khí sinh học - Biometan: Kể từ khi nguồn nhiên liệu sử dụng trong giao thông vận tải chủ yếu là nhiên liệu lỏng, sự phát triển của nhiên liệu khí diễn ra khá chậm, tuy nhiên tương lai nó có thể trở thành một nguồn nhiên liệu khá quan trọng. Hiện nay đã có một số phương tiện giao thông sử dụng nhiên liệu khí, chủ yếu là khí tự nhiên. Biometan là nhiên liệu cháy hiệu 4 quả, cháy sạch được ứng dụng nhiều. Nguyên liệu sản xuất biometan là biogas, có thể đi từ nguồn nguyên liệu rất đa dạng [1,15,125]. - Biohydro: Nhiên liệu hydro là nhiên liệu sạch nhất vì khí thải sinh ra trong quá trình cháy chỉ là nước, không có CO2, không có các khí thải khác nếu như sự cháy xảy ra ở nhiệt độ không quá cao. Tuy nhiên chi phí để sản xuất, tồn chứa và phân phối hydro quá cao vì chúng rất khó tích trữ, vốn đầu tư cho sản xuất vì vậy rất lớn, do vậy trong bối cảnh hiện tại vẫn chưa thể sử dụng được nhiên liệu hydro một cách hiệu quả, nhưng trong tương lai nó hứa hẹn đóng một vai trò rất quan trọng [1,15,17]. 1.1.3. Các phương pháp tổng hợp nhiên liệu sinh học từ dầu mỡ động thực vật 1.1.3.1. Phương pháp trao đổi este thu biodiesel Thực tế nhiên liệu diesel sinh học (biodiesel) đã có lịch sử hơn 100 năm. Dầu lạc là dạng đầu tiên của nhiên liệu này được Rudolf Diesel sử dụng để chạy động cơ diesel đầu tiên do ông chế tạo vào năm 1895. Tuy nhiên phải đến những năm 80 của thế kỷ 20 biodiesel mới được nghiên cứu và sử dụng rộng rãi. Châu Âu đi tiên phong trong lĩnh vực này cũng vì đa số các nước ở đó không có nguồn nguyên liệu dầu mỏ. Chỉ trong một thời gian tương đối ngắn hàng loạt các nhà máy sản xuất nhiên liệu biodiesel ở quy mô 100.000 tấn/năm đã ra đời, tập trung nhiều nhất ở Đức, Italia, Áo, Pháp, Thụy Điển, Tây Ban Nha. Trong khi đó, tại châu Á, việc nghiên cứu và ứng dụng biodiesel cũng phát triển mạnh, tiêu biểu như Ấn Độ, Malaysia, Indonesia. Ngoài ra các nước châu Phi cũng đang bước đầu triển khai nhiều nghiên cứu về biodiesel. Hiện nay trên thế giới nước sử dụng rộng rãi biodiesel nhất là Mỹ với nhiều chính sách ưu đãi của chính phủ [1,2]. Ở Việt Nam, ngay từ cách đây hơn 20 năm đã bắt đầu có những công trình nghiên cứu về biodiesel, tuy nhiên các kết quả nghiên cứu này chưa được ứng dụng rộng rãi. Trong tương lai, khi các nguồn năng lượng truyền thống cạn dần thì khả năng sử dụng các nguồn nhiên liệu mới sẽ có nhiều triển vọng hơn. Ưu điểm của biodiesel là có thể sản xuất từ nhiều nguồn nguyên liệu khác nhau, khi cháy giảm thiểu khói thải, nhiệt độ chớp cháy cao nên an toàn trong vận chuyển và bảo quản, khả năng bôi trơn trong động cơ lớn. Tuy nhiên nó dễ bị oxy hóa và nhiệt độ đông đặc cao, giá thành nguyên liệu cao. Trong khi đó, dầu mỡ thải có giá thấp hơn từ 2 đến 3 lần so với nguyên liệu dầu thực vật nguyên chất, việc sử dụng dầu ăn thải sản xuất biodiesel cũng được nghiên cứu nhiều dựa vào phương pháp trao đổi este. Quá trình này tạo ra các alkyl este axit béo (biodiesel là tên gọi của các alkyl este axit béo này khi chúng được dùng làm nhiên liệu) có trọng lượng phân tử và độ nhớt thấp hơn nhiều so với các phân tử dầu thực vật ban đầu. Bản chất hóa học của phản ứng trao đổi este tạo biodiesel như sau: HOCH2 R1COOCH2 R1COOR R2COOCH HOCH + 3ROH HOCH2 R3COOCH2 + R2COOR R1COOR Triglyxerit Rượu mạch thẳng Glyxerin Biodiesel Rượu sử dụng trong các quá trình này thường là các rượu đơn chức, chứa khoảng từ một đến tám nguyên tử cacbon như metanol, etanol, propanol, butanol, và các amylacol. Trong đó, metanol và etanol hay được sử dụng nhất [1]. Y. Zhang và đồng nghiệp [21] đã nghiên cứu quá trình trao đổi este sử dụng nguyên liệu dầu ăn thải (waste cooking oil), xúc tác của quá trình là xúc tác bazơ, các công đoạn bao gồm: tiền xử lý, este hóa axit béo tự do, rửa glyxerin và tuần hoàn metanol, với nguyên 5 liệu là dầu thực vật thì không có công đoạn tiền xử lý, có thể có hoặc không có công đoạn este hóa axit béo tự do. Việc sản xuất biodiesel từ hỗn hợp dầu hạt cao su và dầu rán thải (WFO) cũng đã từng được nghiên cứu với ba nguồn nguyên liệu được sử dụng là: dầu hạt cao su, WFO-1 thu từ các nhà hàng và WFO-2 thu từ những người tiêu dùng tại địa phương. Đối với WFO-1, chỉ số axit khá cao, khoảng 7-8mg KOH/g, yêu cầu cần có giai đoạn tiền xử lý với xúc tác axit. Sau đó cả ba nguồn nguyên liệu được trao đổi este với xúc tác bazơ, tỷ lệ dầu hạt cải/WFO là 4:1 [22]. Để sản xuất biodiesel có thể sử dụng công nghệ gián đoạn hoặc công nghệ liên tục. Do thị trường nhiên liệu biodiesel còn hạn chế nên hầu hết các xí nghiệp của Mỹ sử dụng công nghệ gián đoạn. Công nghệ liên tục được sử dụng ở châu Âu và một số quá trình công nghiệp ở Mỹ. Công nghệ gián đoạn tạo điều kiện tốt cho việc kiểm tra chất lượng sản phẩm khi có sự thay đổi nguồn nguyên liệu. Mục tiêu của tất cả các công nghệ này là sản xuất ra sản phẩm đạt tiêu chuẩn nhiên liệu sinh học và các tính chất của nó phải thỏa mãn các tiêu chuẩn đã được quy định [20,23,126]. 1.1.3.2. Phương pháp hydrocracking Quá trình hydrocracking dầu mỡ động thực vật là quá trình có sử dụng tác nhân hydro để thực hiện các phản ứng bẻ gãy mạch trong phân tử chất béo của dầu thực vật và mỡ động vật. Hầu hết sản phẩm thu được là các alkan vì có sự tham gia của hydro làm xảy ra các phản ứng hydro hóa. Xác suất gãy mạch có thể xảy ra ở bất kỳ vị trí nào nên sản phẩm thu được là hỗn hợp hydrocacbon có số nguyên tử cacbon khác nhau [1,3]. Quá trình hydrocracking dầu thực vật đã được Viện dầu mỏ UOP Mỹ nghiên cứu và phát triển, đưa vào sản xuất diesel (UOP/ENI EcofiningTM) [24,25].Việc sử dụng phương pháp hydrocracking có những ưu điểm như tăng tỷ lệ H/C trong sản phẩm, loại bỏ các nguyên tố có hại như S, N, O, kim loại, độ chuyển hóa cao, nguyên liệu đa dạng, ít sản phẩm phụ, có thể ứng dụng sản xuất diesel [19,20]. Hình 1.1. Sơ đồ biểu diễn quá trình hydrocracking dầu ăn thải [102] Sản phẩm chính của quá trình này là nhiên liệu xanh, trong đó chủ yếu là diesel xanh. Trong thành phần của diesel xanh không có chứa oxy như biodiesel, mà là các hydrocacbon giống diesel khoáng. Diesel xanh cho nhiệt cháy cao hơn biodiesel, khí thải động cơ hầu như không có NOx [19,26,27]. 6 Bảng 1.2. So sánh tính chất của biodiesel, diesel xanh, diesel khoáng [1,19,26,27] Các chỉ tiêu % Oxy Khối lượng riêng, g/ml Hàm lượng lưu huỳnh, ppm Nhiệt trị, MJ/kg % NOx trong khí xả Trị số xetan Biodiesel Diesel xanh Diesel khoáng 11 0,88 <10 38 + 10 50-65 0 0,78 <1 44 0 80-90 0 0,84 <10 43 40 Các phản ứng xảy ra trong quá trình là hydrodeoxy hóa, decacboxyl hóa, hydroisome hóa. Các phản ứng deoxy hóa được xảy ra hoàn toàn (100%) để chuyển hóa hết các hợp chất oxy thành các hydrocacbon parafin. Tính chất của sản phẩm diesel được quyết định bởi các phản ứng isome hóa parafin [1,19,26,27]. - Hydro deoxyl hóa: 3H2  nCn+1 + 2H2O Cn COOH  Xúc tác - Decacboxy hóa: Xúc tác Cn COOH  nCn + CO2 CO2 + H2  CO + H2O Xúc tác - Hydro isome hóa: nCn+1 + nCn  iCn+1 + iCn Xúc tác Xúc tác sử dụng được phát triển từ xúc tác của quá trình hydrocracking trong các nhà máy lọc dầu: NiMo/γ-Al2O3 đã được sulfat hóa để tăng tính axit. Nhiệt độ để thực hiện quá trình này là 350 - 400°C, áp suất hydro là 10 - 200 bar. Sản phẩm chính của quá trình ngoài C15 – C18 n-alkan, iso – alkan còn có cả xycloalkan, aromat, axit cacboxylic,… Ngoài ra còn sử dụng một số loại khác như Ni/SiO2, Rh-Al2O3, MgO hoặc hỗn hợp MgO và Al2O3, Pd/C, Pd/SiO2, Pt/Al2O3, Pt/TiO2, CoMo/Al2O3 [19,20]. Hiện nay, ở một số nước, điển hình là Thái Lan, Malaysia có xu hướng sử dụng xúc tác mới cho quá trình hydrocracking dầu thực vật, đó là HZSM-5, ZrSO4, hỗn hợp HZSM-5-ZrSO4 [25,28,29]. Việc sử dụng công nghệ hydrocracking để deoxy hóa dầu thực vật và mỡ động vật thành các parafin có trong phân đoạn diesel là hết sức khả thi. Tuy nhiên, dầu nguyên liệu cần phải được tách hết các kim loại kiềm và được hydro hóa làm no các hợp chất axit béo chưa bão hòa trước khi được đưa tới thiết bị phản ứng. Công nghệ sản xuất diesel xanh có thể được thiết kế trong một phân xưởng riêng biệt, hoặc kết hợp với phân đoạn VGO của nhà máy lọc dầu [19,20,25,30]. 1.1.3.3. Phương pháp cracking xúc tác Phương pháp hydrocracking là phương pháp khả thi nhưng yêu cầu nguyên liệu phải được tách hết kim loại kiềm và được hydro hóa làm no các hợp chất axit béo chưa bão hòa trước khi vào thiết bị phản ứng [19,20,25,30]. Phương pháp trao đổi este thu biodiesel cũng được ứng dụng rộng rãi nhưng yêu cầu nguyên liệu dầu mỡ ăn thải phải được xử lý trước, quá trình này khá phức tạp và tốn kém, đồng thời phải sử dụng metanol trong phản ứng nên 7 gặp vấn đề về độc hại và môi trường. Sản phẩm là biodiesel mặc dù có trị số xetan cao và khả năng bôi trơn tốt, tuy nhiên khả năng ổn định kém và giảm tính chất khi sử dụng ở nhiệt độ thấp [31]. Do vậy, bên cạnh hai phương pháp nói trên, người ta còn nghiên cứu phương pháp cracking xúc tác do phương pháp này có nhiều ưu điểm như: độ chọn lọc sản phẩm tốt hơn so với phương pháp cracking nhiệt, áp suất cho quá trình thấp hơn so với áp suất thực hiện trong phương pháp hydrocracking. Mặt khác, quá trình cracking xúc tác có tính linh động cao, nó có thể sử dụng nguyên liệu là dầu thực vật hoặc là dầu thực vật kết hợp với phân đoạn VGO từ dầu mỏ, hoặc cũng có thể sử dụng nhiều loại dầu thực vật khác nhau nhưng vẫn thu được sản phẩm với chất lượng cao [1,32,33]. Trong phương pháp này, các phản ứng chính là phản ứng cắt liên kết C-H, liên kết COOR để tạo ra các hydrocacbon khác nhau, tách ra CO2, CO, hoặc H2O. Thành phần sản phẩm thu được không còn chứa oxy và tương tự như sản phẩm khoáng cùng loại. Tuy nhiên, chất lượng của sản phẩm cracking dầu thực vật tốt hơn nhiều do không chứa lưu huỳnh, nitơ [1,32,34-37]. So với phương pháp trao đổi este, phương pháp cracking xúc tác khó thực hiện hơn và sản phẩm thu được là một hỗn hợp, từ nhiên liệu nhẹ là xăng đến diesel và phần cặn [3,25,28,36-44]. Như vậy, từ các phân tích ở trên có thể so sánh đặc điểm công nghệ tổng hợp nhiên liệu biodiesel và diesel xanh như bảng sau: 8 Bảng 1.3. So sánh nhiên liệu sinh học sản xuất bằng các phương pháp khác nhau [1,3,16,20,25,28,36-44] Nhiên liệu biodiesel thu được bằng phương pháp trao đổi este Nhiên liệu xanh thu được bằng phương pháp hydrocracking Nhiên liệu xanh thu được bằng phương pháp cracking xúc tác Sản xuất từ dầu mỡ động thực vật Sản xuất từ dầu mỡ động thực vật Sản xuất từ dầu mỡ động thực vật Nguyên liệu cần được xử lý trước khi Nguyên liệu phải được tách hết các kim loại kiềm thực hiện phản ứng trao đổi este và được hydro hóa làm no các hợp chất acid béo chưa bão hòa trước khi đưa tới thiết bị phản ứng Không cần xử lý nguyên liệu Thu được nhiên liệu biodiesel với thành Thu được nhiên liệu xanh, trong đó chủ yếu là Thu được nhiên liệu xanh, trong đó chủ yếu là phần là các alkyl este của axit béo diesel xanh với thành phần chủ yếu là parafin, diesel xanh với thành phần chủ yếu là parafin, olefin,… giống như diesel khoáng olefin,…giống như diesel khoáng Hàm lượng lưu huỳnh cực thấp Hàm lượng lưu huỳnh cực thấp Hàm lượng lưu huỳnh cực thấp Trị số xetan thấp (≈ 45 - 55) Trị số xetan cao (≈ 80 - 90) Trị số xetan cao (≈ 55 - 65) Không chứa hydrocacbon thơm Không chứa hydrocacbon thơm Chứa hydrocacbon thơm Có khả năng phân huỷ sinh học cao Có khả năng phân huỷ sinh học cao Có khả năng phân huỷ sinh học cao Có chứa oxy (≈ 11%) Không chứa oxy Không chứa oxy Khí thải động cơ chứa nhiều NOx Khí thải động cơ hầu như không chứa NOx Khí thải động cơ hầu như không chứa NOx Nhiệt trị thấp Nhiệt trị cao hơn biodiesel Nhiệt trị cao hơn biodiesel Chi phí đầu tư thấp, dây chuyền đơn Chi phí đầu tư cho một dây chuyền sản xuất lớn, Chi phí đầu tư cho một dây chuyền sản xuất giản, có thể sản xuất ở quy mô nhỏ thường phải kết hợp với dây chuyền VGO của nhà lớn máy lọc dầu 9 1.1.4. Tình hình nghiên cứu và sản xuất nhiên liệu sinh học từ dầu mỡ động thực vật 1.1.4.1. Tình hình nghiên cứu và sản xuất nhiên liệu sinh học từ dầu mỡ động thực vật trên thế giới Trong những năm gần đây rất nhiều nước trên thế giới đã quan tâm đến việc sản xuất ra các loại nhiên liệu sạch từ dầu mỡ động thực vật, một trong những công nghệ phổ biến là sản xuất biodiesel do xu hướng diesel hoá động cơ. Tại châu Âu, từ năm 1992 đã bắt đầu sản xuất biodiesel ở quy mô công nghiệp. Nguyên liệu cho sản xuất biodiesel ở châu Âu là dầu thực vật, trong đó đa số là dầu hạt cải và dầu hướng dương. Hiện nay có trên 40 nhà máy lớn với công suất vài trăm nghìn tấn/năm/nhà máy. Những nhà máy này tập trung ở Đức, Áo, Italia, Pháp, Thụy Điển [16,18,45,127,128]. Tại Mỹ, năm 1992, ủy ban biodiesel quốc gia được thành lập nhằm phối hợp thực hiện các chương trình kỹ thuật và điều phối biodiesel. Việc nghiên cứu, sản xuất, kinh doanh và thử nghiệm biodiesel được phát triển rộng khắp ở nhiều bang như California, Nevada, Alaska,… Cho đến nay tổng lượng biodiesel tiêu thụ ở Mỹ là 20 triệu gallon/năm [2,25,126]. Canada là nước xuất khẩu dầu hạt cải lớn (chủ yếu sang Nhật). Công nghệ sản xuất biodiesel của Canada tập trung theo hướng làm sạch dầu thực vật bằng hydro để tạo xetan sinh học rồi pha vào diesel, gọi là diesel xanh. Công ty công nghệ sinh học ONC của Canada là nơi đầu tiên sản xuất và sử dụng biodiesel từ dầu cá. Nói chung, việc sản xuất và tiêu thụ biofuel ở Canada luôn được hưởng chế độ ưu đãi của chính phủ [4,25,126]. Tại châu Á, nghiên cứu về biodiesel phát triển mạnh ở Ấn Độ, Malaysia, Indonesia, Nhật Bản, Australia,… Hiện nay Australia đang sản xuất biodiesel theo tiêu chuẩn EU từ dầu ăn phế thải với sản lượng tiêu thụ khoảng trên 100.000 tấn biodiesel/năm. Tại Nhật Bản, một nhà máy công suất 200.000 tấn/năm được xây dựng để xử lý dầu thực vật phế thải của vùng Tokyo và từ năm 1997 nhiên liệu biodiesel đã được đưa vào phương tiện giao thông nội thành. Nhật Bản cũng là nước đầu tiên nghiên cứu việc áp dụng kỹ thuật môi trường tới hạn và kỹ thuật siêu âm để điều chế biodiesel [16,17,23,127]. Trung Quốc, Hồng Kông cũng đã thử nghiệm dùng biodiesel cho xe tải, xe bus. Biodiesel ở đây chủ yếu được sản xuất từ dầu và mỡ thải. Ngoài ra các nước Đông Nam Á cũng bắt đầu quan tâm đến sản xuất biodiesel, đặc biệt là từ dầu cọ (Thái Lan, Malaysia) và dầu dừa (Philippin) [26,44,126,129]. Bảng 1.4. Sản lượng tiêu thụ biodiesel ở một số nước [124-127] TT Tên quốc gia Lượng tiêu thụ hàng năm, tấn Loại dầu sử dụng 1 2 3 4 5 6 7 8 9 Mỹ Australia Italia Bỉ Đức Pháp Malaysia Indonesia Argentina 190.000 100.000 779.000 241.000 207.000 960.000 500.000 120.000 1.100.000 Dầu ăn phế thải Dầu ăn phế thải Dầu hướng dương Dầu cây cải dầu Dầu cọ, jatropha Dầu cọ Dầu đậu nành 10 Hầu hết các nhà máy sản xuất biodiesel trên thế giới đều theo công nghệ trao đổi este (liên tục hoặc gián đoạn). Do thị trường nhiên liệu biodiesel còn hạn chế nên hầu hết các nhà máy của Mỹ sử dụng công nghệ gián đoạn. Công nghệ liên tục được sử dụng ở châu Âu và một số quá trình công nghiệp ở Mỹ. Công nghệ gián đoạn tạo điều kiện tốt cho việc kiểm tra chất lượng sản phẩm khi có sự thay đổi nguồn nguyên liệu. Mục tiêu của tất cả các công nghệ này là sản xuất ra sản phẩm đạt tiêu chuẩn nhiên liệu sinh học và các tính chất của nó phải thỏa mãn các tiêu chuẩn đã được quy định [1,25,125]. Rượu Nước Dầu thực vật Biodiesel Ester Làm khô Rượu Rượu Nước rửa Xúc tác Thiết bị phản ứng Tách glyxerin Glyxerin tinh khiết Glyxerin thô Thiết bị tinh chế glyxerin Hình 1.2. Công nghệ sản xuất biodiesel theo phương pháp gián đoạn Nói chung công nghệ sản xuất gián đoạn đơn giản, chi phí thấp, có thể sử dụng nhiều nguồn nguyên liệu khác nhau. Tuy nhiên, với lượng nguyên liệu đầu vào cao, thể tích thiết bị cồng kềnh nên công nghệ này chỉ thích hợp để sản xuất ở quy mô nhỏ. Ở các nhà máy công suất lớn, tự động hóa toàn bộ quy trìnhthường áp dụng công nghệ sản xuất liên tục có sử dụng xúc tác. Phương pháp này có hiệu suất cao hơn phương pháp gián đoạn do nguyên liệu và sản phẩm sau khi phản ứng xong trong thiết bị phản ứng thứ nhất lại tiếp tục được đưa vào thiết bị tiếp theo nên để phản ứng triệt để hơn. Mặc dù vậy, phương pháp này đòi hỏi chi phí đầu tư ban đầu cao vào việc xây dựng hệ thống lò phản ứng [1,25,125]. Rượu Dầu thực vật Ester Nước Biodiesel Ester Làm khô Rượu Xúc tác Rượu Rượu Thiết bị phản ứng 1 Tách Thiết bị phản ứng 2 glyxerin Nước rửa Glyxerin n Số lượng lò phản ứng trung gian n = 2….n Glyxerin thô Glyxerin tinh khiết Thiết bị tinh chế glyxerin Hình 1.3. Công nghệ tổng hợp biodiesel theo phương pháp liên tục Theo công nghệ liên tục, ngoài phương pháp sử dụng xúc tác còn có công nghệ siêu tới hạn không sử dụng xúc tác mà Nhật Bản là nước đầu tiên áp dụng công nghệ này. Phương pháp này đòi hỏi sử dụng tỷ lệ metanol/dầu khá cao (từ 20/1 30/1) và được tiến hành dưới điều kiện siêu tới hạn (từ 350 400oC, áp suất > 80 at). Hỗn hợp phản ứng phải 11 được làm lạnh nhanh để tránh phân hủy [1,17,27,126]. Do tiến hành trong điều kiện khắc nghiệt như vậy nên công nghệ này đòi hỏi chi phí rất tốn kém. Thu hồi Methanol Methanol Nước Dầu thực vật Thiết bị làm sạch Pha dầu TB phân tách Thiết bị phản ứng 1 thuỷ phân Thiết bị phản ứng 2 ester hoá TB phân tách Biodiesel Xử lý nước thải Pha nước Glyxerin Hình 1.4. Công nghệ tổng hợp biodiesel theo phương pháp siêu tới hạn Hiện nay, hãng Saka-Dadan đã phát triển công nghệ sản xuất biodiesel theo phương pháp siêu tới hạn 2 giai đoạn. Công nghệ này có chế độ làm việc ôn hòa hơn công nghệ 1 giai đoạn [16,126]. Do công nghệ siêu tới hạn đòi hỏi phải làm việc ở điều kiện nhiệt độ và áp suất cao nên nên cho đến nay công nghệ này vẫn chưa được triển khai trong thực tế mà vẫn nằm trong phạm vi phòng thí nghiệm và pilot. Trước đây, hầu hết các nhà máy sản xuất biodiesel theo phương pháp trao đổi este thường sử dụng xúc tác là bazơ kiềm. Loại xúc tác này có ưu điểm cho hiệu suất thu biodiesel cao, thời gian phản ứng ngắn, tuy nhiên dễ bị xà phòng hóa nên gây khó khăn cho việc thực hiện phản ứng và lọc tách sản phẩm, dẫn đến mất nhiều công sức trong việc xử lý chống ô nhiễm môi trường. Để khắc phục nhược điểm này một số nước trên thế giới đã nghiên cứu chế tạo xúc tác bazơ rắn dị thể. Đây là loại xúc tác thế hệ mới với ưu điểm ít tạo xà phòng hóa, có khả năng tái sinh nên hạn chế được chi phí xử lý nước thải và nâng cao hiệu quả kinh tế. Xúc tác dị thể thương mại được biết nhiều hiện nay là hệ xúc tác STR-111 được chế tạo bởi Viện dầu mỏ Pháp (IFP), có thành phần là các oxyt kim loại (chủ yếu là nhôm và kẽm dạng spinel), được làm khô ở nhiệt độ 40oC và nung ở 600oC trong khoảng 12 giờ. Xúc tác được sử dugnj trong công nghệ sản xuất biodiesel bản quyền của hãng Axens Esterfip-H. Công nghệ này có nhược điểm là nhiệt độ phản ứng cao hơn so với quá trình sản xuất biodiesel truyền thống (nhiệt độ phản ứng khoảng 200 - 250oC), yêu cầu lượng metanol dư lớn, nguyên liệu đầu vào phải có chất lượng cao (hàm lượng axit béo tự do <0,5%kl). Do đó, để đảm bảo hiệu quả kinh tế, công nghệ này chỉ thích hợp với các nhà máy có công suất lớn. Ưu điểm của công nghệ này là không yêu cầu quá trình tách rửa sản phẩm, glyxerin sản xuất được đạt đến 98% độ tinh khiết, không chứa muối. Với các ưu nhược điểm trên, so với quá trình sản xuất biodiesel truyền thống, Axens đã tính toán được giá thành sản phẩm biodiesel theo công nghệ này giảm được khoảng 2/3. Năm 2002, Viện dầu mỏ Pháp bắt đầu nghiên cứu sử dụng xúc tác dị thể và áp dụng công nghệ Esterfip-H trong quá trình sản xuất biodiesel ở quy mô công nghiệp. Năm 2004, công nghệ này được lựa chọn cho nhà máy sản xuất biodiesel ở Sesestee, Pháp với công suất 160.000 tấn/năm. Năm 2006, nhà máy chính thức khởi động và đi vào vận hành. Đến nay có 8 nhà máy sản 12 xuất biodiesel trên thế giới theo công nghệ và sử dụng xúc tác này, trong đó lớn nhất là nhà máy tại Malaysia, MissionNew Energy với công suất 250.000 tấn/năm [18,46,48]. Hình 1.5. Sơ đồ công nghệ quá trình sản xuất biodiesel Esterfip-H Hãng Catilin đã giới thiệu một số xúc tác dị thể rắn dùng trong quá trình sản xuất biodiesel với tên thương mại là GoBioTS-15 và T300. Từ năm 2007, các loại xúc tác này được thử nghiệm trong phòng thí nghiệm CarverLab, sau đó được thử nghiệm trên hệ thống pilot phòng thí nghiệm vào năm 2008 và đưa ra quy trình sản xuất biodiesel trên hệ pilot theo công nghệ CFP (Continuos Flow Process). Trong thời gian này, xúc tác T300 được nghiên cứu và thử nghiệm qua ba thế hệ, thế hệ thứ nhất là MCS (mesoporous calcium silicate), thế hệ thứ hai và thứ ba là các xúc tác dị thể sử dụng cho dầu nguyên liệu có hàm lượng axit béo tự do thấp. Năm 2009, nhà máy sản xuất biodiesel theo công nghệ CFP đầu tiên đã được khởi động, xúc tác thướng mại T300 thế hệ thứ ba chính thức được đưa vào sử dụng ở quy mô công nghiệp. Hiện nay, loại xúc tác này dùng chủ yếu trong công nghệ sản xuất biodiesel NExBTL®. Xúc tác này làm việc ở điều kiện nhiệt độ và áp suất tiêu chuẩn công nghiệp với ưu điểm là không yêu cầu điều chỉnh pH của thành phần phản ứng, có khả năng tái sinh, cho sản phẩm biodiesel và glyxerin có chất lượng cao. Tuy nhiên, loại xúc tác này chỉ hoạt động được với các nguồn dầu nguyên liệu có hàm lượng axit béo tự do thấp, không có nước và sử dụng trong các nhà máy quy mô nhỏ [128]. Cũng với mục đích làm giảm giá thành sản phẩm, tăng lợi nhuận và sản xuất sản phẩm biodiesel “sạch” hơn, công ty Ireland – based Ceimici Novel Ltd. đã tiến hành sản xuất xúc tác dị thể sử dụng cho các nhà máy sản xuất biodiesel có tên thương mại là SCRO-80. Đây là loại xúc tác có khả năng tái sinh và tái sử dụng tốt, có thể sử dụng thay thế cho các loại xúc tác bazơ đồng thể trong các nhà máy biodiesel đang hoạt động trên thế giới mà không cần thay đổi công nghệ hay thiết bị. Để nâng cao hiệu quả kinh tế khi sử dụng xúc tác này chỉ cần lắp đặt thêm thiết bị phân tách nhằm tái sinh xúc tác [127]. Ngoài ba loại xúc tác dị thể thương mại được sử dụng rộng rãi trên còn có một số dạng xúc tác thương mại khác như xúc tác KC111 (Kairui Chemical Co.Ltd.), K3PO4 đã được dị thể hóa (sử dụng tại Nhật Bản), NaOH/NaY (sử dụng tại Thái Lan),Na2SiO3 (sử dụng tại Trung Quốc), xúc tác dị thể được sản xuất bởi Nation Chemical Laboratory (sử dụng tại Ấn Độ),… [127] Bên cạnh công nghệ sản xuất biodiesel theo phương pháp trao đổi este, trong những năm gần đây, việc nghiên cứu sử dụng phương pháp cracking xúc tác để chuyển hóa dầu mỡ động thực vật thành hydrocacbon cũng thu hút sự quan tâm của các nhà khoa học [42,43,49-53]. Ooi và cộng sự [34-36,54] đã nghiên cứu chuyển hóa dầu cọ thành sản phẩm lỏng bằng phương pháp cracking xúc tác ở 450oC trên các xúc tác vi mao quản zeolit HZSM-5, 13 mao quản trung bình MCM-41 và xúc tác phối trộn MCM-41/ZSM-5, MCM-41/SBA-15, MCM-41/H-Beta. Tùy thuộc vào loại xúc tác sử dụng, phản ứng cracking dầu cọ thu được lượng sản phẩm lỏng đạt từ 56 – 78%, lượng sản phẩm khí đạt từ 7 – 22%, lượng nước thu được từ 1 – 7% và lượng cặn từ 1 – 12%. Cũng nghiên cứu trên đối tượng là dầu cọ nhưng sử dụng các xúc tác HZSM-5, beta zeolit, SBA-15, Al-SBA-15 và kết hợp các vật liệu này với xúc tác REY, Thiam [37] đã thực hiện phản ứng cracking ở 450oC, kết quả cho thấy độ chuyển hóa đạt được là 75,8% với hiệu suất sản phẩm xăng thu được là 34,5% khi sử dụng nguyên liệu dầu cọ tinh khiết. Khi sử dụng nguyên liệu là dầu cọ đã qua sử dụng thì kết quả tương ứng là 70,9% và 33%. Trong khi đó, Tian [56] đã tiến hành cracking dầu cọ trong thiết bị cracking hai giai đoạn ở điều kiện 500 – 520oC và sử dụng xúc tác USY và ZSM-5, phản ứng đạt độ chuyển hóa lên tới 97% với hiệu suất sản phẩm LPG đạt 45%, hiệu suất propylen đạt 18,1% và tổng hiệu suất sản phẩm lỏng đạt 77,6%. Hàm lượng oxy trong sản phẩm lỏng thu đượ rất thấp. Trong một nghiên cứu khác, Liam và cộng sự [55] đã tiến hành cracking dầu bông ở 360oC và hiệu suất sản phẩm lỏng thu được là 65,6%, trong đó phân đoạn xăng chiếm 33,7%. Sử dụng nguồn nguyên liệu khác là dầu hạt cao su và thực hiện phản ứng cracking ở 485 – 585oC, Xander Dupain đã thu được hàm lượng các hợp chất thơm trong phân đoạn xăng lên tới 30 – 40%, hàm lượng olefin thấp và hàm lượng oxy trong sản phẩm hầu như không đáng kể [57] Trong các nghiên cứu của mình, Katikaneni [58-60] đã thực hiện phản ứng cracking dầu hạt cải ở nhiệt độ 400 – 500oC, kết quả cho thấy trong sản phẩm lỏng thu được có nhiều hợp chất vòng thơm như benzen, toluen, xylen. Tại Hà Lan, các nhà khoa học đã nghiên cứu cracking dầu hạt cải trong điều kiện thực của phản ứng FCC với chất xúc tác là ZSM-5 và thu được kết quả rất khả quan, độ chuyển hóa đạt 93,2% ở 525oC, các sản phẩm chủ yếu là xăng, kerosen, diesel và một lượng ít sản phẩm khí. Ưu điểm nổi bật của phương pháp này là các sản phẩm lỏng chứa nhiều hydrocacbon vòng thơm [4]. Như vậy, việc nghiên cứu sử dụng phương pháp cracking xúc tác nhằm chuyển hóa dầu mỡ động thực vật thu hút được sự quan tâm rất lớn của các nước trên thế giới do thu được các sản phẩm có thành phần rất gần với nhiên liệu khoáng. Tuy nhiên, hiện nay mới chỉ có một số nơi trên thế giới sản xuất diesel theo công nghệ cracking. Công ty Neste Oil đã bổ sung công suất 3.500 thùng dầu thực vật/ ngày cho sản xuất diesel xanh. Một nhà máy lọc dầu ở Phần Lan đã tận dụng cơ sở vật chất sẵn có để thực hiện quá trình hydrocracking dầu đậu nành [126]. 1.1.4.2. Tình hình nghiên cứu và sản xuất nhiên liệu sinh học từ dầu mỡ động thực vật tại Việt Nam Ở Việt Nam, việc điều chế và thử nghiệm biodiesel từ dầu thực vật bắt đầu được quan tâm từ những năm 1980. Trong khoảng 10 năm gần đây các nghiên cứu về điều chế biodiesel được chú ý nhiều, chủ yếu là theo phương pháp chuyển hóa este với nguồn nguyên liệu từ dầu dừa, dầu đậu nành, dầu ăn phế thải, mỡ động vật. Từ tháng 8-2007, một hệ thống sản xuất nhiên liệu sinh học từ dầu ăn phế thải với công suất 2 tấn/ngày đã triển khai tại công ty Phú Xương, thành phố Hồ Chí Minh. Tại An Giang, đề tài nghiên cứu khoa học của tác giả Hồ Xuân Thiên cùng một số cán bộ kỹ thuật thuộc công ty cổ phần xuất nhập khẩu thủy sản An Giang (AGIFISH) nghiên cứu công nghệ sản xuất biodiesel từ mỡ cá tra, cá ba sa hiện đang được áp dụng ở các công ty trong khu vực đồng bằng sông Cửu Long như: công ty AGIFISH, công ty Minh Tú, và các cơ sở sản xuất nhỏ lẻ khác… Nhóm nghiên cứu do TS. Hồ Sơn Lâm – Phân viện khoa học vật liệu Thành phố Hồ Chí 14 Minh thuộc Viện Khoa học và công nghệ Việt Nam – chủ trì đã nghiên cứu quá trình sản xuất biodiesel từ dầu ăn phế thải và một số loại dầu khác như dầu đậu nành, dầu hạt cao su [2]. Năm 2008, sở Khoa học – công nghệ Thành phố Hồ Chí Minh cũng đã hoàn thành dự án sản xuất biodiesel từ dầu ăn đã qua sử dụng và chế tạo thành công dây chuyền sản xuất 2.000 lít dầu biodiesel/ngày và hiện dự án đã được giao cho công ty TNHH Hồng Quảng Minh thực hiện. Những đề tài nghiên cứu hay dự án này hầu hết đều sử dụng phương pháp chuyển hóa este với xúc tác bazơ kiềm. Gần đây đã có một số công trình của GS.TS. Đinh Thị Ngọ - trường Đại học Bách Khoa Hà Nội – nghiên cứu về quá trình tổng hợp biodiesel sử dụng xúc tác bazơ rắn như MgSiO3, Na2SiO3/MgO, NaOH/MgO,… với nguyên liệu chủ yếu là dầu hạt cao su và mỡ động vật[5,6]. Nhóm nghiên cứudo TS. Đào Quốc Tùy – Đại học Bách Khoa Hà Nộichủ trì đã nghiên cứu tổng hợp biodiesel từ dầu hạt cao su với xúc tác superaxxit SO42-/zeolit [7]. PGS.TS. Trần Thị Như Mai – trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội đã tiến hành tổng hợp xúc tác Zn,La/γ-Al2O3 dùng cho phản ứng este hóa chéo dầu thực vật đã qua sử dụng [8]. Được thực hiện từ năm 2007-2009, đề tài độc lập cấp Nhà nước “Đánh giá hiện trạng công nghệ sản xuất và thử nghiệm hiện trường nhiên liệu sinh học (biodiesel) từ mỡ cá nhằm góp phần xây dựng tiêu chuẩn Việt Nam về biodiesel ở Việt Nam” (mã số ĐLĐL.2007G/19) do TS. Vũ Thị Thu Hà – Phòng thí nghiệm trọng điểm quốc gia về lọc hóa dầu, Viện hóa học công nghiệp – làm chủ nhiệm đã nghiên cứu hoàn thiện công nghệ sản xuất biodiesel từ mỡ các basa trên thiết bị quy mô pilot 1.000 kg/mẻ [8]. Kết quả quan trọng của đề tài là đưa thêm bước tiền xử lý nguyên liệu đầu vào khi hàm lượng axit béo tự do  4%, tức là trước tiên phải tiến hành este hóa các axit béo tự do sử dụng axit H2SO4, sau đó mới thực hiện trên xúc tác kiềm đồng thể để tránh quá trình xà phòng hóa. Tháng 5/2009, Bộ Khoa học và Công nghệ phê duyệt và quyết định giao cho viện Hóa học Công nghiệp Việt Nam thực hiện dự án“Hoàn thiện công nghệ sản xuất dầu diesel sinh học gốc (B100) từ nguồn dầu mỡ động thực vật Việt Nam bằng xúc tác dị thể trên hệ dây chuyền pilot công suất 200 tấn/năm và diesel sinh học (B5) 4000 tấn/năm”. Đề tài thực hiện tại phòng thí nghiệm trọng điểm Lọc - Hóa dầu đặt tại Viện Hóa học Công nghiệp trên thiết bị pilot đầu tư của Hàn Quốc, công nghệ liên tục, xúc tác dị thể do công ty SMPOT đề xuất, kết hợp với viện nghiên cứu công nghệ hóa học Hàn Quốc. Xúc tác dị thể mà phía Hàn Quốc đưa ra thực hiện trên công nghệ liên tục, thích hợp với nhiều loại nguyên liệu khác nhau, kể cả nguyên liệu có chỉ số axit cao và rất cao, ít bị ngộ độc bởi các tạp chất có trong nguyên liệu, bền cơ học. Dây chuyền công nghệ tự động hóa hòan toàn, không gây ô nhiễm môi trường. Hệ thiết bị công nghệ cũng như hệ xúc tác rắn dị thể đều được Hàn Quốc cung cấp và không biết rõ công nghệ chế tạo. Tuy nhiên, một số phương án về phát triển và sản xuất biodiesel quy mô lớn ở nước ta vẫn mới đang trong giai đoạn khởi đầu hay “chuẩn bị khởi hành”. Có thể thấy rằng, việc chế biến nhiên liệu sinh học từ dầu mỡ động thực vật bằng phương pháp cracking xúc tác nhằm mở rộng các sản phẩm nhiên liệu khác có giá trị kinh tế cao như xăng, khí vẫn chưa được nghiên cứu nhiều ở Việt Nam. Cho đến nay mới có công trình “Nghiên cứu công nghệ sản xuất nhiên liệu sinh học từ dầu thực vật thải của công nghiệp chế biến thực phẩm bằng phương pháp cracking trên xúc tác axit rắn đa mao quản” của nhóm tác giả Lê Thị Hoài Nam (Viện khoa học và công nghệ Việt Nam) [4] được công bố, theo đó, nhóm tác giả đã chế tạo các hệ xúc tác axit rắn zeolit Y, zeolit ZSM-5, vật liệu NM-ZSM-5, NM-Y, Al-SBA-15 và ứng dụng chúng để chuyển hóa dầu thực vật thải thành nhiên liệu sinh học bằng phương pháp cracking xúc tác trong pha khí trên hệ thiết bị MAT 5000. Sản phẩm của quá trình chủ yếu là khí và xăng. Như vậy, việc đẩy mạnh nghiên cứu và sử dụng dầu mỡ động thực vật làm nhiên liệu sinh học có thể là tiền đề cho việc định hướng phát triển cây thực vật có dầu và mở rộng 15 ngành công nghiệp sản xuất và tinh chế dầu mỡ động thực vật ở quy mô lớn. Do đó, việc nghiên cứu chuyển hóa dầu ăn thải thành nhiên liệu lỏng có giá trị khoa học và thực tiễn. Dầu ăn phế thải có bản chất tương tự như dầu thực vật nhưng giá thành thấp hơn nhiều so với dầu thực vật nên đây là nguồn nguyên liệu rẻ tiền để sản xuất nhiên liệu sinh học, vừa mang lại hiệu quả kinh tế, vừa góp phần giảm thiểu ô nhiễm môi trường. 1.2. GIỚI THIỆ VỀ D U Ỡ THẢI Hàng năm trên thế giới thải ra một lượng rất lớn dầu ăn thải và mỡ động vật, nhất là ở các nước phát triển. Chỉ một số ít được sử dụng trong sản xuất xà phòng, còn lại một lượng lớn bị thải ra môi trường. Cơ quan thông tin năng lượng của Hoa Kỳ ước tính khoảng 100 triệu gallon dầu ăn thải được tạo ra mỗi ngày tại Mỹ, thống kê của Canada là 33 triệu tấn (tổng cộng xấp xỉ 135.000 tấn/năm). Tại các nước châu Âu, hàng năm có khoảng 700.000 đến 10.000 tấn dầu ăn thải, riêng ngành công nghiệp Hoa kỳ thải ra 200.000 tấn dầu ăn thải/năm. Một lượng lớn chúng bị thải một cách phi pháp ra các dòng sông và các bãi chôn lấp gây ô nhiễm môi trường. Vì vậy, việc sử dụng dầu mỡ thải làm nguyên liệu có ưu điểm giá thành rẻ [17,125]. 1.2.1. Các loại dầu mỡ thải 1.2.1.1. Mỡ cá thải Công nghệ sử dụng mỡ cá đã được thực tế hóa ở nhiều nơi trên thế giới như châu Phi, châu Á và châu Mỹ La Tinh, nơi có những hòn đảo nhỏ và ngành thủy sản phát triển. Một số nơi đã có kế hoạch sản xuất biodiesel từ mỡ cá thải như Aquafinca (Honduras), trung tâm nghiên cứu khoa học VTT ở Phần Lan, tổ chức nghiên cứu ứng dụng lớn nhất là tại Bắc Mỹ hợp tác với công ty hải sản Hiep Thanh JSC tại Việt Nam, đã từng tạo ra Enerfish và được chạy thử từ năm 2011, Enerfish trở thành nguyên liệu biodiesel sử dụng nguyên liệu mỡ cá thải từ tháng 5 năm 2009 và có kế hoạch sản xuất 120.000 lít biodiesel/ngày. Một nghiên cứu khác là ở công ty truyền thông Sustainable tại Vancoucer, Canada vào năm 2007. Trung tâm công nghệ quốc gia về sản phẩm dầu mỡ cá tại Nhật Bản (Anfaco-Cecopesca) cũng đi theo hướng nghiên cứu này [125,126]. Tại Việt Nam, nguồn mỡ thải chủ yếu lấy từ mỡ cá tra, cá basa.Năm 2004, phân viện Khoa học Vật liệu tại TP. Hồ Chí Minh đã nghiên cứu thành công công nghệ sản xuất biodiesel từ dầu mỡ động thực vật. Theo số liệu của tổng cục hải sản, sản lượng cá tra, cá basa quy hoạch cho đến năm 2011 vào khoảng 1,5 2 triệu tấn, sau khi chế biến, phải có tới 900.000 ÷ 1.200.000 tấn phụ phẩm sau xuất khẩu cần được nghiên cứu ứng dụng để làm tăng hiệu quả sử dụng từ nguồn lợi thủy sản này, trong đó mỡ cá thải sản lượng khoảng 300.000 ÷ 400.000 tấn/năm [2,125]. 1.2.1.2. Mỡ động vật thải Chỉ có 51% khối lượng thú nuôi, gia súc sống sử dụng để sản xuất thức ăn cho con người, phần còn lại là da, xương và các bộ phận phục vụ cho nấu nướng, chiên rán là dầu mỡ. Mỡ động vật thải lấy từ mỡ lợn, mỡ gà,… thu từ các nhà máy giết mổ và chế biến thịt [2,125,126]. Trên thế giới, ngành sản xuất thịt phát triển khá nhanh và đã đạt tới 237,7 triệu tấn trong năm 2010, trong đó 42,7%; 33,4%; 23,9% thuộc về thịt lợn, thịt gà và thịt bò. Vì vậy lượng phụ phẩm từ quá trình chế biến vô cùng lớn [2,125,126].. Theo thống kê Sở công thương Hà Nội, năm 2011 trên địa bàn Hà Nội có 8 nhà máy giết mổ gia súc gia cầm, 17 cơ sở giết mổ thủ công, 3.725 cơ sở giết mổ nhỏ lẻ, phân tán trong khu dân cư. Từ các số liệu thực tế có thể tính được lượng mỡ động vật thải ra vào khoảng 50.000 tấn/năm. 16 Nhìn chung, mỡ động vật có đặc điểm độ nhớt cao và chủ yếu tồn tại dạng rắn ở nhiệt độ bình thường do chứa nhiều axit béo [9]. Bảng 1.5. Một số tính chất mỡ động vật thải Đặc điểm Mỡ gia súc Mỡ lợn Mỡ gà Chỉ số axit (mg KOH/g ) 1,07 0,63 0,56 Chỉ số iot (g/100g) 45,3 77,9 76,7 Độ nhớt động học ở 40oC, mm2/s 46,37 39,53 41,06 Nhiệt trị (MJ/kg) 38,90 39,49 39,62 1.2.1.3. Dầu ăn thải sau chế biến thực phẩm Dầu ăn thải là dầu đã sử dụng qua trong quá trình chế biến thức ăn hoặc dầu thực vật thu hồi lại, mỡ từ quá trình chế biến thực phẩm trong công nghiệp hay các quán ăn, nhà hàng, khách sạn. Dầu ăn thải có nhiều tính chất khác xa so với dầu thực vật thông thường. Dầu ăn thải chứa hàm lượng axit béo cao hơn dầu thực vật nguyên chất. Bảng 1.6 so sánh tính chất hóa lý của dầu đã qua chiên rán với dầu hạt cải nguyên chất [17,18,25,35]. Bảng 1.6. So sánh tính chất dầu đã qua chiên rán và dầu hạt cải Tính chất UFO* Dầu hạt cải nguyên chất Độ axit (mg KOH/g) 2,1 <0,5 o Độ nhớt động học ở 40 C (cSt) 35,3 30,2 Myristic (C14:0) 0,9 1 Palmitic (C16:0) 20,4 42,8 Stearic (C18:0) 4,8 4,5 Hàm lượng axit Oleic (C18:1) 52,9 40,5 béo (%kl) Linoleic (C18:2) 13,5 10,1 Linolenic (C18:3) 0,8 0,2 Khác 6,7 0,9 *Nguyên liệu đã được xử lý sơ bộ bằng cách lọc và loại nước trước khi phân tích Có thể thấy rằng, việc sử dụng dầu mỡ thải làm nguyên liệu có ưu điểm giá thành rẻ và góp phần giải quyết được phần nào vấn đề môi trường. 1.2.2. Tính chất lý hóa của dầu ăn thải Tính chất nguồn dầu ăn thải rất phức tạp. Nó được thu gom từ nhiều nơi khác nhau, thành phần dầu ban đầu khác nhau, số lần sử dụng khác nhau, nên không có một số liệu cụ thể nào chung cho nguồn nguyên liệu này. Tuy nhiên, nhìn chung các nguồn dầu phế thải đều có thành phần phức tạp, ngoài dầu mỡ ra còn có nhiều tạp chất khác như muối, tạp chất cơ học, cặn cacbon, nước, lượng axit béo tự do tăng. Hiển nhiên, các điều kiện sử dụng trong quá trình hấp, rán gây ra nhiều thay đổi về tính chất vật lý và hóa học khác nhau tùy thuộc vào từng loại dầu và thành phần của dầu đó. Một vài tính chất của dầu thay đổi thường thấy ở dầu sau khi chiên rán là: 17 - Tăng độ nhớt. - Tăng nhiệt dung riêng. - Giảm sức căng bề mặt. - Sẫm màu. - Tăng xu hướng sủi bọt. - Tạo thành các hợp chất dễ bay hơi. - Tăng hàm lượng axit béo tự do. - Chỉ số iod giảm. - Chiết suất của dung dịch thay đổi. - Có lẫn các tạp chất cơ học, cặn cacbon. 1.2.2.1. Nhiệt độ nóng chảy và nhiệt độ đông đặc Các loại dầu khác nhau có thành phần hóa học khác nhau. Do vậy, chúng có nhiệt độ nóng chảy và nhiệt độ đông đặc khác nhau. Các giá trị này không ổn định, thường nằm trong một khoảng nào đó. Trong thành phần mỡ động vật chủ yếu là các triglyxerit của các axit béo có gốc hydrocacbon no nên nhiệt độ nóng chảy và nhiệt độ đông đặc của mỡ động vật thường rất cao. Chúng thường đóng rắn ngay cả ở nhiệt độ thường. Nhiệt độ này dao động trong khoảng từ 25-55oC. Dầu ăn thường tồn tại ở dạng lỏng, nhiệt độ đông đặc thấp bởi chúng có hàm lượng axit béo không no cao, hàm lượng này có thể đạt tới 56,03% [9]. 1.2.2.2. Màu sắc Thành phần các hợp chất trong dầu mỡ quyết định màu sắc chúng. Mỡ tinh khiết có màu vàng nhạt hoặc màu trắng ngà do carotenoit và các dẫn xuất của nó. Dầu ăn thải thường có màu vàng sẫm hoặc màu đen vì chúng chứa rất nhiều các tạp chất sau một “chu trình” chiên rán dài [9]. 1.2.2.3. Khối lượng riêng Khối lượng riêng của dầu thực vật thường nhẹ hơn nước, d20=0,907 ÷ 0,971. Dầu thực vật thải thường lẫn nhiều tạp chất nên khối lượng riêng thường xấp xỉ khối lượng riêng của nước [9]. 1.2.2.4. Chỉ số axit Các loại dầu mỡ thải thường có chỉ số axit cao, trung bình khoảng 4,02 [9]. Nếu sử dụng làm nguyên liệu sản xuất biodiesel thì nhất thiết phải xử lý, nhưng nếu làm nguyên liệu cho quá trình cracking xúc tác thu nhiên liệu diesel xanh thì không cần xử lý. Đây là một ưu điểm lớn của quá trình cracking. 1.2.2.5. Hàm lượng các tạp chất cơ học Trong dầu mỡ thải luôn có chứa một lượng các tạp chất cơ học nhất định.Các tạp chất này bị lẫn vào dầu mỡ trong quá trình giết mổ, sử dụng, bảo quản, vận chuyển.Hàm lượng các tạp chất cơ học phụ thuộc vào nguồn gốc của dầu mỡ thải. Đối với dầu ăn thải, các tạp chất cơ học lẫn trong dầu thường là những mẩu vụn thực phẩm bị rơi ra trong quá trình chiên xào. Lượng tạp chất này thường rất lớn và cần được làm sạch bằng cách lắng, lọc trước khi đưa vào thiết bị phản ứng [9]. 1.2.2.6. Hàm lượng nước Nước lẫn trong dầu mỡ thải trong quá trình sử dụng, bảo quản, vận chuyển. Với dầu thực vật thải hàm lượng nước thường cao hơn do trong quá trình chế biến thực phẩm hoặc 18 khi gom dầu, nước sẽ lẫn vào. Trong quá trình cracking nước sẽ bay hơi lẫn vào sản phẩm cracking nên cần phân pha tách nước ra khỏi sản phẩm [9]. 1.2.3. Ảnh hưởng của việc tái sử dụng và tiêu hủy dầu ăn thải Thực tế, trung bình một nhà hàng thải ra khoảng 20 – 30 kg dầu ăn trong ngày, sau đó đem bán lại cho tiểu thương tái sử dụng. Điều này rất nguy hại cho sức khỏe người tiêu dùng vì nếu tái sử dụng trên một lần để chế biến thực phẩm thì dầu ăn sẽ trở thành chất độc hại. Dầu ăn khi đun ở nhiệt độ cao sẽ bị ôxy hóa và polyme hóa nên mất dinh dưỡng, đặc biệt khi thức ăn bị cháy đen trong môi trường dầu sẽ trở thành chất cacbon - đây là nguyên nhân gây ung thư. Bên cạnh đó, theo giáo sư Saari Csallany – chuyên gia về hóa thực phẩm và dinh dưỡng của khoa hóa sinh, đạihọc Minesota thì dầu ăn trong các thực phẩm chiên, rán có thể là nguyên nhân gây ra một số bệnh liên quan đến tim mạch, bệnh Parkinson, bệnh gan,… và những rủi ro này sẽ tăng cao nếu tái sử dụng lại dầu ăn vì lượng độc tố HNE phát sinh từ các loại dầu sẽ tăng lên sau mỗi lần được đun nóng. Dầu ăn được dùng để chiên nhiều đến mức từ vàng sang đen, thậm chí vón cục, sau đó thường được thải xuống cống rãnh, làm thành những mảng bám ở đây, gây ô nhiễm môi trường. Dầu nhẹ hơn nước và có khuynh hướng giãn ra thành màng mỏng, lan rộng gây cản trở sự ôxy hóa trong nước. Vì lý do đó mà 1 lít dầu có thể làm ô nhiễm 1 triệu lít nước. Ngoài ra, dầu có thể đông lại trong đường ống dẫn gây tình trạng nghẹt và nứt vỡ ống [9,125]. 1.2.4. Ưu điểm của dầu ăn thải Như đã được đề cập ở trên, trở ngại chính của dầu thực vật khi được sử dụng để chuyển hóa thành nhiên liệu chính là giá của nhiên liệu này cao. Điển hình là giá của nhiên liệu biodiesel cao hơn từ 1,5-3,0 lần so với nhiên liệu diesel thông thường [125,126]. Do đó, việc sử dụng các nguồn nguyên liệu phế thải rất có ý nghĩa: - Không cạnh tranh nguồn nguyên liệu với các ngành khác. - Giảm một lượng lớn chi phí để xử lý các phế phẩm này khi thải ra môi trường. - Giá cả nguyên liệu thấp giúp giảm được chi phí sản xuất, tạo được khả năng cạnh tranh cho nhiên liệu. - Dầu ăn thải có nguồn gốc từ thực vật, nên đây cũng có thể coi là nguồn tái sinh. - Không độc hại và có thể phân giải trong tự nhiên. - Sản phẩm nhiên liệu thu được từ dầu ăn thải có chỉ số xetan cao. - Giá trị nhiệt cháy cao. - Hàm lượng lưu huỳnh thấp. - Nhiệt độ cháy cao nên an toàn cho việc dự trữ và sử dụng. 1.3. PHƯƠNG PHÁP CRACKING XÚC TÁC TH NHIÊN LIỆ XANH 1.3.1. Giới thiệu chung về phản ứng cracking Cracking là quá trình phân cắt liên kết C-C của hydro cacbon có khối lượng phân tử lớn tạo ra các phân tử có khối lượng phân tử thấp hơn với giá trị ứng dụng tốt hơn. Quá trình cracking dầu thực vật được trải qua hai giai đoạn liên tục và kế tiếp nhau. Ở giai đoạn đầu, đặc điểm của các axit tự do và các axit cấu tạo nên phân tử glyxerit sẽ quyết định chiều hướng của phản ứng. Ở giai đoạn này, các liên kết C-O giữa glyxerin với axit béo bị bẻ gãy, đồng thời các phản ứng decacboxyl hóa, decacbonyl hóa xảy ra để tách oxy ra khỏi phân tử glyxerit. Tới giai đoạn hai, các sản phẩm trung gian được tạo thành từ giai đoạn một là nhân tố chính quyết định tới chiều hướng của các phản ứng trong giai đoạn. Trong giai đoạn này, dưới tác dụng của xúc tác, các sản phẩm trung gian tiếp tục được biến đổi và thay đổi cấu trúc để tạo thành sản phẩm cuối [10,11,61,62]. 19 1.3.2. Xúc tác cho quá trình cracking Xúc tác trong quá trình cracking có tầm quan trọng rất lớn, nó có tác dụng làm giảm năng lượng hoạt hóa, từ đó dẫn đến tăng tốc độ phản ứng. Ngoài ra, xúc tác còn có tính chọn lọc, nghĩa là có khả năng làm tăng hay chậm không đồng đều các loại phản ứng và hướng phản ứng theo chiều có lợi. Các yêu cầu đối với xúc tác cracking như sau [10,11,61,62]: - Hoạt tính xúc tác phải cao: Hoạt tính xúc tác là yêu cầu quan trọng nhất đối với xúc tác cracking. Hoạt tính xúc tác phụ thuộc vào tính chất vật lý, hóa học của xúc tác, mà trước hết là phụ thuộc vào thành phần hóa học của xúc tác và phụ thuộc vào điều kiện công nghệ của quá trình. - Độ chọn lọc phải cao: Độ chọn lọc quyết định khả năng tạo các sản phẩm có giá trị. Xúc tác thường được đánh giá đồng thời hoạt tính và độ chọn lọc so với xúc tác mẫu khi tiến hành trong cùng một điều kiện cracking. - Độ ổn định phải lớn: Xúc tác phải giữ được những đặc tính chủ yếu (hoạt tính, độ chọn lọc) sau một thời gian làm việc lâu dài. Độ ổn định xúc tác đặc trưng cho khả năng không thay đổi tính chất trong quá trình làm việc. - Đảm bảo độ bền cơ, bền nhiệt, bền thủy nhiệt: Trong quá trình làm việc, xúc tác bị va đập khi khuấy trộn hoặc cọ sát với thành thiết bị nên dễ bị bong tróc làm cho sự tổn thất áp suất qua lớp xúc tác tăng lên và gây ra sự mất mát xúc tác. Do vậy xúc tác phải đảm bảo độ bền cơ. Nếu xúc tác không đảm bảo tính bền nhiệt thì khi làm việc trong môi trường nhiệt độ thay đổi hoặc nhiệt độ cao có thể bị biến đổi cấu trúc dẫn đến làm thay đổi tính chất của xúc tác. - Đảm bảo độ thuần nhất cao: Xúc tác cần đồng nhất về thành phần, cấu trúc, hình dạng và kích thước. Khi kích thước không đồng đều sẽ tạo ra những vùng phân lớp và có trở lực khác nhau. Đồng thời do sự phân lớp theo kích thước nên sẽ phá vỡ chế độ làm việc bình thường của thiết bị. Mặt khác, khi kích thước không đồng đều sẽ dẫn đến khả năng dễ vỡ vụn, gây mất mát xúc tác. Bên cạnh đó, nếu cấu trúc lỗ xốp không đồng đều sẽ làm giảm bề mặt tiếp xúc dẫn đến làm giảm hoạt tính xúc tác. - Bền với chất làm ngộ độc xúc tác: phải chống lại sự gây ngộ độc của các hợp chất nitơ, lưu huỳnh,…. - Có khả năng tái sử dụng và tái sinh. - Dễ sản xuất và giá thành thấp. Xúc tác sử dụng cho quá trình cracking là những vật liệu có độ axit cao. Xúc tác có độ axit càng cao thì càng thúc đẩy quá trình bẻ gãy mạch sâu và dẫn tới sản phẩm khí thu được sẽ nhiều. Do vậy, nếu muốn thu được nhiều sản phẩm lỏng (xăng, diesel,…) thì cần phải khống chế lực axit của xúc tác. Hiện nay đã có một số công ty phát triển công nghệ chuyển hóa dầu thực vật và mỡ động vật tạo nhiên liệu parafinic để pha trộn với nhiên liệu hóa thạch. Quá trình dựa trên việc deoxy hóa (deoxygenation), bao gồm các phản ứng loại nước, loại CO2 và loại CO. Xúc tác sử dụng là Ni-Al, Ni-Mg-Al hay Mg-Al cũng như Ni/Al2O3, phản ứng diễn ra với sự có mặt của N2 [63,64]. Các tác giả [31,34,35,37,39,65-70,] nghiên cứu cracking dầu cọ trên các loại xúc tác khác nhau thu được kết quả như bảng 1.7. 20
- Xem thêm -

Tài liệu liên quan