Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu các đặc trưng và nhận dạng mẫu trong chẩn đoán bệnh trên cây bưởi...

Tài liệu Nghiên cứu các đặc trưng và nhận dạng mẫu trong chẩn đoán bệnh trên cây bưởi

.PDF
25
456
77

Mô tả:

ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA  CÙ YẾN NHI NGHIÊN CỨU CÁC ĐẶC TRƯNG VÀ NHẬN DẠNG MẪU TRONG CHẨN ĐOÁN BỆNH TRÊN CÂY BƯỞI Chuyên ngành: Khoa học máy tính Mã số: 60.48.01 TÓM TẮT LUẬN VĂN THẠC SĨ KỸ THUẬT Đà Nẵng – Năm 2018 Công trình được hoàn thành tại TRƯỜNG ĐẠI HỌC BÁCH KHOA Người hướng dẫn khoa học: TS. HUỲNH HỮU HƯNG Phản biện 1: PGS.TS. PHAN HUY KHÁNH Phản biện 2: TS. NGUYỄN THIỆN NGHĨA Luận văn sẽ được bảo vệ trước Hội đồng chấm Luận văn tốt nghiệp thạc sĩ Kỹ thuật tại Trường Đại học Bách khoa vào ngày 03 tháng 02 năm 2018. Có thể tìm hiểu luận văn tại:  Trung tâm Học liệu, Đại học Đà Nẵng tại Trường Đại học Bách khoa.  Thư viện Khoa Công nghệ thông tin, Trường Đại học Bách khoa – ĐHĐN. -1MỞ ĐẦU 1. Lý do chọn đề tài Ngày nay nông dân tại các tỉnh đồng bằng sông Cửu Long nói chung và tỉnh Trà Vinh nói riêng chỉ canh tác và trồng trọt chủ yếu chỉ dựa vào kinh nghiệm mà chưa biết ứng dụng khoa học và công nghệ vào trong sản xuất để nâng cao chất lượng sản phẩm, hiệu quả kinh tế nhằm giảm chi phí sản xuất. Ở Việt Nam, các ứng dụng về xử lý ảnh đã bước đầu được triển khai trên một số lĩnh vực như hệ thống nhận dạng biển số xe ở các bãi đỗ xe, hệ thống nhận dạng vân tay chấm công ở các công sở, nhận dạng và đánh giá chất lượng trái cây,v.v… Tuy nhiên số lượng các ứng dụng được triển khai trên thực tế còn ít. Từ hiện trạng trên, để giúp nông dân khu vực Đồng bằng sông Cửu Long tiết kiệm chi phí sản xuất, nâng cao năng suất và chất lượng cây trồng mà cụ thể là trên cây Bưởi -một loại cây cho hiệu quả kinh tế cao, nên tôi chọn đề tài: “Nghiên cứu các đặc trƣng và nhận dạng mẫu trong chẩn đoán bệnh trên cây Bƣởi” 2. Mục tiêu và nhiệm vụ nghiên cứu 2.1 Mục tiêu nghiên cứu - Dùng thuật toán KNN để giải quyết việc chẩn đoán các loại bệnh trên cây Bưởi thông qua các đặc trưng để nhận dạng: màu sắc, kết cấu bề mặt, hình dáng,… 2.2 Nhiệm vụ nghiên cứu - Xử lý ảnh số và các bước trong xử lý ảnh - Kỹ thuật nhận dạng: SVM, Mạng Nơron, KNN. Qua đó đánh giá ưu điểm của phương pháp KNN. -2- Sử dụng các đặc trưng màu sắc, kết cấu, hình dạng trong đánh giá chất lượng 3. Đối tƣợng và phạm vi nghiên cứu 3.1 Đối tượng nghiên cứu - Các phương pháp nhận dạng như: Mạng Nơron, Thuật toán Kláng giềng gần nhất, thuật toán SVM. - Các loại bệnh trên cây Bưởi khi sử dụng thuật toán KNN để nhận dạng. 3.2 Phạm vi nghiên cứu - Các loại bệnh trên cây Bưởi dựa vào các đặc trưng màu sắc, kết cấu, hình dạng - Dùng phương pháp nhận dạng như: Mạng Nơron, thuật toán KNN, thuật toán SVM để chẩn đoán bệnh trên cây Bưởi 4. Phƣơng pháp nghiên cứu 4.1 Phương pháp nghiên cứu lý thuyết - Đọc và tham khảo các đề tài, bài báo liên quan đến lĩnh vực nhận dạng mẫu. - Các phương pháp huấn luyện mạng, nghiên cứu các kỹ thuật nhận dạng mẫu. - Lựa chọn công cụ hỗ trợ. - Thu thập kho dữ liệu ảnh huấn luyện. - Thu thập kho dữ liệu các loại bệnh trên cây Bưởi. 4.2 Phương pháp nghiên cứu thực nghiệm - Thu nhận ảnh về các loại bệnh trên cây Bưởi ngoài thực tế - Thực hiện các bước xử lý. - Xây dựng kho dữ liệu huấn luyện. -3- So khớp các đặc trưng của ảnh cần kiểm tra với kho dữ liệu đặc trưng của ảnh đã được huấn luyện. - Cài đặt chương trình, thực hiện chương trình với một số mẫu dữ liệu và đánh giá kết quả. 5. Ý nghĩa khoa học và thực tiễn của luận văn 5.1 Ý nghĩa khoa học - Ứng dụng ngành khoa học nhận dạng và xử lý ảnh vào việc phát hiện bệnh trên nông sản. 5.2 Ý nghĩa thực tiễn - Góp thêm một giải pháp để nông dân chẩn đoán bệnh trên cây Bưởi tại tỉnh Trà Vinh. Qua đó giảm bớt sức lao động, tiết kiệm chi phí và nâng cao năng suất cây trồng, tăng thu nhập cho nông dân. 6. Bố cục luận văn: Bố cục đề tài tổ chức thành 3 chương chính: Chƣơng 1 Tổng quan về xử lý ảnh và các kỹ thuật nhận dạng: Chương này trình bày tổng quan lý thuyết về xử lý ảnh số, các bước trong xử lý ảnh, các trích chọn đặc trưng ảnh, một số phương pháp nhận dạng và ưu điểm về phương pháp mà đề tài đã chọn Chƣơng 2 Nhận dạng và đánh giá chất lượng: Chương này trình bày các công trình nghiên cứu của các tác giả khác trong nhận dạng trái cây như sử dụng các đặc trưng trong đánh giá chất lượng: hình dạng, màu sắc, kết cấu. Các phương pháp phân loại và đánh giá chất lượng trên táo, xoài,... Chƣơng 3 Nhận dạng và chẩn đoán bệnh trên Bưởi với thuật toán KNN: Chương này trình bày các bước thực hiện theo phương pháp nhận dạng KNN, các bước xử lý, trình bày kết quả đạt được, đánh giá kết quả, rút ra kết luận và hướng phát triển. -4CHƢƠNG 1 - TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ CÁC KỸ THUẬT NHẬN DẠNG 1.1. Tổng quan về xử lý ảnh 1.1.1 Giới thiệu Xử lý ảnh là lĩnh vực có liên quan đến một số lĩnh vực khác như phân tích ảnh hay thị giác máy tính. Các bước xử lý ảnh của ứng dụng thực tế thường thực hiện theo thứ tự: xử lý ảnh, phân tích ảnh và thị giác máy tính. Người ta thường định ra ranh giới của từng giai đoạn dựa vào đầu vào (input) và đầu ra (output) của quá trình xử lý. 1.1.2 Các bước trong xử lý ảnh Thu nhận ảnh, tiền xử lý ảnh, phân đoạn ảnh, biểu diễn ảnh, nhận dạng và nội suy ảnh 1.1.3 Một số khái niệm trong xử lý ảnh 1.1.3.1 Mức xám của một điểm ảnh: là cường độ sáng của nó, được gán bằng giá trị số tại điểm đó. Các thang giá trị mức xám thông thường: 16, 32, 64, 128, 256 (mức 256 là phổ biến nhất). 1.1.3.2 Ảnh trắng đen: là ảnh chỉ có 2 màu trắng và đen (không chứa màu khác) với mức xám ở các điểm ảnh có thể khác nhau. 1.1.3.3 Ảnh nhị phân: là ảnh có 2 mức trắng đen phân biệt, tức là dùng 1 bit mô tả 21 mức khác nhau. 1.1.3.4 Ảnh màu: trong lý thuyết 3 màu (Red, Green, Blue) để tạo nên thế giới màu, người ta thường dùng 3 byte để mô tả mức màu, khi đó các giá trị màu: 28*3 = 22416,7 triệu màu. 1.1.3.5 Ảnh xám: là trường hợp đặc biệt của ảnh màu khi giá trị màu Red, Green, Blue bằng nhau. -51.2. Phƣơng pháp cải thiện chất lƣợng ảnh 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Tăng giảm độ sáng Cắt lớp cường độ sáng Xử lý độ tương phản – giãn độ tương phản Lược đồ xám (Histogram) Biến đổi âm bản Biến đổi ảnh đen trắng Phép co và giãn ảnh nhị phân 1.2.7.1 Phép giãn ảnh (Dilation) 1.2.7.2 Phép co ảnh (Erosion) 1.2.8 Phép đóng và mở ảnh nhị phân 1.2.8.1 Phép mở ảnh (Opening) 1.2.8.2 Phép đóng ảnh (Closing) 1.3. Trích chọn đặc trƣng ảnh 1.3.1 Màu sắc 1.3.2 Hình dáng 1.3.3 Kết cấu bề mặt 1.4. Một số kỹ thuật nhận dạng 1.4.1 SVM (Support Vector Machine) 1.4.2 Mạng Nơron 1.4.3 K – láng giềng gần nhất (KNN – K nearest neighbors) KNN được sử dụng rất phổ biến trong lĩnh vực khai phá dữ liệu. KNN là phương pháp để phân lớp các đối tượng dựa vào khoảng cách gần nhất giữa đối tượng cần xếp lớp với tất cả các đối tượng trong dữ liệu huấn luyện (training data). Thuật toán K-NN đƣợc mô tả nhƣ sau: 1. Xác định giá trị tham số K (số láng giềng gần nhất) -62. Tính khoảng cách giữa đối tượng cần phân lớp (Query Point) với tất cả các đối tượng trong training data (thường sử dụng khoảng các Euclidean) 3. Sắp xếp khoảng cách theo thứ tự tăng dần và xác định K láng giềng gần nhất với Query Point 4. Lấy tất cả các lớp của K láng giềng gần nhất đã xác định 5. Dựa vào phần lớn lớp của láng giềng gần nhất để xác định lớp cho Query Point 1.5. Đánh giá ƣu điểm của phƣơng pháp KNN. Dễ sử dụng và cài đặt, xử lý tốt với dữ liệu nhiễu do dựa trên khoảng cách để quyết định phân lớp Độ phức tạp tính toán của quá trình training là bằng 0. Việc dự đoán kết quả của dữ liệu mới rất đơn giản không cần giả sử gì về phân phối của các lớp. Có độ phức tạp: O(K,N,1) với 1 là số lần lập, có khả năng mở rộng, dễ dàng sửa đổi với những dữ liệu mới Bảo đảm hội tụ sau một số lần lập hữu hạn, luôn có K cụm dữ liệu và luôn có ít nhất một điểm dữ liệu trong một cụm dữ liệu Các cụm không phân cấp, không chồng chéo dữ liệu lên nhau, mọi thành viên của một cụm là gần với chính cụm đó hơn bất cứ một cụm nào khác. -7CHƢƠNG 2 – NHẬN DẠNG VÀ ĐÁNH GIÁ CHẤT LƢỢNG 2.1 Các công tr nh nghiên cứu 2.1.1 Nhận dạng trái cây Angel Dacal-Nieto và các cộng sự đã tiến hành đánh giá chất lượng củ khoai tây dựa trên công nghệ thị giác Máy tính. Nó được phân đoạn bằng cách chuyển ảnh màu RGB sang ảnh màu HSV, sử dụng lược đồ mức độ xám, ma trận GLCM để trích lọc đặc trưng để đưa vào tập huấn luyện. 2.1.2 Phát hiện khuyết điểm trên bề mặt trái cây Tác giả Panli HE đã đề xuất mô hình phát hiện khuyết điểm trên bề mặt trái cây dựa trên biến đổi Fourier và phân lớp khuyết điểm bằng phương pháp SVM. Trái cây được phân đoạn bằng các phép toán hình thái học, sau đó sử dụng biến đổi Fourier cho ảnh, các đặc trưng kết cấu và mức xám được tính toán bằng ma trận GLCM. 2.2 Các đặc trƣng sử dụng trong đánh giá chất lƣợng 2.2.1 Trích chọn đặc trưng hình dạng để phân biệt phần cuống và khiếm khuyết thực trên trái cây. Hình dạng phần cuống gần giống như hình dạng vòng tròn. Dựa vào đặc tính này ta phát hiện và phân biệt phần cuống với các khiếm khuyết thực bằng cách áp vòng tròn trên mỗi đối tượng được trích xuất. 2.2.2 Trích chọn đặc trưng màu sắc 2.2.2.1 Biểu đồ màu toàn cục (GCH) 2.2.2.2 Vector liên kết màu sắc (CCV) 2.2.2.3 Biểu đồ sai l ch màu sắc (CDH) 2.2.3 Trích chọn đặc trưng kết cấu 2.2.3.1 Mẫu tam phân cục bộ (LTP) -82.2.3.2 Biểu đồ phần tử cấu trúc (SEH) 2.2.3.3 Mẫu nhị phân cục bộ (LBP) 2.2.3.4 Mẫu nhị phân cục bộ hoàn chỉnh (CLBP) 2.3 Phƣơng pháp phân loại và đánh giá chất lƣợng 2.3.1 Phương pháp phân lớp ảnh chụp lá cây ứng dụng máy ector h trợ 2.3.1.1 Mô h nh phân l p ảnh chụp lá câ 2.3.1.2 Giai đoạn tiền xử lý 2.3.1.3 Chọn thuật toán huấn lu n và phân l p dữ li u 2.3.1.4 ết quả th c nghi m Giao diện của ứng dụng được thiết kế trên GUI của matlab Hình 2. 1 (a) Tách lá ra khỏi nền; (b) Giao diện chương trình Độ chính xác tính được trong trường hợp này là 98,67% (C=2 và Gamma=8). Với hàm nhân tuyến tính (C=2) cho kết quả là 90%. 2.3.1.5 ết luận Nghiên cứu này trình bày phương pháp phân lớp dữ liệu SVM. Ứng dụng đã phân biệt được một ảnh có chứa lá hay không, xác định được cả những ảnh chứa nhiễu không thích hợp cho các bước trong quá trình nhận dạng tiếp theo với độ chính xác tương đối cao. -92.3.2 Thuật toán Watershed và đối sánh mẫu để phát hiện bệnh thối trên xoài 2.3.2.1 Phương pháp: Các bư c th c hi n 1) Nhập ảnh của xoài. 2) Tiến hành tiền xử lý. 3) Phân vùng hình ảnh sử dụng thuật toán Watershed. 4) Trích xuất đặc trưng sử dụng thuật toán đối sánh mẫu 2.3.2.2 Mục tiêu của nghiên cứu Nghiên cứu được đề xuất bao gồm khái niệm xử lý ảnh thông thường, tiền xử lý ảnh, phân vùng, trích xuất và phân loại đặc trưng. 2.3.2.3 ết quả thử nghi m Hình 2. 2 Phát hiện trái xoài bình thường và xoài bệnh 2.3.2.4 ết luận Dựa vào màu của hình ảnh mà mật độ của vùng bị khiếm khuyết xem xoài được đưa ra là bình thường hay bị bệnh. 2.3.3 Phương pháp khai thác các thống kê màu sắc và đặc trưng kết cấu để nhận biết bệnh táo. Các bước của phương pháp được đề xuất gồm: 2.3.3.1 Mô hình 2.3.3.2 Phân đoạn sử dụng - means. -102.3.3.3 Huấn lu n và phân loại sử dụng má vector hỗ trợ đa l p 2.3.3.4 ết quả Chúng ta xem xét hai không gian màu RGB và HSV và so sánh Bảng 2. 1 Tính chính xác phân loại bệnh trái cây khi MSVM được huấn luyện với 70 hình ảnh mỗi loại Tính năng / Phân loại GCH CCV CDH SEH LBP LTP CLBP GCH+LBP CCV+CLBP CDH+CLBP CDH+SEH CDH+DEH+CLBP 2.3.3.5 Đốm Thối Sần 76.92 79.81 78.85 65.38 82.70 83.65 88.46 85.58 88.56 78.58 89.65 91.85 65.96 75.65 63.85 66.85 85.45 86.68 82.34 82.14 92.85 75.95 69.75 90.85 69 85 68 92 75 82 72 69 81 67 59 94 Bình thƣờng 97.56 95.58 89.69 84.98 96.58 92.58 86.68 94.85 87.52 67.59 69.85 94.85 Trung bình 77.95 68.54 98.59 65.95 95.68 65.85 95.98 65.89 82.78 79.85 87.65 89.58 ết luận Phương pháp gồm ba bước chính: phân đoạn khiếm khuyết được thực hiện bằng cách sử dụng kỹ thuật gom cụm K-means. Bước thứ hai, tính năng màu sắc và kết cấu được trích xuất và kết hợp với nhau. Bước thứ ba, việc huấn luyện và phân loại được thực hiện dựa vào SVM đa lớp, sử dụng ba loại bệnh của táo gồm bệnh đốm táo, bệnh thối táo và bệnh sần táo, ngoài ra táo bình thường cũng là một trường hợp để nghiên cứu và đánh giá chương trình. -11CHƢƠNG 3– NHẬN DẠNG VÀ CHẨN ĐOÁN BỆNH TRÊN BƢỞI VỚI THUẬT TOÁN K-NEAREST NEIGHBORS 3.1. Thuật toán K – Láng giềng gần nhất (K-Nearest Neighbors) 3.1.1 Thuật toán K-Nearest Neighbors algorithm (K-NN) được sử dụng rất phổ biến trong lĩnh vực Data Mining. K-NN là phương pháp để phân lớp các đối tượng dựa vào khoảng cách gần nhất giữa đối tượng cần xếp lớp (Query point) và tất cả các đối tượng trong Training Data. Một đối tượng được phân lớp dựa vào K láng giềng của nó. K là số nguyên dương được xác định trước khi thực hiện thuật toán. Người ta thường dùng khoảng cách Euclidean để tính khoảng cách giữa các đối tượng. 3.1.2 Mô tả thuật toán 1. Xác định giá trị tham số K (số láng giềng gần nhất) 2. Tính khoảng cách giữa đối tượng cần phân lớp (Query Point) với tất cả các đối tượng trong training data (thường sử dụng khoảng các Euclidean) 3. Sắp xếp khoảng cách theo thứ tự tăng dần và xác định K láng giềng gần nhất với Query Point 4. Lấy tất cả các lớp của K láng giềng gần nhất đã xác định 5. Dựa vào phần lớn lớp của láng giềng gần nhất để xác định lớp cho Query Point 3.1.3 Khoảng cách Euclidean Khoảng cách giữa 2 điểm là chiều dài của đường thẳng nối chúng. Trong mặt phẳng, khoảng cách giữa 2 điểm (x1, y1) và (x2, y2) được cho bởi định lý Pythagorean như sau: -123.2. Chẩn đoán bệnh trên Bƣởi sử dụng thuật toán K-NN 3.2.1 Mô tả bài toán Trong trường hợp cần chẩn đoán bệnh thì chúng ta cũng thực hiện công việc trích lọc đặc trưng, dữ liệu đặc trưng lúc này được lưu vào một vector riêng để thuật toán k-NN tiến hành tính toán khoảng cách Euclidean giữa mẫu kiểm tra với lần lượt các vector trong CSDL. Thuật toán k-NN chọn hệ số k – số láng giềng gần nhất cần lấy. Đối với bài toán này, tác giả sẽ chọn k = 1 tức là chỉ chọn ra một láng giềng gần nhất trong tất cả mẫu dữ liệu. 3.2.2 Mô hình hệ thống Hình 3. 1 Mô hình nhận dạng quả Bưởi sử dụng thuật toán k-NN -133.2.3 Các bước thực hiện Hệ thống nhận dạng phát hiện bệnh trên Bưởi được thực hiện qua các bước: Bư c thứ nhất: xây dựng tập dữ liệu gồm tập dữ liệu huấn luyện và tập dữ liệu nhận dạng. Bư c thứ hai: thực hiện các bước nâng cao chất lượng ảnh như khử nhiễu, tăng/giảm độ sáng, độ tương phản,… Bư c thứ ba: chuyển ảnh màu RGB sang ảnh màu HSV, thực hiện các phép biến đổi và phân vùng ảnh. Bư c thứ tư: ảnh màu RGB được chuyển sang không gian màu HSV, sử dụng lược đồ mức độ xám, ma trận GLCM để trích lọc đặc trưng đưa vào tập huấn luyện. Bư c thứ năm: thuật toán k-NN được dùng để phân lớp và tính toán khoảng cách giữa vector đặc trưng của ảnh đưa vào kiểm tra với các vector đặc trưng trong tập CSDL đã được huấn luyện và phân lớp để tìm ra láng giềng gần nhất với nó trả về kết quả là loại bệnh/không bệnh với sự tương đồng gần nhất. 3.3. Trích xuất đặc trƣng 3.3.1 Đặc trưng màu sắc Ảnh màu đầu vào RGB sẽ được chuyển đổi sang không gian màu HSV và được tách ra từng kênh màu H, S, V riêng biệt. Chuyển đổi và tách các kênh màu H-S-V Để chuyển từ không gian màu RGB sang HSV thì giá trị của S và V nằm trong khoảng 0 (màu đen) và 1 (màu trắng), giá trị của H nằm trong khoảng 0 đến 360o. -14- 3.3.2 Đặc trưng kết cấu Hình 3. 2 Ảnh màu RGB chuyển sang HSV và các kênh màu H-S-V 3.3.3 Sóng con Gabor – Gabor Wavelet Trong xử lý ảnh, bộ lọc Gabor là một bộ lọc tuyến tính thường được sử dụng để phát hiện biên, phần vùng ảnh, phân tích đặc trưng ảnh, phân lớp ảnh. Tần số và hướng được thể hiện trong các bộ lọc Gabor tương tự như hệ thống thị giác của con người. Tập hợp các bộ lọc Gabor với tần số và hướng khác nhau có thể trợ giúp cho việc trích lọc đầy đủ các đặc trưng trong ảnh. Bộ lọc Gabor hai chiều (2D Gabor) được áp dụng trong ảnh với tỉ lệ và tần số khác nhau. Hàm Gabor 2D được biến đổi từ đường hình sin phức tạp của hàm Gaussian 2D. Hình 3. 3 Các tham số của hàm Gabor Wavelet và đặc trưng kết cấu. -15- 3.3.1 Ma trận đồng hiện mức xám Co-occurrence GLCM của ảnh f(x,y) có kích thước MxM và có G mức độ xám là một ma trận hai chiều C(i, j). Mỗi phần tử của ma trận thể hiện xác suất xảy ra cùng giá trị cường độ sáng i và j tại một khoảng cách d và một góc xác định. Do đó, có thể có nhiều ma trận GLCM khác nhau phụ thuộc vào cặp giá trị d và . Một số đặc trưng quan trọng khi phân tích kết cấu ảnh gồm: Đặc trƣng năng lƣợng (energy): đo lường tính đồng nhất cục bộ trong ảnh, có giá trị nằm trong khoảng từ 0 đến 1. Giá trị cao khi ảnh có tính đồng đều về giá trị mức độ xám và nó sẽ có giá trị thấp nếu ảnh không đồng đều về mức độ xám. Độ tƣơng phản (contrast): cho ta biết được số lượng điểm ảnh có mức độ xám biến đổi cục bộ trong ảnh. Đối với ảnh có giá trị mức xám đều thì giá trị độ tương phản là bằng 0, đây là giá trị tối thiểu của độ tương phản. Nếu ảnh không có sự đồng đều về giá trị mức xám càng nhiều thì giá trị độ tương phản càng tăng. Độ tƣơng đồng (correlation): Tham số này phân tích sự phụ thuộc tuyến tính mức độ xám của các điểm ảnh lân cận nhau, có giá trị nằm trong khoảng từ -1 đến 1. Tính ngẫu nhiên (Entropy): Entropy đo lường tính ngẫu nhiên của các phần tử của ma trận GLCM. Giá trị của entropy là tối đa bằng 1 khi các phần tử trong ma trận bằng nhau, entropy bằng 0 nếu tất cả các giá trị trong ma trận là khác nhau. Tính đồng nhất (homogeneity): Đặc trưng tính đồng nhất đo lường tính khít hoặc tính dày đặc được phân bố trong không gian của ma trận GLCM. Đặc trưng về tính đồng nhất bằng 0 khi sự phân bố -16của ma trận GLCM là không đồng đều và bằng 1 khi sự phân bố chỉ xuất hiện trên đường chéo của ma trận GLCM. Hình 3. 4 Hình dáng Gabor Wavelet và các đặc trưng 3.3.1 Biến đổi Wavelet và ứng dụng Biến đổi Wavelet dù chỉ làm việc với các tín hiệu một chiều nhưng sau khi biến đổi xong chúng ta thu được một hàm tín hiệu hai biến hoặc một tập các cặp giá trị W(a, b) minh họa thành phần tần số khác nhau của tín hiệu xảy ra tại thời điểm t. Các giá trị W(ai, b) tạo thành một cột (i=1, 2, ... , n) cho biết một thành phần tần số có trong những thời điểm t và các giá trị W(a, bi) tạo thành hàng cho biết tại một thời điểm t của tín hiệu f(t) có các thành phần tần số nào. -173.4. Thực nghiệm và kết quả Chương trình là thu nhận hình ảnh trái Bưởi ở đầu vào và kết quả đầu ra của chương trình cho biết quả Bưởi có bệnh hay không có bệnh, nếu có bệnh thì cho biết tên của bệnh. Hiện nay để xử lý ảnh ta có thể sử dụng C#, Matlab,…Tôi lựa chọn ngôn ngữ lập trình Matlab, trong thư viện của Matlab có nhiều hàm đã được hỗ trợ sẵn. Chương trình demo sử dụng ngôn ngữ Matlab R2013a chạy trên hệ điều hành Microsoft Windows 7 – 64 bit. 3.4.1 Tập mẫu ảnh huấn luyện Tập mẫu huấn luyện trong thuật toán k-NN gồm có 100 quả Bưởi có bệnh/không bệnh được xếp thứ tự từ 1 đến 100. Khi đưa quả Bưởi vào kiểm tra thì ta sẽ tính được các tham số đặc trưng của nó, tiếp theo chạy thuật toán k-NN để tìm láng giềng gần nhất của quả Bưởi đưa vào kiểm tra. Lúc đó ta sẽ có được tham số đầu ra là: khoảng cách Euclidean và chỉ số của quả Bưởi gần nhất với quả Bưởi đưa vào kiểm tra. Dựa vào đó ta kết luận quả Bưởi đưa vào kiểm tra bị bệnh gì hoặc không có bệnh. 3.4.1.1 Mẫu trái Bưởi không b nh Hình 3. 5 Mẫu trái Bưởi không bệnh 3.4.1.2 Mẫu b nh thối trái Bưởi do nấm Ph topthora Hình 3. 6 Mẫu trái Bưởi bệnh thối do nấm -18- 3.4.1.3 Mẫu b nh sâu đục vỏ trái Bưởi Hình 3. 7 Mẫu trái Bưởi bệnh sâu đục vỏ trái 3.4.2 Kết quả thực nghiệm 3.4.2.1 Các tham số đặc trưng kết cấu của sóng Gabor được trích xuất    8,   [0 2 ],   0.5, b  1, N  10,  45 Entropy: 0.225865 Contrast: 0.341502 Correlation: 0.434848 Energy: 0.698966 Homogeneity: 0.371299 3.4.2.2 ết quả th c nghi m v i k=2 3.4.2.3 ết quả th c nghi m v i k=1
- Xem thêm -

Tài liệu liên quan