Tài liệu Mô hình hóa và mô phỏng ứng xử cơ học của ống và tấm mỏng có kích cỡ nano mét

  • Số trang: 126 |
  • Loại file: PDF |
  • Lượt xem: 72 |
  • Lượt tải: 0
tailieuonline

Đã đăng 39837 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TƤO TRƢỜNG ĐƤI HỌC BÁCH KHOA HÀ NỘI Nguyễn Danh Trƣờng MÔ HÌNH HÓA VÀ MÔ PHỎNG ỨNG XỬ CƠ HỌC CỦA ỐNG VÀ TƨM MỎNG CÓ KÍCH CỠ NANO MÉT LUẬN ÁN TIẾN SĄ CƠ HỌC Hà Nội – 2015 BỘ GIÁO DỤC VÀ ĐÀO TƤO TRƢỜNG ĐƤI HỌC BÁCH KHOA HÀ NỘI Nguyễn Danh Trƣờng MÔ HÌNH HÓA VÀ MÔ PHỎNG ỨNG XỬ CƠ HỌC CỦA ỐNG VÀ TƨM MỎNG CÓ KÍCH CỠ NANO MÉT Chuyên ngành : Cơ kỹ thuật Mã số : 62520101 LUẬN ÁN TIẾN SĄ CƠ HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: PGS.TS. LÊ MINH QUÝ Hà Nội – 2015 LỜI CAM ĐOAN Tôi xin cam đoan toàn bộ nội dung trình bày trong luận án này đƣợc nghiên cứu bởi bƧn thân tôi dƣới sự hƣớng dẫn khoa học của PGS.TS Lê Minh Quý. Các số liệu, kết quƧ nêu trong luận án là trung thực và chƣa từng đƣợc ai công bố trong bƩt kỳ công trình nào khác. Hà Nội, ngày 03 tháng 08 năm 2015 Ngƣời hƣớng dẫn Nghiên cứu sinh PGS.TS. Lê Minh Quý Nguyễn Danh Trƣờng LỜI CƦM ƠN Tôi xin chân thành cƧm ơn Bộ môn Cơ học vật liệu và kết cƩu, Viện Cơ khí, Trƣờng Đƥi học Bách khoa Hà Nội đã tƥo điều kiện thuận lợi để tôi thực hiện công trình này. Tôi xin bày tỏ lòng biết ơn sâu sắc đến PGS.TS. Lê Minh Quý đã tận tình hƣớng dẫn, giúp đỡ để tôi có thể thực hiện và hoàn thành Luận án này. Tôi xin cƧm ơn Quỹ phát triển khoa học và Công nghệ Quốc gia (Nafosted) đã hỗ trợ kinh phí cho đề tài mã số 107.02.2011.10 và đề tài mã số 107.02.2014.03 để tôi thực hiện nghiên cứu này. Cuối cùng tôi xin gửi lời cƧm ơn tới gia đình, bố mẹ, vợ và con gái Châu Anh đã luôn động viên, giúp đỡ tôi trong thời gian qua. Hà Nội, 2015 Nguyễn Danh Trƣờng MỤC LỤC Trang DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT iii DANH MỤC CÁC BƦNG iv DANH MỤC CÁC HÌNH ƦNH, ĐỒ THỊ v MỞ ĐƪU 1 CHƢƠNG 1 TỔNG QUAN 6 1.1 Vật liệu nano cƩu trúc dƥng lục giác 6 1.2 Một số phƣơng pháp mô phỏng vật liệu nano 10 1.2.1 Phƣơng pháp lý thuyết hàm mật độ 11 1.2.2 Mô phỏng động lực phân tử 13 1.2.3 Phƣơng pháp phƫn tử hữu hƥn nguyên tử 14 1.3 Kết luận chƣơng 16 CHƢƠNG 2 CƨU TRÚC NGUYÊN TỬ VÀ THẾ NĂNG TƢƠNG TÁC 18 2.1 CƩu trúc hình học tƩm và ống vật liệu nano dƥng lục giác 18 2.2 Thế năng tƣơng tác giữa các nguyên tử 24 2.2.1 Thế năng tƣơng tác cặp 24 2.2.2 Bán kính ngắt của thế tƣơng tác 26 2.2.3 Thế năng tƣơng tác đa nguyên tử 26 CHƢƠNG 3 MÔ HÌNH PHƪN TỬ HỮU HƤN NGUYÊN TỬ 30 3.1 30 Cở sở lý thuyết phƣơng pháp phƫn tử hữu hƥn nguyên tử 3.1.1 Thiết lập và giƧi phƣơng trình trong AFEM 30 3.1.2 Phƫn tử trong AFEM 35 3.2 Mô hình phƫn tử hữu hƥn nguyên tử với hàm thế điều hòa 39 3.2.1 Thiết lập ma trận độ cứng phƫn tử 39 3.2.2 Thông số hàm thế điều hòa 43 3.2.3 Kích thƣớc tƩm nano 43 3.3 Mô hình phƫn tử hữu hƥn nguyên tử với hàm thế Tersoff 44 3.3.1 Phƫn tử và thông số hàm thế Tersoff 45 3.3.2 Loƥi bỏ hàm ngắt 46 3.3.3 Kích thƣớc tƩm nano 48 CHƢƠNG 4 KẾT QUƦ VÀ BÀN LUẬN 51 4.1 Giới thiệu 51 4.2 Kết quƧ và bàn luận của mô hình sử dụng hàm thế điều hòa 52 4.2.1 Kéo và trƣợt thuƫn túy tƩm graphene, BN, SiC và BSb 52 4.2.2 Kéo ống C, BN, SiC, BSb 56 4.3 Kết quƧ và bàn luận của mô hình sử dụng hàm thế Tersoff 58 4.3.1 Kéo tƩm graphene, BN, và SiC 58 4.3.2 Kéo tƩm Si 72 4.3.3 Kéo ống BN 80 4.3.4 Uốn ống BN 86 Kết luận chƣơng 96 4.4 KẾT LUẬN VÀ KIẾN NGHỊ 97 TÀI LIỆU THAM KHƦO 99 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN 109 PHỤ LỤC 110 Phụ lục 1: Xác định hằng số lực biến dƥng dài từ hàm thế Tersoff 110 Phụ lục 2: Ma trận độ cứng phƫn tử của mô hình sử dụng hàm thế điều hòa 110 iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT AFEM Atomic-scale Finite Element Method - Phƣơng pháp phƫn tử hữu hƥn thang nguyên tử. CNT Carbon NanoTube - Ống cácbon nano. DFT Density Functional Theory - Lý thuyết hàm mật độ. E Thế năng của hệ. EBonded Thế năng liên kết. ENon-bonded Thế năng phi liên kết. ET Tổng năng lƣợng của hệ. FEM Finite Element Method - Phƣơng pháp phƫn tử hữu hƥn. G Mô đun đàn hồi trƣợt (N/m2). Gs Mô đun đàn hồi trƣợt hai chiều (N/m). Gs=G.t; t là độ dày vật liệu. MD Molecular Dynamics - Động lực phân tử. MM Molecular Mechanics - Cơ học phân tử. MWCNTs Multi Walled Carbon NanoTubes - Ống cácbon nano đa lớp. SWCNT Single Walled Carbon NanoTube - Ống cácbon nano đơn lớp. SW Stone-Wales – khuyết tật mà một liên kết bị quay đi 90o so với vị trí bình thƣờng của nó. t Độ dày tƩm và ống vật liệu đơn lớp (nm). Y Mô đun đàn hồi (N/m2). Ys Mô đun đàn hồi hai chiều (N/m). Ys=Y.t; t là độ dày vật liệu. σ Ứng suƩt pháp (N/m2). σt Ứng suƩt pháp hai chiều (N/m). τ Ứng suƩt tiếp (N/m2). ε Biến dƥng dài. γ Biến dƥng góc. iv DANH MỤC CÁC BẢNG Trang BƧng 2.1 Tổng hợp các thông số của tƩm và ống vật liệu nano BƧng 3.1 Các hằng số lực và chiều dài liên kết ban đƫu của các vật liệu graphene, BN, SiC và BSb ở nhiệt độ 0K. BƧng 3.2 44 BƧng thông số hàm thế Tersoff cho các vật liệu graphene, BN, SiC, Si. BƧng 3.4 43 Mô đun đàn hồi hai chiều Ys (N/m) của graphene phụ thuộc vào kích thƣớc tƩm vuông. BƧng 3.3 22 46 Thông số kích thƣớc tƩm graphene, BN và SiC gồm 4032 nguyên tử. 49 BƧng 3.5 Thông số kích thƣớc tƩm Si. 49 BƧng 4.1 Đặc trƣng đàn hồi của tƩm graphene, BN, SiC, BSb tính bởi luận án và so sánh với kết quƧ của những nghiên cứu khác. BƧng 4.2 Mô đun đàn hồi hai chiều Ys (N/m) của SWCNT phụ thuộc vào tỷ lệ chiều dài (L) trên đƣờng kính ống (D). BƧng 4.3 53 56 Mô đun đàn hồi hai chiều Ys (N/m) của ống SWCNT, BN, SiC, BSb theo đƣờng kính ống. Tỷ lệ chiều dài trên đƣờng kính cố định L/D=15. BƧng 4.4 Đặc trƣng cơ học khi kéo của tƩm graphene, BN và SiC nguyên tính bởi luận án và so sánh với các nghiên cứu khác. BƧng 4.5 56 62 So sánh đặc trƣng cơ học khi kéo tƩm BN, SiC nguyên và bị khuyết tật. 66 BƧng 4.6 Đặc trƣng cơ học khi chịu kéo của tƩm Si nguyên. 72 BƧng 4.7 So sánh đặc trƣng khi kéo của tƩm Si trƣờng hợp nguyên và bị khuyết tật. BƧng 4.8 Đặc trƣng khi chịu kéo của ống BN (8,8) và (14,0) phụ thuộc vào tỷ lệ giữa chiều dài trên đƣờng kính ống. BƧng 4.9 77 82 Đặc trƣng khi chịu kéo của các ống BN cùng tỷ lệ chiều dài (L) trên đƣờng kính ống (D) là L/D=10. 84 BƧng 4.10 So sánh góc uốn tới hƥn của ống BN trƣờng hợp ống nguyên và ống bị khuyết tật SW1. 90 v DANH MỤC CÁC HÌNH ẢNH, ĐỒ THỊ Trang Hình 1.1 Ống cácbon nano đa lớp: a) ống cácbon 5 lớp với đƣờng kính 6,5 nm; b) ống cácbon 2 lớp với đƣờng kính 5,5 nm; c) ống cácbon 7 lớp với đƣờng kính 6,5 nm [43]. 6 Hình 1.2 Hình Ƨnh mô phỏng cho: a) SWCNT và b) MWCNTs. 7 Hình 2.1 Hình chiếu bằng và hình chiếu cƥnh của tƩm vật liệu nano cƩu trúc lục giác: a) tƩm phẳng với góc liên kết luôn là θ=120o; b) tƩm low-buckled với góc liên kết θ<120o. 19 Hình 2.2 Thông số hình học một tƩm vật liệu nano cƩu trúc hình lục giác. 20 Hình 2.3 Mô phỏng quá trình cuộn tƩm thành ống vật liệu nano. 20 Hình 2.4 Ba dƥng cƩu trúc ống vật liệu nano: (a) Zigzag (10,0); (b) Armchair (5,5); (c) Chiral (7,3). Hình 2.5 21 Mô hình tƩm vật liệu có cƩu trúc lƣới lục giác cƩu tƥo từ 2 loƥi nguyên tử. (a) khuyết tật SW1 (một liên kết song song phƣơng amchair quay 90o); b) khuyết tật SW2 (một liên kết nghiêng 60o so với phƣơng armchair quay 90o); (c) khuyết tật mƩt đi 2 nguyên tử liền kề. 23 Hình 3.1 Sơ đồ khối chƣơng trình giƧi lặp với điều kiện biên tùy ý. 32 Hình 3.2 Sơ đồ khối chƣơng trình giƧi không lặp với điều kiện biên là một chuyển vị đủ nhỏ. Hình 3.3 Mô phỏng quá trình tìm nghiệm: a) bằng sơ đồ lặp; b) bằng sơ đồ không lặp với điều kiện biên nhỏ. Hình 3.4 37 Phƫn tử khi lƩy một nút làm trung tâm dùng cho mô hình: a) ống SWCNT; b) kim cƣơng. Hình 3.8 36 Phƫn tử 6 nút mô hình hóa thế năng thế hệ thứ hai của Brenner, nguồn [128]. Hình 3.7 36 Phƫn tử 4 nút đƣợc phát triển bởi Lutz Nasdala và Gerald Ernst, nguồn [70]. Hình 3.6 34 Kiểu phƫn tử thanh với khớp đàn hồi ba chiều mô phỏng liên kết trong ống SWCNT, nguồn [105]. Hình 3.5 33 37 Mô hình hai kiểu phƫn tử: a) phƫn tử biến dƥng dài lij và biến dƥng dài  lij ; b) phƫn tử biến dƥng góc ijk và biến dƥng góc ijk . 40 vi Hình 3.9 Mô hình hai kiểu phƫn tử mô tƧ hàm thế Tersoff: (a) Phƫn tử ba nút; (b) Phƫn tử bốn nút. Hình 3.10 45 Mô phỏng tƣơng tác của liên kết B-N: a) năng lƣợng tƣơng tác; b) lực chống lƥi biến dƥng kéo khi sử dụng (nét liền) và không sử dụng (nét đứt) hàm ngắt. Hình 4.1 Điều kiện biên mô phỏng thí nghiệm: a) tƩm bị kéo; b) tƩm bị trƣợt thuƫn túy ; c) ống bị kéo. Hình 4.2 47 51 Mô đun đàn hồi hai chiều của 4 loƥi ống vật liệu theo đƣờng kính ống. (Các đƣờng nằm ngang là mô đun đàn hồi của các tƩm zigzag (nét liền) và tƩm armchair (nét đứt) của vật liệu tƣơng ứng). Hình 4.3 So sánh đƣờng cong ứng suƩt biến dƥng tính bởi AFEM và MD khi kéo các tƩm nguyên: (a) graphene; (b) tƩm BN; (c) tƩm SiC. Hình 4.4 57 60 So sánh đƣờng cong ứng suƩt biến dƥng khi kéo tƩm BN trong hai trƣờng hợp tƩm nguyên và tƩm bị khuyết tật: (a) phƣơng zigzag ; (b) phƣơng armchair. Hình 4.5 64 Hình dƥng tƩm SiC nguyên bị kéo theo phƣơng zigzag: a) tƩm chƣa xuƩt hiện phá hủy ở biến dƥng =24,8% ứng với ứng suƩt lớn nhƩt; b) tƩm bị phá hủy ở biến dƥng =25,0%. Hình 4.6 67 Hình dƥng tƩm SiC khuyết mƩt hai nguyên tử ở trung tâm bị kéo đơn trục theo phƣơng zigzag: a) tƩm ở biến dƥng =13,0% ứng với ứng suƩt đƥt giá trị lớn nhƩt; b) tƩm ở biến dƥng =13,4% và c) tƩm ở biến dƥng =13,7%. Hình 4.7 69 So sánh: (a) ứng suƩt phá hủy và (b) biến dƥng phá hủy khi kéo tƩm BN, SiC giữa trƣờng hợp tƩm nguyên và tƩm bị khuyết tật. 70 Hình 4.8 Đồ thị đƣờng cong ứng suƩt-biến dƥng khi kéo của tƩm Si nguyên. 73 Hình 4.9 So sánh đƣờng cong ứng suƩt-biến dƥng khi kéo tƩm Si trƣờng hợp nguyên và bị khuyết tật a) theo phƣơng zigzag; b) theo phƣơng armchair. Hình 4.10 So sánh sự phụ thuộc của hệ số Poisson vào biến dƥng kéo của tƩm Si trƣờng hợp nguyên và bị khuyết tật. Hình 4.11 75 So sánh: (a) ứng suƩt phá hủy và (b) biến dƥng phá hủy khi kéo tƩm Si giữa trƣờng hợp tƩm nguyên và tƩm bị khuyết tật. Hình 4.12 74 76 Hình dƥng tƩm Si với khuyết tật mƩt đi hai nguyên tử chịu kéo theo phƣơng zigzag ở các biến dƥng: a) =15,0% (giá trị tới hƥn); b) =15,1% và c) =15,2%. Hình 4.13 79 Hình dƥng tƩm Si với khuyết tật SW1 bị phá hủy ở biến dƥng kéo =15,2% theo phƣơng zigzag. 79 vii Hình 4.14 Đƣờng cong ứng suƩt-biến dƥng khi kéo đúng tâm ống BN(8,8) và BN(14,0) ở các chiều dài ống L=10D, 15D và 20D. Hình 4.15 80 Sự phụ thuộc của hệ số Poisson theo biến dƥng kéo đúng tâm của ống BN(8,8) và BN(14,0) ở các chiều dài ống L=10D, 15D và 20D. 81 Hình 4.16 Hình Ƨnh ống BN(14,0), L=20D khi chịu kéo đúng tâm ở các biến dƥng: a) 25,1%; b) 25,4%; c) 25,5%. Hình 4.17 Hình Ƨnh vị trí bị phá hủy của ống BN(8,8): a) L=10D; b) L=15D; c) L=20D Hình 4.18 83 Hình Ƨnh mƩt ổn định và bị phá hủy của ống BN(14,0): a) L=10D; b) L=15D; c) L=20D. Hình 4.19 82 84 Đƣờng cong ứng suƩt-biến dƥng khi kéo các ống BN đƣờng kính khác nhau, cùng tỷ lệ chiều dài trên đƣờng kính L/D=10: a) ống amrchair và tƩm zigzag; b) ống zigzag và tƩm armchair. 85 Hình 4.20 Điều kiện biên uốn ống BN thành một cung tròn. 86 Hình 4.21 Đồ thị liên hệ nội lực và góc uốn của ống BN nguyên ở các chiều dài ống L=10D, 15D và 20D: a) Mô men uốn tƥi mặt cắt giữa ống; b) Lực dọc ống. Hình 4.22 87 Hình dƥng ống BN(19,0) nguyên, chiều dài L=20D bị uốn ở các góc uốn: a) 89,8o, chƣa có dƩu hiệu phá hủy; b) 90,2o đã bị phá hủy. 88 Hình 4.23 Mô hình ống bị khuyết tật SW1: a) ống armchair; b) ống zigzag. 89 Hình 4.24 Đồ thị so sánh sự phụ thuộc của nội lực vào góc uốn của ống BN(11,11), chiều dài L=10D trƣờng hợp nguyên và bị khuyết tật SW1. Hình 4.25 91 Đồ thị so sánh sự phụ thuộc của nội lực vào góc uốn của ống BN(19,0), chiều dài L=10D trƣờng hợp nguyên và bị khuyết tật SW1. Hình 4.26 Sự phụ thuộc của góc uốn tới hƥn tới tỷ lệ L/D: a) Ống BN(11,11); b) Ống BN(19,0). Hình 4.27 92 93 Hình Ƨnh ống BN(11,11) bị khuyết tật SW1 phía thớ căng và BN(19,0) bị SW1 phía thớ bị nén, chúng đều bị phá hủy ở phía thớ bị nén khi chịu uốn. Hình 4.28 94 Ống BN(11,11), chiều dài L=10D với SW1 phía thớ nén ở góc uốn: (a) 8,9o; (b) 56,2o; (b) 56,4o. 95 1 MỞ ĐẦU Lý do chọn đề tài: Nghiên cứu về vật liệu nano là một trong những ląnh vực nghiên cứu sôi động nhƩt trong khoƧng hai thập niên trở lƥi đây. Điều này đƣợc thể hiện bằng số lƣợng các công trình khoa học đã công bố đang ngày càng tăng, thậm chí có nhiều tƥp chí mới ra đời để dành riêng cho việc đăng tƧi các công trình trong ląnh vực này nhƣ: Nano; Nano Letters; Nano Research; Nano today; Graphene; 2D Materials; Journal of Computational and Theoretical Nanoscience; Nanoscience and Nanotechnology Letters; Journal of Nano Education,... Sự sôi động trong ląnh vực này còn thể hiện qua việc nhiều cƣờng quốc nhƣ Mỹ, Nhật đã rót một lƣợng tiền lớn cho nghiên cứu, thành lập các viện, các trung tâm hoƥt động trong ląnh vực công nghệ nano. Điểm nhƩn quan trọng đánh dƩu bƣớc ngoặt trong ląnh vực nghiên cứu về vật liệu nano là vào năm 1991, khi tác giƧ Sumio Iijima trình bày công trình khoa học của ông về quá trình tổng hợp tƥo ra ống cácbon nano đa lớp (MWCNTs) đƫu tiên [43]. Đến năm 1993, Sumio Iijima và cộng sự công bố việc tổng hợp đƣợc ống cácbon nano đơn lớp (SWCNT). Kể từ đó, hàng loƥt các nghiên cứu về ống cácbon nano đƣợc thực hiện. Nghiên cứu về cơ học, năm 2000 Yu và cộng sự đã thí nghiệm xác định ống MWCNTs có độ bền kéo lên tới 63 GPa và mô đun đàn hồi lên tới 950 GPa [125]. Về mặt hình học, MWCNTs bao gồm nhiều ống cácbon nano (CNT) đồng tâm xếp lồng vào nhau, theo đó ống trong có thể trƣợt dọc trục và hƫu nhƣ không có ma sát với ống bên ngoài, do đó có thể coi chúng nhƣ là một ổ quay. Đặc tính này có thể đƣợc ứng dụng để chế tƥo động cơ nhỏ nhƩt thế giới [97]. CNT có các tính chƩt về điện giống nhƣ kim loƥi và chƩt bán dẫn. Các đặc tính điện của CNT phụ thuộc vào đƣờng kính của ống và cặp chỉ số (n, m) (xem mục 2.1). CNT dƥng thành ghế (armchair nanotube, n=m) có các tính chƩt về điện giống 2 MỞ ĐƪU nhƣ kim loƥi. Nếu hiệu (n–m) là bội số của 3 thì dƥng CNT đó có tính chƩt điện giống với kim loƥi, các dƥng CNT còn lƥi có tính chƩt bán dẫn [65]. Theo lý thuyết, CNT có thể mang dòng điện có mật độ 4.109 A/cm2, cao hơn các vật liệu đồng, nhôm rƩt nhiều lƫn [41]. Nghiên cứu cho thƩy CNT có độ dẫn nhiệt tốt theo phƣơng dọc trục, nhƣng bên cƥnh đó lƥi cách nhiệt theo phƣơng ngang trục của ống. Cụ thể CNT đƣợc dự đoán có thể truyền nhiệt lên tới 3500 W/mK theo phƣơng dọc trục [84] (Đồng dẫn nhiệt tốt cũng chỉ khoƧng 400 W/mK) và theo phƣơng ngang trục chỉ là 1,52 W/mK [101]. Bên cƥnh ống nano, các tƩm nano cƩu trúc dƥng lục giác cũng đƣợc chứng minh tồn tƥi trên lý thuyết và một vài vật liệu đã tổng hợp đƣợc gƫn đây nhƣ graphene, boron nitride (BN), silicon carbide (SiC), silicene (Si). Trong đó tƩm graphene đơn lớp có tính chƩt về điện giống nhƣ chƩt bán kim loƥi với độ rộng vùng cƩm (band gap) bằng không. Nhƣng tính chƩt về điện của hai tƩm graphene đặt gƫn nhau thì lƥi nhƣ chƩt bán dẫn với độ rộng vùng cƩm có thể thay đổi đƣợc phụ thuộc vào từ trƣờng bên ngoài [18]. TƩm BN và SiC mới đƣợc tổng hợp gƫn đây cho thƩy chúng có đặc tính về điện giống chƩt bán dẫn với độ rộng vùng cƩm nhỏ [59, 100, 119]. Tính chƩt về điện của tƩm Si đơn lớp cũng giống nhƣ graphene với độ rộng vùng cƩm bằng không nhƣng do có cƩu trúc low-buckled với những nguyên tử Si nằm trên hai mặt phẳng song song với nhau nên độ rộng vùng cƩm của Si có thể thay đổi tùy thuộc vào từ trƣờng bên ngoài [26, 72] (tƩm graphene ghép đôi mới có tính chƩt này). Những điều nêu trên cho thƩy những đặc tính rƩt ƣu việt của ống và tƩm vật liệu nano, hứa hẹn sẽ có nhiều ứng dụng quan trọng trong nhiều ląnh vực khác nhau. Nhƣ làm chƩt gia cƣờng cho vật liệu composite, chế tƥo các linh kiện điện tử siêu nhỏ, làm điện cực trong chế tƥo pin Lithium ion, dùng chế tƥo siêu tụ điện, dùng trong bộ cƧm ứng để phát hiện ánh sáng, nhiệt hoặc phát hiện những hóa chƩt độc hƥi với độ nhƥy rƩt cao. Tuy vậy, những ứng dụng thú vị vừa nêu đa số mới chỉ dừng ở quy mô phòng thí nghiệm, để tiến 3 tới sƧn xuƩt đƥi trà cƫn có nhiều nghiên cứu hơn nữa. Trong đó nghiên cứu về đặc trƣng cơ học tìm hiểu độ bền, độ cứng, ứng suƩt-biến dƥng của những vật liệu nano trên là rƩt quan trọng. Do đó, nghiên cứu sinh đã chọn hƣớng nghiên cứu tính toán, mô phỏng ứng xử cơ học của một số vật liệu có kích cỡ nano ở dƥng tƩm và ống cho luận án tiến są của mình với tên đề tài là: “Mô hình hóa và mô phỏng ứng xử cơ học của ống và tƩm mỏng có kích cỡ nano mét”. Mục đích, đối tƣợng và phƥm vi nghiên cứu: Mô hình hóa và mô phỏng số tìm ứng xử cơ học nhƣ mô đun đàn hồi, mô đun đàn hồi trƣợt, hệ số Poisson, đƣờng cong liên hệ giữa nội lực, ứng suƩt và biến dƥng, ... của các ống và tƩm vật liệu nano đơn lớp có cƩu trúc dƥng lục giác thông qua mô phỏng các thí nghiệm kéo, trƣợt và uốn. Một số vật liệu nano đƣợc chọn để mô phỏng là: graphene, BN, SiC, BSb, Si. Bên cƥnh mô hình lý tƣởng, luận án cũng xét tới khuyết tật mƩt hai nguyên tử liền kề và khuyết tật Stone-Wales xƧy ra riêng lẻ tƥi trung tâm của tƩm hoặc ống. Phƣơng pháp nghiên cứu: Cho tới nay, việc tiến hành thực nghiệm trên các vật liệu nano là rƩt khó khăn và phức tƥp. Do đó phƣơng pháp mô phỏng số trên máy tính ngày càng đƣợc coi trọng. Mô hình hóa và mô phỏng số các loƥi vật liệu nano hiện nay thƣờng dùng các phƣơng pháp trong cơ học lƣợng tử cho kết quƧ chính xác cao nhƣ lý thuyết hàm mật độ (Density Functional Theory – DFT) hay mô phỏng ở cƩp độ nguyên tử nhƣ là phƣơng pháp động lực phân tử (Molecular Dynamics – MD). Ngoài ra, phƣơng pháp phƫn tử hữu hƥn nguyên tử (Atomic-scale Finite Element Method – AFEM) đƣợc đề xuƩt khoƧng chục năm trở lƥi đây cũng cho thƩy nhiều ƣu điểm đáng chú ý. Trong luận án này, nghiên cứu sinh cùng thƫy hƣớng dẫn đã phát triển phƣơng pháp AFEM để mô phỏng ứng xử cơ học của các vật liệu nano. Kết quƧ thu đƣợc sẽ đƣợc kiểm chứng bằng cách so sánh với các phƣơng pháp MD, DFT và nhiều 4 MỞ ĐƪU phƣơng pháp tin cậy khác. Quá trình xây dựng mô hình cũng nhƣ mô phỏng đƣợc nghiên cứu sinh lập trình trên phƫn mềm Matlab. Ý nghąa khoa học và thực tiễn của đề tài: Ở kích thƣớc cỡ nano mét, việc tiến hành thực nghiệm trên các vật liệu nano nêu trên là rƩt khó khăn. Thậm chí có những vật liệu mới đƣợc phát hiện tồn tƥi trên lý thuyết, chƣa chế tƥo đƣợc trên thực tế thì việc thực nghiệm là không thể. Do đó việc sử dụng mô hình hóa và mô phỏng trong khoa học vật liệu giúp ta chuẩn đoán chính xác và nhanh chóng đặc tính của các vật liệu nano trƣớc khi triển khai sƧn xuƩt và ứng dụng chúng. Nó giúp tiết kiệm chi phí cho quá trình thiết kế, sƧn xuƩt thử và sƧn xuƩt hàng loƥt các vật liệu mới này. Kết quƧ của luận án có ý nghąa quan trọng đối với các nhà sƧn xuƩt và ứng dụng các vật liệu nano. Bố cục của luận án: Nội dung chính của luận án gồm 4 chƣơng nhƣ sau: Chƣơng 1. Tổng quan Tác giƧ đƣa ra và phân tích các nghiên cứu gƫn với ląnh vực của đề tài luận án đã đƣợc công bố trƣớc đây. Chƣơng 2. CƩu trúc nguyên tử và thế năng tƣơng tác Trong chƣơng này, tác giƧ mô tƧ cƩu trúc hình học của các tƩm và ống vật liệu nano, đồng thời trình bày về thế năng tƣơng tác giữa các nguyên tử. Chƣơng 3. Mô hình phƫn tử hữu hƥn nguyên tử Chƣơng này trình bày cơ sở lý thuyết của phƣơng pháp phƫn tử hữu hƥn nguyên tử đồng thời thiết lập các mô hình cụ thể cho các vật liệu BN, SiC, graphene, Si, BSb... phục vụ cho quá trình mô phỏng ở chƣơng 4. Chƣơng 4. Kết quƧ và bàn luận Thông qua mô phỏng các thí nghiệm kéo, trƣợt, uốn, các đặc trƣng cơ học nhƣ mô đun đàn hồi, hệ số Poisson, ứng suƩt, biến dƥng phá hủy, hình dƥng, cơ chế phá hủy của một số vật liệu nano đã chọn sẽ đƣợc tính toán và thƧo luận trong chƣơng này. 5 Phƫn Kết luận và kiến nghị nêu những đóng góp chính của luận án và hƣớng phát triển của đề tài nghiên cứu. Các kết quƧ của luận án đã đƣợc công bố ở 05 công trình khoa học, trong đó có 03 bài báo đăng trên tƥp chí quốc tế ISI (02 SCI+01 SCIE). 6 CHƢƠNG 1 TỔNG QUAN 1.1 Vật liệu nano cấu trúc dạng lục giác Năm 1991, Sumio Iijima phát hiện ra ống cácbon nano đa lớp (MWCNTs) trong khi đang tiến hành khƧo sát fullerene C60. Công trình đó của ông sau đó đã đƣợc đăng trên tƥp trí Nature [43]. Kể từ đó cho tới nay, các nghiên cứu về ống cácbon nano (CNT) phát triển mƥnh mẽ. 0.34nm Hình 1.1 Ống cácbon nano đa lớp: a) ống cácbon 5 lớp với đƣờng kính 6,5 nm; b) ống cácbon 2 lớp với đƣờng kính 5,5 nm; c) ống cácbon 7 lớp với đƣờng kính 6,5 nm [43]. Ở thí nghiệm đó, Iijima đã thực hiện phóng hồ quang giữa các điện cực cácbon trong khí hêli ở 3000oC, ông đã phát hiện có nhiều cƩu trúc dƥng ống graphite kín hai đƫu và lồng đồng trục với nhau, bao gồm các vòng lục giác, đó chính là ống cácbon nano đa lớp (Multi walled carbon nanotubesMWCNTs) (Hình 1.1). Đến năm 1993 Iijima và cộng sự tiếp tục báo cáo việc tổng hợp đƣợc ống cácbon nano đơn lớp (Single walled carbon nanotube – SWCNT) với đƣờng kính 1nm [44]. 1.1 Vật liệu nano cƩu trúc dƥng lục giác 7 0.34nm b) MWCNTs a) SWCNT 1-2 nm 2-25 nm Hình 1.2 Hình Ƨnh mô phỏng cho: a) SWCNT và b) MWCNTs. Graphite đƣợc biết đến và thậm chí rƩt gẫn gũi với chúng ta ở dƥng than chì. Nhƣng tới tận năm 2004, graphene – tƩm graphite đơn lớp – đƫu tiên mới đƣợc bóc tách bởi hai nhà khoa học Kostya Novoselov và Andre Geim [32, 73]. Đến 2010 họ đã đƣợc trao giƧi Nobel Vật lý cho những đóng góp của họ trong việc tƥo ra và tiến hành thực nghiệm trên tƩm graphene. Công trình nghiên cứu của hai nhà khoa học trên đã chứng minh rằng graphene có các tính chƩt rƩt đặc biệt, bắt nguồn từ thế giới diệu kỳ của vật lý lƣợng tử. Ngoài graphene và CNT, cho đến nay đã có thêm nhiều vật liệu nano có cƩu trúc dƥng lục giác tƣơng tự đã đƣợc dự đoán tồn tƥi trên lý thuyết [23, 38, 93, 110, 114, 126]. Trong đó có tƩm và ống BN đã đƣợc tổng hợp trên thực tế [76, 100, 103, 108]. Mới đây, năm 2012 tƩm SiC với độ dày 0,5–1,5 nm cũng đƣợc tƥo ra ở quy mô phòng thí nghiệm [59]. Bên cƥnh đó Si cũng đƣợc dự đoán tồn tƥi trên lý thuyết ở dƥng cƩu trúc low-buckled (các nguyên tử Si nằm trên hai mặt phẳng song song với nhau) [17, 36, 93, 107]. Si ở dƥng tƩm và dƥng dƧi hẹp đã đƣợc tổng hợp trên nền bƥc vào năm 2010 [3, 78] và năm 2012 [29, 77], trên nền Zirconium diboride (ZrB2) năm 2012 [30], trên nền Iridium (Ir) năm 2013 [67]. Sau khi đƣợc phát hiện, các vật liệu trên cƫn đƣợc tìm hiểu, dự đoán các đặc trƣng cơ, lý, hóa để phục vụ cho sƧn xuƩt và ứng dụng chúng. Trong đó, 8 CHƢƠNG 1 TỔNG QUAN do đƣợc phát hiện sớm nhƩt nên CNT và graphene đã có nhiều nghiên cứu về chúng bằng nhiều phƣơng pháp khác nhau. Ví dụ, Sahin và cộng sự [93] đã sử dụng lý thuyết hàm mật độ (DFT) tìm ra mô đun đàn hồi hai chiều của graphene là 335 N/m. Kudin và cộng sự [51] cũng dùng phƣơng pháp DFT tính ra mô đun đàn hồi hai chiều của graphene là 345 N/m. Sánchez-Portal và cộng sự [96] đã sử dụng tính toán nguyên lý ban đƫu (ab initio) để tìm đặc trƣng đàn hồi, đặc trƣng dao động của CNT. Họ tính ra đƣợc khoƧng cách giữa hai nguyên tử C-C liền kề trên một tƩm graphene ở trƥng thái cân bằng là 0,1436 nm. Nghiên cứu của họ cũng cho thƩy mô đun đàn hồi của SWCNT tăng theo đƣờng kính và tiến tới bằng graphene với giá trị xƩp xỉ 1 TPa và hệ số Poisson từ 0,12 tới 0,16 cho ống SWCNT armchair (n,n), 0,19 cho ống (10,0) và 0,18 cho ống (8,4). Tu và Ou-Yang [113] sử dụng lý thuyết vỏ mỏng và xƩp xỉ mật độ địa phƣơng tính ra mô đun đàn hồi SWCNT là 4,7 TPa với độ dày ống 0,075 nm, hệ số Poisson là 0,34. Yakobson và cộng sự [123] đã sử dụng mô phỏng động lực phân tử (MD) dựa trên hàm thế Tersoff-Brenner [14, 109] tính ra hệ số Poisson 0,19, mô đun đàn hồi hai chiều 360 N/m của tƩm graphene. Họ lƩy độ dày ống là 0,066 nm và tính ra mô đun đàn hồi của ống SWCNT là 5,5 TPa. Hai giá trị mô đun đàn hồi 4,7 TPa và 5,5 TPa mà hai nghiên cứu trên tính đƣợc là khá bƩt thƣờng vì quá cao. Điều này cho thƩy giƧ thiết của họ về độ dày ống (0,066 nm và 0,075 nm) là không hợp lý. Và nhiều công trình khác cho rằng độ dày tƩm và ống nano đơn lớp bằng với khoƧng cách giữa hai lớp ống trong MWCNTs hai lớp là 0,335-0,34nm [1, 39, 58, 64, 130]. Hai nhà khoa học Cornwell và Wille [24] cũng đã dùng phƣơng pháp MD sử dụng hàm thế Tersoff-Brener để tính toán đƣờng cong ứng suƩt-biến dƥng của SWCNT khi chịu nén. Kết quƧ của họ cho thƩy ứng suƩt phá hủy khi nén của SWCNT tăng khi bán kính ống tăng và đƥt giá trị xƩp xỉ 45 GPa đối với bán kính ống là 1,663 nm. Bên cƥnh đó Cornwell và Wille cũng cho rằng mô đun đàn hồi của của SWCNT giƧm khi đƣờng kính ống tăng, điều này là
- Xem thêm -