Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Luận văn nghiên cứu biến tính bentonit tự nhiên, ứng dụng làm vật liệu hấp phụ x...

Tài liệu Luận văn nghiên cứu biến tính bentonit tự nhiên, ứng dụng làm vật liệu hấp phụ xử lý nh4 và po43 trong môi trường nước

.PDF
110
135
68

Mô tả:

BỘ TÀI NGUYÊN VÀ MÔI TRƢỜNG TRƢỜNG ĐẠI HỌC TÀI NGUYÊN VÀ MÔI TRƢỜNG HÀ NỘI LUẬN VĂN THẠC SĨ NGHIÊN CỨU BIẾN TÍNH BENTONIT TỰ NHIÊN, ỨNG DỤNG LÀM VẬT LIỆU HẤP PHỤ XỬ LÝ NH4+ VÀ PO43TRONG MÔI TRƢỜNG NƢỚC CHUYÊN NGÀNH: KHOA HỌC MÔI TRƢỜNG TRƢƠNG QUỐC ANH HÀ NỘI, NĂM 2019 BỘ TÀI NGUYÊN VÀ MÔI TRƢỜNG TRƢỜNG ĐẠI HỌC TÀI NGUYÊN VÀ MÔI TRƢỜNG HÀ NỘI LUẬN VĂN THẠC SĨ NGHIÊN CỨU BIẾN TÍNH BENTONIT TỰ NHIÊN, ỨNG DỤNG LÀM VẬT LIỆU HẤP PHỤ XỬ LÝ NH4+ VÀ PO43TRONG MÔI TRƢỜNG NƢỚC TRƢƠNG QUỐC ANH CHUYÊN NGÀNH: KHOA HỌC MÔI TRƢỜNG MÃ SỐ: 8440301 NGƢỜI HƢỚNG DẪN KHOA HỌC TS. MAI VĂN TIẾN HÀ NỘI, NĂM 2019 CÔNG TRÌNH ĐƢỢC HOÀN THÀNH TẠI TRƢỜNG ĐẠI HỌC TÀI NGUYÊN VÀ MÔI TRƢỜNG HÀ NỘI Cán bộ hƣớng dẫn chính: TS. Mai Văn Tiến – Giảng viên khoa Môi trƣờng, trƣờng Đại học Tài nguyên và Môi trƣờng Hà Nội. Cán bộ chấm phản biện 1: TS. Nguyễn Thu Huyền – Giảng viên khoa Môi trƣờng, trƣờng Đại học Tài nguyên và Môi trƣờng Hà Nội. Cán bộ chấm phản biện 2: PGS.TS. Nguyễn Huy Tùng – Giảng viên trƣờng Đại học Bách Khoa Hà Nội Luận văn thạc sĩ đƣợc bảo vệ tại: HỘI ĐỒNG CHẤM LUẬN VĂN THẠC SĨ TRƢỜNG ĐẠI HỌC TÀI NGUYÊN VÀ MÔI TRƢỜNG HÀ NỘI Ngày 17 tháng 01 năm 2019 LỜI CAM ĐOAN Tôi xin cam đoan bài luận văn này là thành quả của bản thân tôi trong suốt quá trình nghiên cứu đề tài vừa qua. Những kết quả thực nghiệm đƣợc trình bày trong luận văn này là trung thực do tôi và các cộng sự thực hiện dƣới sự hƣớng dẫn của TS. Mai Văn Tiến - Giảng viên khoa Môi trƣờng, trƣờng Đại học Tài nguyên và Môi trƣờng Hà Nội. Các kết quả nêu trong luận văn chƣa đƣợc công bố trong bất kỳ công trình nào của các nhóm nghiên cứu khác. Tôi xin hoàn toàn chịu trách nhiệm về nội dung đã trình bày trong bản báo cáo này. TÁC GIẢ LUẬN VĂN Trƣơng Quốc Anh i LỜI CẢM ƠN Lời đầu tiên với lòng kính trọng và biết ơn sâu sắc nhất, tôi xin gửi lời cảm ơn tới TS. Mai Văn Tiến, Giảng viên khoa Môi trƣờng, trƣờng Đại học Tài nguyên và Môi trƣờng Hà Nội – ngƣời đã hƣớng dẫn, tận tình chỉ bảo tôi thực hiện thành công luận văn thạc sỹ này. Xin gửi lời cảm ơn chân thành tới Ban lãnh đạo khoa Môi trƣờng cùng các thầy cô phòng Phân tích khoa Môi trƣờng - trƣờng Đại học Tài nguyên và Môi trƣờng Hà Nội đã hết lòng ủng hộ, giúp đỡ và tạo điều kiện thuận lợi giúp đỡ tôi trong suốt thời gian thực hiện luận văn này. Xin cảm ơn phòng phân tích Viện Vật lý Trƣờng Đại học Khoa Học Tự nhiên, phòng phân tích khoa Hóa Đại học Sƣ phạm Hà Nội, Viện vật liệu đã giúp đỡ tôi về thiết bị máy móc sử dụng. Xin cảm ơn các bạn học viên, sinh viên cùng thực hiện đề tài đã chia sẻ các khó khăn cùng tôi hoàn thành những phần việc của đề tài nghiên cứu. Cuối cùng, tôi xin gửi lời cảm ơn chân thành tới gia đình, ngƣời thân và bạn bè luôn mong muốn tôi hoàn thành tốt bài luận văn. Trong quá trình thực hiện luận văn dù đã rất cố gắng nhƣng không thể tránh khỏi những thiết sót, vì vậy em rất mong nhận đƣợc sự đóng góp ý kiến của quý Hội đồng, quý thầy cô và các bạn để luận văn của em đƣợc hoàn chỉnh hơn. Em xin chân thành cảm ơn! Hà Nội ngày 03 tháng 12 năm 2018 Học viên Trƣơng Quốc Anh ii MỤC LỤC LỜI CAM ĐOAN............................................................................................................................... i LỜI CẢM ƠN....................................................................................................................................ii MỤC LỤC.........................................................................................................................................iii DANH MỤC BẢNG ........................................................................................................................ v DANH MỤC HÌNH .........................................................................................................................vi DANH MỤC CHỮ VIẾT TẮT ....................................................................................................viii MỞ ĐẦU............................................................................................................................................ 1 1. Tính cấp thiết của luận văn ............................................................................................ 1 2. Mục tiêu nghiên cứu ...................................................................................................... 2 3. Nội dung nghiên cứu ..................................................................................................... 2 1.1. Giới thiệu về bentonit và bentonit biến tính ............................................................... 4 1.1.1 Thành phần khoáng và thành phần hóa học của bentonit......................................... 4 1.1.2. Cấu trúc montmorillonit .......................................................................................... 4 1.1.3. Vật liệu bentonit biến tính ....................................................................................... 6 1.2. Tính chất của bentonit ................................................................................................ 9 1.3. Bentonit tự nhiên ở Việt Nam .................................................................................. 11 1.4. Hấp phụ và trao đổi ion của vật liệu. ........................................................................ 12 1.4.1. Hấp phụ.................................................................................................................. 12 1.4.2. Đặc điểm, phân loại và tính chất một số vật liệu hấp phụ ..................................... 19 1.4.3. Trao đổi ion ........................................................................................................... 21 1.5. Ứng dụng vật liệu Bentonit ...................................................................................... 24 1.6. Hiện tƣợng ô nhiễm amoni, phốt phát và các phƣơng pháp xử lý ........................... 25 1.6.1. Ô nhiễm amoni, phốt phát ..................................................................................... 25 1.6.2. Các phƣơng pháp xử lý amoni............................................................................... 27 1.6.3. Các phƣơng pháp xử lý phốt phát. ........................................................................ 28 CHƢƠNG 2: ĐỐI TƢỢNG PHẠM VI VÀ PHƢƠNG PHÁP NGHIÊN CỨU ......................29 2.1. Đối tƣợng và phạm vi nghiên cứu ............................................................................ 29 2.2. Nguyên liệu, hóa chất dụng cụ và thiết bị nghiên cứu ............................................. 29 2.2.1. Hóa chất sử dụng: .................................................................................................. 29 2.2.2. Thiết bị, dụng cụ: ................................................................................................... 29 2.3. Tổng hợp và biến tính vật liệu hấp phụ từ Bentonit tự nhiên ................................... 30 2.3.1. Tinh chế Bentonit Cổ Định.................................................................................... 30 2.3.2. Biến tính tổng hợp vật liệu Fe-bentonit ................................................................. 30 2.3.3. Biến tính tổng hợp vật liệu MnFe-bentonit ........................................................... 31 2.4. Khảo sát ảnh hƣởng của các điều kiện phản ứng đến quá trình tổng hợp và biến tính vật liệu bentonit ........................................................................................................ 32 2.4.1. Ảnh hƣởng của thời gian siêu âm tới quá trình tinh chế vật liệu bentonit ............ 32 2.4.2. Ảnh hƣởng tốc độ ly tâm ....................................................................................... 32 2.4.3. Ảnh hƣởng của tỷ lệ OH-/Fe3+ tới tính chất của vật liệu Fe-bentonit ................... 32 2.4.4. Ảnh hƣởng của tỷ lệ Mn2+/Fe3+ tới tính chất của vật liệu MnFe-bentonit ............ 32 2.5. Các phƣơng pháp phân tích đặc trƣng cấu trúc tính chất của vật liệu ........................ 33 2.5.1. Phƣơng pháp phân tích Phổ hồng ngoại IR ........................................................... 33 2.5.2. Phƣơng pháp xác định diện tích bề mặt riêng ( phƣơng pháp đo BET) .................... 33 2.5.3. X-Ray..................................................................................................................... 35 2.5.4. Phổ tán sắc năng lƣợng tia X (EDX) ..................................................................... 36 iii 2.6. Khảo sát đánh giá khả năng hấp phụ NH4+ và PO43- trong nƣớc của vật liệu MMT, Fe-bentonit và MnFe-bentonit ......................................................................................... 38 2.6.1. Xác định điểm đẳng điện của vật liệu. .................................................................. 38 2.6.2. Khảo sát ảnh hƣởng của thời gian ......................................................................... 38 2.6.3. Khảo sát ảnh hƣởng của pH .................................................................................. 39 2.6.4. Xác định dung lƣợng hấp phụ cực đại của vật liệu ............................................... 39 2.7. Mô hình động học hấp phụ ....................................................................................... 40 2.7.1. Đánh giá ảnh hƣởng của lƣu lƣợng tốc độ dòng chảy ........................................... 41 2.7.2. Đánh giá ảnh hƣởng của nồng độ ban đầu của chất bị hấp phụ ............................ 41 2.8. Phân tích xác định nồng độ amoni trong nƣớc bằng phƣơng pháp trắc quang ( 4500 NH3 –F, SMWW, 1999) ......................................................................................... 42 2.9. Phân tích xác định PO43- trong nƣớc trong nƣớc bằng phƣơng pháp trắc quang (theo TCVN 6202 – 2008). .............................................................................................. 42 CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN ...............................................................................43 3.1. Kết quả nghiên cứu tinh chế tổng hợp vật liệu bentonit (MMT) ............................. 43 3.1.1. Ảnh hƣởng của thời gian siêu âm tới quá trình tinh chế tổng hợp MMT ............. 43 3.1.2. Ảnh hƣởng của tốc độ ly tâm tới quá trình tinh chế tổng hợp MMT .................... 44 3.2. Ảnh hƣởng của tỷ lệ OH-/Fe3+ tới quá trình biến tính và tính chất của vật liệu Febentonit ............................................................................................................................ 44 3.3. Ảnh hƣởng của tỷ lệ Mn2+/Fe3+ tới tính chất của vật liệu MnFe-bentonit ............... 46 3.4. Phân tích đặc trƣng cấu trúc tính chất của vật liệu ................................................... 47 3.4.1. Kết quả phân tích đặc trƣng nhóm chức bằng phƣơng pháp phổ hồng ngoại IR ....... 47 3.4.2. Kết quả phân tích tia X (X-Ray) của vật liệu ........................................................ 50 3.4.3. Kết quả phân tích phổ tán sắc năng lƣợng tia X (EDX) ........................................ 51 3.4.4. Kết quả phân tích xác định diện tích bề mặt riêng ( phƣơng pháp đo BET).............. 53 3.5. Đánh giá khả năng hấp phụ của vật liệu, ứng dụng để xử lý NH4+ và PO43- trong nƣớc ................................................................................................................................. 56 3.5.1. Xác định điểm đẳng điện của MMT, Fe-bentint và MnFe-bentonit ..................... 56 3.5.2. Ảnh hƣởng của thời gian tới khả năng hấp phụ .................................................... 57 3.5.3. Kết quả ảnh hƣởng của pH tới dung lƣợng hấp phụ của vật liệu .......................... 59 3.5.4. Xác định dung lƣợng hấp phụ cực đại của vật liệu ............................................... 62 3.6. Khảo sát mô hình hấp phụ động ............................................................................... 64 3.6.1. Kết quả ảnh hƣởng của tốc độ dòng chảy tới hiệu qủa xử lý của cột.................... 64 3.6.2. Kết quả ảnh hƣởng của nồng độ đầu vào tới hiệu qủa xử lý của cột .................... 66 3.7. Đánh giá khả năng tái sử dụng vật liệu .................................................................... 67 3.8. Kết quả thử nghiệm hiệu quả xử lý NH4+ và PO43- đối với mẫu nƣớc thải sinh hoạt thực tế .............................................................................................................................. 68 KẾT LUẬN VÀ KIẾN NGHỊ........................................................................................................70 1. Kết luận........................................................................................................................ 70 2. Kiến nghị ..................................................................................................................... 70 TÀI LIỆU THAM KHẢO ..............................................................................................................71 PHỤ LỤC........................................................................................................................................... 2 iv DANH MỤC BẢNG Bảng 2.1. Ký hiệu tên các mẫu Fe-bentonit tổng hợp ở điều kiện thƣờng .................................... 32 Bảng 2.2. Ảnh hƣởng tỷ lệ Mn2+/Fe3+ tới tính chất của vật liệu MnFe-Bentonit .......................... 33 Bảng 2.3. Khảo sát ảnh hƣởng của thời gian đến hiệu quả xử lý của vật liệu ............................... 39 Bảng 2.4. Khảo sát ảnh hƣởng của pH đến hiệu quả xử lý của vật liệu ......................................... 39 Bảng 2.5. Xác định dung lƣợng hấp phụ cực đại............................................................................. 40 Bảng 3.1. Khối lƣợng vật liệu thu đƣợc đối với các khoảng thời gian siêu âm khác nhau .. 43 Bảng 3.2. Khối lƣợng vật liệu MMT thu đƣợc ứng với các tốc độ ly tâm khác nhau .................. 44 Bảng 3.3. Ảnh hƣởng của tỉ lệ OH-/Fe3+ tới quá trình biến và tính chất của vật liệu FeBentonit............................................................................................................................................... 45 Bảng 3.5. So sánh thành phần hóa học chính của mẫu quặng bentonit Cổ Định (BENT-CĐ), mẫu vật liệu MMT và vật liệu FeB, MnFeB.................................................................................... 52 Bảng 3.6. Kết quả phân tích xác định bề mặt riêng và phân bố kích thƣớc lỗ xốp theo BET của vật liệu MMT và vật liệu biến tính Fe-bentonit ........................................................................ 55 Bảng 3.7. Giá trị pH của dung dịch hấp thụ tại các khoảng pH khác nhau .................................... 56 Bảng 3.8. Ảnh hƣởng của thời gian đến khả năng hấp phụ NH4+ của vật liệu .............................. 57 Bảng 3.9. Ảnh hƣởng của thời gian đến khả năng hấp phụ PO43- của vật liệu .............................. 59 Bảng 3.10. Ảnh hƣởng của pH đến khả năng hấp phụ NH4+ của Fe-bentonit .............................. 60 Bảng 3.11. Ảnh hƣởng của pH đến khả năng hấp phụ NH4+ của Fe-bentonit .............................. 61 Bảng 3.12. Kết quả khảo sát dung lƣợng hấp phụ cực đại của vật liệu Fe –Bentonit đối với ion NH4+ .................................................................................................................................................... 62 Bảng 3.13. Kết quả khảo sát dung lƣợng hấp phụ cực đại của vật liệu MnFe –bentonit đối với ion PO43-.............................................................................................................................................. 63 Bảng 3.14: Kết quả phân tích nồng độ NH4+và PO43- trong mẫu nƣớc thải sinh hoạt .................. 69 Bảng 3.10: Kết quả thử nghiệm xử lý NH4+ và PO43- đối với môi trƣờng thực tế ........................ 69 v DANH MỤC HÌNH Hình 1.1. Đơn vị cơ bản của tinh thể montmorillonit .....................................................5 Hình 1.2. Cấu trúc lớp 2 :1 của MMT .............................................................................5 Hình 1.3. Trạng thái phân li của bentonit trong dung dịch .............................................9 Hình 1.4. Đồ thị xác định hệ số b và Qmax .....................................................................16 Hình 1.5. Đƣờng hấp phụ Langmuir và sự phụ thuộc Cf/q vào Cf ................................18 Hình 1.6. Hiện tƣợng ao hồ thủy vực bị ô nhiễm phú dƣỡng........................................26 Hình 2.1. Sơ đồ quy trình biến tính tổng hợp vật liệu Fe –bentonit ..............................30 Hình 2.2. Sơ đồ quy trình biến tính tổng hợp vật liệu MnFe –bentonit ........................31 Hình 2.3. Các dạng đƣờng đẳng nhiệt hấp phụ .............................................................35 Hình 2.4. Đồ thị xác định hệ số b và Qmax .....................................................................40 Hình 2.5. Mô hình cột hấp phụ động .............................................................................41 Hình 3.1. Đồ thị biểu diễn ảnh hƣởng của tỉ lệ OH-/Fe3+biến tính đến dung lƣợng hấp phụ NH4+ của vật liệu Fe-Bentonit ................................................................................46 Hình 3.2. Đồ thị biểu diễn ảnh hƣởng của tỉ lệ Mn2+/Fe3+ đến dung lƣợng hấp phụ PO43- của vật liệu MnFe-Bentonit .................................................................................47 Hình 3.3. Kết quả phân tích IR của vật liêu bentonit tinh chế (MMT) .........................48 Hình 3.4. Kết quả phân tích IR của vật liêu biến tính Fe- bentonit ...............................48 Hình 3.5. Kết quả phân tích IR của vật liêu biến tính MnFe- bentonit .........................49 Hình 3.6. Kết quả phân tích X-Ray của vật liệu tinh chế MMT ...................................50 Hình 3.7. Kết quả phân tích X-Ray của vật liệu biến tính 0,8Fe-bentonit ....................50 Hình 3.8. Kết quả phân tích X-Ray của vật liệu biến tính MnFe-bentonit ...................50 Hình 3.9. Kết quả phân tích EDX mẫu quặng bentonit .................................................51 Hình 3.10. Kết quả phân tích EDX của vật liệu tinh chế MMT ....................................51 Hình 3.11. Kết quả phân tích EDX của vật liệu biến tính Fe-bentonit .........................52 Hình 3.12. Kết quả phân tích EDX của vật liệu biến tính MnFe-bentonit ....................52 vi Hình 3.13. Đồ thị xác định diện tích bề mặt theo BET của vật liệu MMT ...................53 Hình 3.14. Đồ thị xác định diện tích bề mặt theo BET của vật liệu Fe-bentonit ..........53 Hình 3.15. Đồ thị xác định diện tích bề mặt theo BET của vật liệu MnFe-bentonit.....54 Hình 3.16. Sự phân bố kích thƣớc lỗ xốp của vật liệu MMTntonit theo BJH ..............54 Hình 3.17. Sự phân bố kích thƣớc lỗ xốp của vật liệu biến tính Fe-bentonit theo BJH54 Hình 3.18. Sự phân bố kích thƣớc lỗ xốp của vật liệu biến tính MnFe-bentonit theo BJH ................................................................................................................................55 Hình 3.19. Đồ thị xác định điểm đẳng điện của MMT, Fe-Bentint và MnFe-Bentonit 57 Hình 3.20. Đồ thị biểu diễn ảnh hƣởng của pH đến khả năng hấp phụ NH4+ của Febentonit ..........................................................................................................................60 Hình 3.21. Đồ thị biểu diễn ảnh hƣởng của pH đến khả năng hấp phụ PO43- của MnFe-bentonit ...............................................................................................................61 Hình 3.22. Đồ thị biểu diễn kết quả khảo sát xác định dung lƣợng hấp phụ cực đại của vật liệu Fe-bentonit đối với NH4+ ..................................................................................63 Hình 3.23. Đồ thị biểu diễn kết quả khảo sát xác định dung lƣợng hấp phụ cực đại của vật liệu MnFe-bentonit đối với PO43- ............................................................................64 Hình 3.24. Đồ thị xác định nồng độ NH4+ thoát ra sau quá trình hấp phụ tại tốc độ lƣu lƣợng Q=1ml/phút; Q=2ml/phút ...................................................................................65 Hình 3.25. Đồ thị xác định nồng độ PO43- thoát ra sau quá trình hấp phụ tại tốc độ lƣu lƣợng Q=1ml/phút; Q=2ml/phút ...................................................................................66 Hình 3.26: Đồ thị xác định nồng độ NH4+ và PO43- thoát ra sau quá trình hấp phụ tại nồng độ ban đầu là Co = 50ppm và Co = 100ppm .........................................................67 Hình 3.27. Đồ thị thể hiện kết quả thử nghiệm tái sử dụng lại vật liệu Fe-bentonit và MnFe-bentonit ..........................................................................................................68 vii DANH MỤC CHỮ VIẾT TẮT Abs Độ hấp thụ quang BET Brunauer-Emmett-Teller BTNMT Bộ tài nguyên môi trƣờng CEC Dung lƣợng trao đổi cation (cation exchange capacity) d001 Khoảng cách cơ bản DVB Divinylbenzen EDX Tán xạ năng lƣợng tia X (Enegry Dispersive X-ray) QCVN Quy chuẩn Việt Nam IR Phổ hồng ngoại (Infrared spectroscopy) MMT Montmorillonite NONT Nontronite UV-Vis Phổ hấp thụ tử ngoại - khả kiến(Ultra Violet-Visible) X-Ray Nhiễu xạ tia X (X - Ray Diffraction) viii MỞ ĐẦU 1. Tính cấp thiết của luận văn Hiện nay, môi trƣờng đang là vấn đề cấp bách mang tính toàn cầu. Sự phát triển mạnh mẽ của kinh tế, khoa học, kĩ thuật vào những năm cuối thế kỷ XX đã gây ra những tác động tiêu cực đến môi trƣờng sống của con ngƣời. Việt Nam có rất nhiều thủy vực, đặc biệt là các ao hồ khép kín chƣa đƣợc quan tâm đúng mức, dẫn đến nhiều ao hồ phát sinh ô nhiễm, dần suy thoái mất dần giá trị sử dụng. Hiện nay có rất nhiều hồ trên địa bàn cả nƣớc và một số vùng nuôi cá tra, cá ba sa ở một số Huyện của Tỉnh Đồng Tháp, An Giang, Bến Tre,…đã bị tình trạng ô nhiễm dinh dƣỡng (phú dƣỡng), dẫn đến ảnh hƣởng nghiêm trọng đến hệ sinh vật thuỷ sinh và cuộc sống của cƣ dân sống xung quanh. Vấn đề ô nhiễm môi trƣờng nƣớc của các ao, hồ là vấn đề bức xúc hiện nay trong nƣớc cũng nhƣ trên thế giới, ô nhiễm dinh dƣỡng gây nên bởi một số vi khuẩn lam(cyanobacteria), tảo lam độc (chẳng hạn Microcystis), tảo xanh (blue-green algae)... Sự ô nhiễm dinh dƣỡng dẫn đến suy giảm hệ sinh thái nƣớc, giảm chất lƣợng nƣớc, ảnh hƣởng đến cảnh quan và cộng đồng dân cƣ. Khi ao, hồ có lƣợng dƣ chất dinh dƣỡng (thƣờng là hợp chất của nitơ và phốtpho) thì một số loại thực vật phù du (phytoplankton) hấp thu dƣỡng chất phát triển mạnh (nở hoa) làm tăng độ đục của nƣớc, ngăn cản ánh sáng chiếu vào để các sinh vật khác quang hợp. Khi chúng quang hợp tiêu thụ một lƣợng lớn oxi hoà tan, dẫn đến sự thiếu hụt oxi hoà tan trong nƣớc. Một số loại vi khuẩn lam, tảo lam độc khi chết sẽ sinh ra các chất có độc tính mạnh gây ảnh hƣởng đến động thực vật thuỷ sinh cũng nhƣ sức khoẻ con ngƣời khi tiếp xúc với chúng. Biểu hiện dễ thấy của các hồ nƣớc ô nhiễm dinh dƣỡng là sự nở hoa tảo (tạo váng, cụm,…), độ đục tăng, giảm độ pH, có thể dẫn đến cá chết hàng loạt (ví dụ nhƣ tại các hồ trên địa bàn Hà Nội gần đây). Nhiều nghiên cứu của các nhà khoa học trên thế giới đã chứng minh rằng nguyên nhân chủ yếu ảnh hƣởng đến sự ô nhiễm dinh dƣỡng là do các hợp chất của nitơ và phốtpho hoà tan. Lƣợng chất dinh dƣỡng này do hoạt động của con ngƣời gây ra nhƣ nƣớc thải hộ gia đình; phân bón nông nghiệp; hợp chất tẩy rửa chứa phốtpho, nitơ; xói mòn đất do nạn chặt phá rừng,… Để giải quyết vấn đề ô nhiễm dinh dƣỡng, 1 các nhà khoa học đã sử dụng nhiều phƣơng pháp nhƣ: phƣơng pháp vật lý, phƣơng pháp sinh học, phƣơng pháp hoá học,…Trong đó phƣơng pháp hấp phụ là phƣơng pháp đơn giản, dễ áp dụng và cho hiệu quả tốt. Nhiều chất hấp phụ xử lý amoni và phốt phát đƣợc các nhà khoa học quan tâm nhƣ khoáng dolomit, vật liệu nano oxit sắt từ, bentonit, than hoạt tính, sét hữu cơ… [1]. Bentonit tự nhiên với thành phần chủ yếu là sét smectit với cấu trúc lớp 2:1, có cấu trúc mao quản, bề mặt riêng, dung lƣợng trao đổi ion lớn, độ bền cơ học và hóa học cao... nên nó đƣợc sử dụng làm chất hấp phụ, chất trao đổi ion, chất mang, xúc tác trong các phản ứng hóa học… Nƣớc ta có nguồn tài nguyên bentonit tự nhiên rất phong phú đƣợc phát hiện ở nhiều nơi với trữ lƣợng lớn nhƣ: Cổ Định - Thanh Hóa, Di Linh - Lâm Đồng, Tuy Phong - Bình Thuận…Tuy nhiên, bentonit ở nƣớc ta mới đƣợc khai thác trong phạm vi nhỏ và chủ yếu đƣợc sử dụng làm vật liệu gốm, vật liệu xây dựng, vật liệu trong xử lý môi trƣờng… Do hàm lƣợng smectit trong Bentonit ở nƣớc ta tƣơng đối thấp nên không thể sử dụng trực tiếp làm vật liệu hấp phụ mà cần phải làm giàu và biến tính cấu trúc, bề mặt vật liệu. Mặc dù Bentonit và các sản phẩm biến tính từ nó đã đƣợc quan tâm nghiên cứu nhiều trên thế giới, nhƣng ở Việt Nam việc nghiên cứu biến tính Bentonit một cách có hệ thống và ứng dụng hiệu quả của các loại vật liệu này trong hấp phụ còn rất hạn chế. Xuất phát từ các lý do trên, tôi đã lựa chọn đề tài “Nghiên cứu biến tính Bentonit tự nhiên, ứng dụng làm vật liệu hấp phụ xử lý NH4+ và PO43- trong môi trường nước” để làm luận văn tốt nghiệp. 2. Mục tiêu nghiên cứu - Xây dựng đƣợc quy trình làm giàu và biến tính bentonit tự nhiên, ứng dụng làm vật liệu hấp phụ; - Thử nghiệm và đánh giá đƣợc khả năng hấp phụ của bentonit biến tính đối với NH4+ và PO43- trong nƣớc. 3. Nội dung nghiên cứu - Thu thập, tổng quan tài liệu liên quan về tổng hợp, biến tính và ứng dụng của Bentonit trong xử lý môi trƣờng; - Xác định các thông số đặc trƣng cơ bản của khoáng bentonit tự nhiên (thành phần hóa học, cấu trúc và tỷ lệ các nguyên tố trong khoáng sét…); 2 - Nghiên cứu, xác định và lựa chọn điều kiện tổng hợp và biến tính bentonit tự nhiên tối ƣu để thu đƣợc vật liệu có khả năng hấp phụ xử lý NH4+ và PO43- tốt nhất; - Phân tích đặc trƣng, cấu trúc tính chất của vật liệu Bentonit biến tính đƣợc (thành phần hoá học, cấu trúc cơ bản, diện tích bề mặt riêng, tính chất trao đổi ion và tính chất hấp thụ...); - Thử nghiệm khả năng hấp phụ xử lý NH4+ và PO43- trên vật liệu bentonit biến tính đƣợc trong phòng thí nghiệm. - Thu thập, thống kê xử lý số liệu báo cáo hoàn thiện luận văn. 3 CHƢƠNG 1 : TỔNG QUAN VỀ CÁC VẤN ĐỀ NGHIÊN CỨU 1.1. Giới thiệu về bentonit và bentonit biến tính 1.1.1 Thành phần khoáng và thành phần hóa học của bentonit Bentonit là loại khoáng sét thiên nhiên, thuộc nhóm smectit. Thành phần chính của bentonit là montmorillonit (MMT), ngoài ra còn có một số khoáng chất khác nhƣ quartz, cristobalit, feldespar, biotit, kaolinit, illit, pyroxen, zircon, calcit,... Đôi khi ngƣời ta còn gọi khoáng bentonit là montmorillonit. Công thức đơn giản nhất của montmorillonit (Al2O3.4SiO2.nH2O) ứng với nửa tế bào đơn vị cấu trúc. Công thức lý tƣởng của montomrillonit là Si8Al4O20(OH)4 cho một đơn vị cấu trúc. Tuy nhiên, thành phần hoá học của montmorillonit luôn khác với thành phần biểu diễn theo lý thuyết do có sự thay thế đồng hình của các cation kim loại nhƣ Al3+, Fe2+, Mg2+,… với Si trong tứ diện và Al trong bát diện [1]. Khoáng sét xuất hiện trong tự nhiên với sự biến thiên trong thành phần phụ thuộc trên nhóm của họ và nguồn gốc của chúng. Công thức phân tử chung của MMT đƣợc biết thông thƣờng là (M+x.nH2O)(Al2-yMgx)Si410(OH)2, trong đó M+ là cation trao đổi giữa lớp (M+ = Na+, K+, Mg2+ hay Ca2+), trong điều kiện lý tƣởng, x = 0,33 [2]. Nhƣ vậy thành phần hoá học của montmorillonit với thành phần chủ yếu là các nguyên tố Si và Al, còn có các nguyên tố nhƣ Mg, Fe, Na, Ca,…Ngoài ra trong khoáng có thêm một số nguyên tố vi lƣợng khác nhƣ: Ti, Tl,... Trong đó tỷ lệ của Al2O3 : SiO2 dao động từ 1 : 2 đến 1 : 4. 1.1.2. Cấu trúc montmorillonit Cấu trúc tinh thể MMT đƣợc chỉ ra trong Hình 1.1, mạng tinh thể của montmorillonit gồm có lớp hai chiều trong đó lớp Al2O3 (hoặc MgO) bát diện ở trung tâm giữa hai lớp SiO2 tứ diện nằm ở đầu nguyên tử O vì thế nguyên tử oxi của lớp tứ diện cũng thuộc lớp bát diện. Nguyên tử Si trong lớp tứ diện thì phối trí với 4 nguyên tử oxy định vị ở bốn góc của tứ diện. Nguyên tử Al (hoặc Mg) trong lớp bát diện thì phối trí với 6 nguyên tử oxy hoặc nhóm hyđroxyl (OH) định vị ở 6 góc của bát diện đều. Ba lớp này chồng lên nhau hình thành một tiểu cầu sét hoặc một đơn vị cơ sở của nanoclay. Bề dày của tiểu cầu có kích thƣớc khoảng 1 nm (10 Å) và chiều dài của tiểu cầu thay đổi từ hàng trăm đến hàng nghìn nm. Trong tự nhiên, những tiểu cầu sét sắp xếp chồng lên nhau tạo thành khoảng cách giữa các lớp, khoảng cách này thƣờng đƣợc 4 gọi là khoảng cách “Van de Waals”, là khoảng không gian giữa hai lớp sét [3]. Sự hình thành nanoclay trong tự nhiên có sự thay thế đồng hình, nguyên tử Si hoá trị 4 trong lớp tứ diện đƣợc thay thế một phần bởi nguyên tử Al hoá trị 3 và nguyên tử Al hoá trị 3 trong lớp bát diện thì đƣợc thay thế một phần bằng các nguyên tử có hoá trị 2 nhƣ Fe và Mg. Sự thiếu hụt điện tích dƣơng trong đơn vị cơ sở, dẫn đến bề mặt của các tiểu cầu sét mang điện tích âm. Điện tích âm này đƣợc cân bằng bởi các ion kim loại kiềm và kiềm thổ (chẳng hạn nhƣ ion Na+ , K+ , Mg2+ hay Ca2+,…) chiếm giữ khoảng không gian giữa các lớp này. Hình 1.1. Đơn vị cơ bản của tinh thể montmorillonit Trong Hình 1.1 cho thấy sự thay thế đồng hình của một số ion Al, Fe, Mg,…trong tứ diện và bát diện, cũng nhƣ khoảng cách của lớp sét. Khoảng cách của một lớp MMT đã chỉ ra trong Hình 1.3 là 9,6 Å [4], còn khoảng cách của d001 của sét khô (làm khô ở 70oC) là 12,6 Å [5]. Hình 1.2. Cấu trúc lớp 2 :1 của MMT 5 Bentonit phổ biến nhất, thƣờng gặp nhiều nơi trên thế giới là bentonit chứa sét lớp 2:1 montmorillonit (MMT) đƣợc thể hiện nhƣ hình 1.2. Thành phần hóa học của đơn vị cấu trúc cơ bản của một dạng MMT đƣợc biểu diễn bởi công thức: (Na,Ca)0,8(Si7,8Al0,2)IV(Al3,4Mg0,6)VIO20(OH)4. Độ dày của lớp cấu trúc 3 mạng (2 tứ diện và 1 bát diện) khoảng 9,4 Å, khoảng cách d001 từ mặt đáy tứ diện lớp 2:1 này đến mặt đáy tứ diện của lớp 2:1 khác khoảng 15 Å. Nghĩa là khoảng cách (khoảng trống) giữa 2 lớp 2:1 là d = 1,5 – 9,4 = 5,6 Å-6 Å. Do sự thay thế đồng hình giữa các ion Al3+ cho Si4+ trong mạng tứ diện và Mg2+ cho Al3+ trong mạng bát diện mà bề mặt của hai lớp sét mang điện tích âm. Điện tích này đƣợc bù trừ bởi các cation trao đổi ở trạng thái hydrat hóa nằm ở trong không gian giữa hai lớp 2:1. Theo tài liệu [6], tỉ lệ Al:Si trong mạng tứ diện MMT xấp xỉ bằng 1 : (15 ÷ 30), và tỉ số Mg : Al trong mạng bát diện 1:(4÷5). Do đó, dung lƣợng trao đổi cation (CEC : cation exchange capacity) của MMT khoảng 70 – 120 mđl/100g. Từ tỉ số Al : Si và Mg : Al có thể nhận thấy rằng, các điện tích âm của MMT tập trung chủ yếu ở mạng bát diện, nghĩa là đa số điện tích âm nằm xa bề mặt ngoài của lớp cấu trúc so với các tâm điện tích âm xuất hiện ở các tâm tứ diện, do đó lực liên kết của các cation hydrat với khung mạng MMT không lớn, nên chúng tƣơng đối linh động (nghĩa là dễ dàng trao đổi ion với các cation khác, hoặc dễ dàng tách xa bề mặt làm cho d001 rộng ra hơn). Một loại bentonit khác, ít nhôm, giàu sắt (iron-rich) của loại sét lớp 2:1 thƣờng gặp là nontronit. Nontronit (NONT) có cấu trúc hình học nhƣ MMT nhƣng thành phần hóa học khác với MMT. Thay vì 2 ion Al3+ trong mạng 2 tâm bát diện (dioctahidral) của MMT, sét NONT có 2 ion Fe3+ trong một đơn vị cấu trúc cơ bản. Ở Việt Nam, ngƣời ta đã phát hiện đƣợc nhiều vùng mỏ bentonit. Bentonit Thuận Hải, bề ngoài có màu xanh xám, ít sắt, chứa nhiều khoáng MMT. Ở vùng Cổ Định, Thanh Hóa có mỏ bentonit chứa nhiều sắt, ít nhôm, đó là bentonit chứa chủ yếu khoáng NONT. 1.1.3. Vật liệu bentonit biến tính Để biến tính bentonit hiện nay có nhiều phƣơng pháp nhƣ: - Phương pháp nhiệt hóa Phƣơng pháp này nhằm nâng cao hoạt tính bề mặt các vật liệu hấp phụ đƣợc nghiên cứu tƣơng đồi rộng rãi, tạo ra vật liệu có khả năng hấp phụ tốt và độ chọn lọc 6 cao. Tuy nhiên, biến tính bằng nhiệt cũng cần lƣu ý đến khoảng giá trị nhiệt độ để biến tính. Ở nhiệt độ cao sẽ làm mất nƣớc trong cấu trúc, dẫn đến sự “đổ sập” của cấu trúc lớp, dẫn đến sự giảm khả năng hấp phụ của khoáng sét tự nhiên, thƣờng thì nhiệt độ trên 500˚C sẽ dẫn tới hiện tƣợng này. - Biến tính bằng axit/kiềm Hoạt hóa axit đƣợc biết đến là phƣơng pháp xử lý các khoáng sét với các axit vô cơ ở nồng độ cao và thƣờng ở nhiệt độ cao. Các cation trao đổi đƣợc thay thế bằng ion H+ và Al3+ và các cation khác thoát ra khỏi cấu trúc bát diện và tứ diện, chỉ để lại các nhóm SiO4. Quá trình này nhìn chung làm tăng diện tích bề mặt và độ axit của khoáng sét, đồng thời loại bỏ một số “chất bẩn” trong khoáng sét và hòa tan một phần các lớp silicat bên ngoài. Sự thay đổi diện tích bề mặt và cấu trúc lỗ hổng của khoáng sét do quá trình hoạt hóa axit phụ thuộc vào từng loại khoáng sét cụ thể, sự có mặt của các khoáng sét hay “phi khoáng” khác. Thành phần hóa học, các ion có mặt trong các lớp khoáng sét, loại axit, nhiệt độ của quá trình hoạt hóa, thời gian hoạt hóa là những yếu tố quan trọng tác động đến hiệu quả của quá trình hoạt hóa axit. Sự hụt giảm lớp bát diện của montmorillonit đƣợc cho là nguyên nhân dẫn đến các mức độ khác nhau về sự phân hủy cấu trúc và nó phụ thuộc riêng rẽ vào khả năng kháng axit của khoáng. Trong phƣơng pháp này các nhóm OH trên bề mặt sẽ bị triệt tiêu làm cho bề mặt mất đi hoạt tính vốn có. Ngƣợc lại, để tăng hoạt tính cho bề mặt diatomit phƣơng pháp xử lý với kiềm lại đem lại sự cải thiện đáng kể về khả năng hấp phụ các kim loại. Mặt khác, xử lý axit cũng có thể là con đƣờng làm trơ hóa – giảm khả năng hấp phụ của vật liệu. Khi xử lý diatomit với axit ngƣời ta thấy khả năng hấp phụ trao đổi của diatomit giảm đáng kể. - Hoạt hóa bentonit bằng các chất hoạt động bề mặt Khác với phƣơng pháp biến tính nhiệt hay biến tính khoáng sét sử dụng axit hoặc kiềm, phƣơng pháp sử dụng các chất hoạt động bề mặt có khả năng tạo ra các bề mặt mở rộng và làm cho tổng diện tích hữu dụng của bề mặt khoáng sét tăng lên đáng kể. Các chất hoạt động bề mặt này có thể hấp phụ và liên kết với bề mặt ngoài của khoáng sét, đồng thời chúng cũng có khả năng xâm nhập vào khoảng không giữa các lớp cấu trúc của khoáng sét. Sự hoạt động của các nhóm chức (ví dụ nhƣ: COOH) làm tăng ái lực của bề mặt hấp phụ đối với các cation và làm giảm khả năng giải phóng các cation trở 7 lại dung dịch. Các thí nghiệm của An & Dultz (2007) khi nghiên cứu sử dụng organobentonit để xử lý cromat và asenat đã chứng minh rằng: một lƣợng lớn các anion vô cơ này có thể bị hấp phụ vào bề mặt trong của khoáng sét (interlayer) cùng với các chất hoạt động bề mặt. Dung tích trao đổi cation của khoáng sét đƣợc cải thiện rõ rệt khi chúng đƣợc hoạt hóa với các chất hoạt động bề mặt. Kết quả thí nghiệm của Guzman và nnk (2006) cho thấy organo-montmorillonit có hiệu quả rất lớn để hấp phụ Pb và Hg. - Bentonit biến tính bằng kim loại Bentonit là vật liệu có kích thƣớc vi mao quản đƣợc nghiên cứu rộng rãi, phát triển dựa trên kỹ thuật phân tử. Vật liệu rắn này đƣợc gọi là đất sét liên kết ngang (cross-linked clay) hay đất sét chống lớp xen giữa (pillared interlayered clay), đƣợc tạo thành khi trao đổi các cation (kim loại) xen giữa các lớp đất sét với polyoxocation vô cơ có kích thƣớc lớn, sau đó nung mẫu. Polyoxocation chèn vào làm gia tăng khoảng cách cơ bản của các lớp sét và khi nung nóng, chúng chuyển thành các oxit kim loại do đề hyđrat và đề hyđroxyl. Các oxit kim loại này kết nhóm với nhau hình thành nên các cột chống (pillar) xen giữa các lớp sét, có khả năng chịu nhiệt, giữ cố định khoảng cách giữa các lớp sét, ngăn cho các lớp này không bị sụp đổ. Nhƣ vậy sẽ có một vùng rỗng xuất hiện giữa các lớp, sét trở nên xốp hơn. Sau khi chống, sự xuất hiện của cấu trúc lỗ xốp mới và tăng cƣờng một số tâm hoạt động làm cho chúng đƣợc ứng dụng nhiều hơn trong hoạt động xúc tác và hấp phụ. Một số vật liệu sét chống với một số cation kim loại đƣợc sử dụng làm chất xúc tác: Al, Fe, La/Al, Fe/Al,...và làm chất hấp phụ: La, Fe, Fe/Mn,… Sự xen giữa của các sét lớp với các polyoxocation vô cơ đã chỉ ra sự khác nhau quan trọng so với các tác nhân xen giữa hữu cơ vào lớp sét, vì tính chất nhiệt của chúng. Bentonit biến tính với các hợp chất hữu cơ dễ dàng bị phân hủy khi nung nóng, trong khi sét chống có độ bền nhiệt cao. Việc duy trì mạng lƣới lỗ xốp cùng với sự có mặt của các tâm mới có tính axit, làm cho tiềm năng ứng dụng xúc tác và hấp phụ của các vật liệu này. Trong một vài năm qua, đã có một số lƣợng lớn các nghiên cứu đƣợc tiến hành về lĩnh vực này. Và cũng có nhiều bài báo trình bày nghiên cứu về các mặt khác nhau về điều chế, mô tả đặc tính hay các ứng dụng của chúng [7] - Biến tính bằng các hợp chất polyme 8 Hình 1.3. Trạng thái phân li của bentonit trong dung dịch Bentonit là hợp chất vô cơ, có tính ƣa nƣớc, trong khi nền polyme có tính kỵ nƣớc nên bentonit rất khó trộn hợp với polyme. Để tăng sự tƣơng hợp giữa bentonit và polyme, ngƣời ta đã phải biến tính bentonit. Một số phƣơng pháp có thể dùng để biến tính bentonit nhƣ: phƣơng pháp trao đổi ion, phƣơng pháp dùng chất hoạt động bề mặt, phƣơng pháp trùng hợp các monome tạo polyme trực tiếp, trong đó thƣờng sử dụng là phƣơng pháp trao đổi ion đƣợc mô tả theo phản ứng hữu cơ hóa MMT xảy ra theo phƣơng trình sau: R-N+ + Na+-MMT  MMT-N+-R + Na+ Khả năng khuếch tán của muối alkyl amoni phụ thuộc vào điện tích thứ bậc của muối amoni và cấu tạo gốc R. Các gốc hữu cơ càng cồng kềnh thì khả năng khuếch tán càng khó nhƣng khả năng làm giãn khoảng cách giữa hai lớp MMT càng cao và do đó khả năng khuếch tán sét trong polyme càng lớn. 1.2. Tính chất của Bentonit Bentonit thể hiện một số tính chất đặc trƣng sau: - Tính dẻo: Do có cấu trúc lớp, có độ xốp cao, có khả năng trƣơng nở mạnh trong nƣớc nên bentonit có tính nhớt và dẻo. - Tính kết dính: khi kết hợp với nƣớc, bentonit có tính kết dính mạnh, ứng dụng nhiều trong đời sống hang ngày. - Tính hấp phụ: Tính chất hấp phụ của bentonit đƣợc quyết định bởi đặc tính bề mặt và cấu trúc mao quản của nó. Với kích thƣớc hạt nhỏ hơn 2 μm và do đặc điểm của cấu trúc mạng lƣới tinh thể, bentonit có diện tích bề mặt riêng lớn. Diện tích bề 9
- Xem thêm -

Tài liệu liên quan