Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Luận văn một số tính chất về nghiệm của đa thức...

Tài liệu Luận văn một số tính chất về nghiệm của đa thức

.PDF
57
132
98

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ HỒNG TÂM MỘT SỐ TÍNH CHẤT VỀ NGHIỆM CỦA ĐA THỨC LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2016 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ HỒNG TÂM MỘT SỐ TÍNH CHẤT VỀ NGHIỆM CỦA ĐA THỨC Chuyên ngành: Phương pháp Toán sơ cấp LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học TS. TRẦN NGUYÊN AN THÁI NGUYÊN - 2016 Mục lục MỞ ĐẦU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chương 1. Đa thức và nghiệm của đa thức . . . . . . . . . . . . . . . 3 1.1. Đa thức và nghiệm của đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Nghiệm của đa thức trên trường số . . . . . . . . . . . . . . . . . . . . . . . . 11 Chương 2. Số nghiệm và biên nghiệm của đa thức . . . . . . 16 2.1. Số nghiệm thực của đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Đánh giá số nghiệm bằng công cụ giải tích . . . . . . . . . . . . . . . . . 29 2.3. Chặn trên cho nghiệm của đa thức . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4. Biên nghiệm và ứng dụng xét tính bất khả quy của đa thức 49 KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ii MỞ ĐẦU Trong Toán học nói chung và trong chương trình toán học phổ thông nói riêng chuyên đề đa thức là một trong những chuyên đề quan trọng, quen thuộc, phổ dụng và có nhiều ứng dụng phong phú. Một vấn đề có lịch sử phát triển lâu đời và được nhiều người quan tâm là phương trình đa thức. Khi tìm hiểu phương trình đa thức (trên miền đang xét) nhiều câu hỏi tự nhiên đặt ra: phương trình có nghiệm không, tìm nghiệm của phương trình, phương trình có bao nhiêu nghiệm, vị trí nghiệm (trên các trường số) ... Từ thời xa xưa người Hylạp đã tìm ra cách giải phương trình (đa thức) bậc hai. Phương trình bậc ba, bậc bốn có cách giải từ thế kỉ XVI. Khoảng 300 năm sau đó, người ta tiếp tục tìm cách giải các phương trình bậc cao hơn nhưng không có kết quả. Mãi đến những năm 20 của thế kỉ XIX Abel mới chứng minh được rằng phương trình bậc n, n ≥ 5 là không giải được, có nghĩa là không thể có công thức biểu diễn nghiệm qua các hệ số của phương trình bằng căn thức. Tuy nhiên kết quả của Abel không loại trừ khả năng là các nghiệm của đa thức cụ thể với hệ số thực hay phức có giải được bằng căn thức. Mãi đến những năm 30 của thế kỷ XX, Galois mới giải quyết trọn vẹn vấn đề về điều kiện để phương trình cụ thể cho trước giải được bằng căn thức. Các vấn đề trên đây đã được tìm hiểu một phần trong chương trình đại học. Khi không xác định được một cách cụ thể nghiệm của một đa thức ta xét đến bài toán xác định số nghiệm của đa thức. Quy tắc xét dấu Descartes, Định lý Budan-Fourier và Định lý Sturm là những công cụ hữu hiệu cho việc xác định số nghiệm thực của đa thức. Đôi khi xác định số nghiệm là chưa đủ ta cần xác định vị trí nghiệm, chẳng hạn khoảng hay đoạn số thực chứa nghiệm. Trong thực tế ta lại cần xác định giá trị 1 xấp xỉ của nghiệm. Đối với vần đề này phương pháp do Newton đề xuất là hữu hiệu và dễ tiếp cận. Mục đích của luận văn là tìm hiểu một số tính chất về nghiệm của đa thức. Luận văn nhấn mạnh vào việc tìm hiểu số nghiệm và biên nghiệm của đa thức. Ngoài phần mở đầu, kết luận, và tài liệu tham khảo, luận văn gồm hai chương. Chương 1 trình bày sơ lược về vành đa thức, nghiệm của đa thức, đa thức trên các trường số phức, trường số thực và trường số hữu tỉ, công thức nghiệm Viete. Trong chương 2, luận văn trình bày về số nghiệm và biên nghiệm của đa thức. Cụ thể về công thức nghiệm cơ bản, số nghiệm của đa thức, một số định lý đánh giá về số nghiệm của đa thức như: Định lý Budan - Fourier, định lý Sturm, định lý Sturm mở rộng cũng như quy tắc dấu Descartes. Bên cạnh đó luận văn trình bày việc đánh giá số nghiệm bằng công cụ giải tích. Một số chặn nghiệm, đặc biệt phương pháp sử dụng ma trận để đánh giá nghiệm của đa thức, ứng dụng biên nghiệm để xét tính bất khả quy của đa thức cũng được trình bày trong luận văn này. Trong suốt quá trình làm luận văn, tôi nhận được sự hướng dẫn và giúp đỡ tận tình của TS. Trần Nguyên An. Tôi xin được bày tỏ lòng biết ơn sâu sắc đến thầy. Tôi xin gửi lời cảm ơn chân thành đến quý thầy cô giảng dạy lớp Cao học toán khoá 8 đã truyền thụ đến cho tôi nhiều kiến thức và kinh nghiệm nghiên cứu khoa học. Tôi xin chân thành cảm ơn! Thái Nguyên, tháng 5 năm 2016, Nguyễn Thị Hồng Tâm 2 Chương 1 Đa thức và nghiệm của đa thức 1.1. Đa thức và nghiệm của đa thức Giả sử R là vành giao hoán có đơn vị. Đặt P = {(a0 , a1 , . . . , an , . . .) ∈ RN |ai = 0 với i đủ lớn }. Ta định nghĩa phép cộng và phép nhân trong P như sau. Giả sử (a0 , a1 , a2 , . . .), (b0 , b1 , b2 , . . .) ∈ P (a0 , a1 , . . . , an , . . .)+(b0 , b1 , . . . , bn , . . .) = (a0 +b0 , a1 +b1 , . . . , an +bn , . . .), (a0 , a1 , . . . , an , . . .)(b0 , b1 , . . . , bn , . . .) = (c0 , c1 , . . . , cn , . . .), P với ck = a0 bk + a1 bk−1 + · · · + ak b0 = ai bj , k = 0, 1, 2, . . . Dễ thấy i+j=k đó là các phép toán trên P và cùng với hai phép toán đó P là một vành giao hoán, có đơn vị. Phần tử không là (0, 0, 0, . . .), phần tử đối của (a0 , a1 , . . . , an , . . .) là (−a0 , −a1 , . . . , −an , . . .), phần tử đơn vị là (1, 0, . . . , 0, . . .). Ký hiệu x = (0, 1, 0, 0, . . .) ∈ P . Dễ dàng kiểm tra được x2 = (0, 0, 1, 0, 0, . . .), x3 = (0, 0, 0, 1, 0, 0, . . .), ... xk = (0, 0, . . . , 0, 1, 0, 0, . . .), trong đó xk là dãy có toạ độ thứ k + 1 bằng 1, còn các toạ độ khác đều bằng 0. Xét ánh xạ ϕ : R → P xác định bởi ϕ(a) = (a, 0, 0, . . .) với mọi 3 a ∈ R. Rõ ràng ϕ là đơn cấu vành. Vì thế ta có thể coi R như là vành con của P . Từ đơn cấu ϕ ở trên, ta có thể đồng nhất (0, . . . , 0, a, 0, . . .) = (a, 0, 0, . . .)(0, . . . , 0, 1, 0, . . .) = axk , trong đó vị trí thứ k + 1 của (0, . . . , 0, a, 0, . . .) là a, còn các vị trí khác là 0. Vì thế mỗi dãy (a0 , a1 , . . . , an , 0, 0, . . .) của P được đồng nhất với biểu thức a0 + a1 x + a2 x2 + · · · + an xn . Ta thường viết phần tử của P theo số mũ tăng dần hoặc giảm dần, tức là viết a0 + a1 x + · · · + an xn hoặc an xn + · · · + a1 x + a0 . Định nghĩa 1.1.1. Vành P được gọi là vành đa thức của ẩn x lấy hệ tử trong R, hay vắn tắt vành đa thức của ẩn x lấy hệ tử trong R, và ký hiệu là R[x]. Các phần tử của vành đó gọi là đa thức của ẩn x lấy hệ tử trong R và thường được ký hiệu bởi f (x), g(x), h(x), . . . Trong một đa thức f (x) = an xn + · · · + a1 x + a0 , các ai , i = 0, 1, . . . , n gọi là các hệ tử của đa thức. Các ai xi gọi là các hạng tử của đa thức, đặc biệt a0 gọi là hạng tử tự do. Nếu an 6= 0 thì an được gọi là hệ số cao nhất của f (x) và n được gọi là bậc của f (x). Ta kí hiệu bậc của f (x) là deg(f (x)). Người ta thường quy ước bậc của đa thức 0 là −∞. Một đa thức khác 0 được gọi là monic nếu hệ số cao nhất của nó là 1. Các đa thức bậc 0 được gọi là đa thức hằng. Các đa thức bậc 1 được gọi là đa thức tuyến tính. Kết quả sau đây suy ra ngay từ định nghĩa của phép cộng và phép nhân các đa thức. Bổ đề 1.1.2. Với mọi f (x), g(x) ∈ R[x], ta có deg(f (x) + g(x)) ≤ max{deg(f (x)), deg(g(x))}; deg(f (x)g(x)) ≤ deg(f (x)) + deg(g(x)). Nếu R là miền nguyên thì deg(f (x)g(x)) = deg(f (x)) + deg(g(x)). 4 Hệ quả 1.1.3. Nếu R là miền nguyên, thì R[x] cũng là miền nguyên. Định lý 1.1.4 (Chia với dư). Cho f (x), g(x) ∈ R[x], với R là một trường và g(x) 6= 0. Khi đó tồn tại duy nhất hai đa thức q(x) và r(x) thuộc R[x] sao cho: f (x) = g(x)q(x) + r(x) và deg r(x) < deg g(x). Chú ý 1.1.5. Đa thức q(x) gọi là thương và r(x) goi là dư của phép chia f (x) cho g(x). Định lí trên vẫn đúng khi R là miền nguyên và hệ số cao nhất của g(x) khả nghịch trong R. Trong thuật toán chia với dư trên đây, nếu các hệ số của f (x) và g(x) là những số thực (tương ứng hữu tỉ) thì các hệ số của thương q(x) và dư r(x) đều là thực (tương ứng hữu tỉ). Thuật toán chia dư giúp ta tìm ƯCLN của hai đa thức. Định nghĩa 1.1.6. Giả sử R là vành con của vành S, và f (x) = an xn + · · · + a1 x + a0 là một đa thức trong R[x]. Với mỗi phần tử α ∈ S , ta kí hiệu f (α) = an αn + · · · + a1 α + a0 ∈ S . Phần tử α ∈ S được gọi là nghiệm của f (x) nếu f (α) = 0. Trong trường hợp này ta cũng nói α là một nghiệm của phương trình f (x) = 0 trên S . Tìm các nghiệm của f (x) trên S được gọi là giải phương trình đa thức f (x) = 0 trên S. Định lý 1.1.7 (Định lý Bézout). Cho R là một miền nguyên, f (x) ∈ R[x], α ∈ R. Điều kiện cần và đủ để α là một nghiệm của f (x) là f (x) chia hết cho (x − α). Từ kết quả trên ta có sơ đồ chia Horner: chia đa thức f (x) cho x − a. Giả sử R là miền nguyên f (x) = an xn + · · · + a1 x + a0 là một đa thức trong R[x]. Chia f (x) cho x − a, a ∈ R, ta được thương dạng g(x) = bn−1 xn−1 + · · · + b1 x + b0 , dư r ∈ R. Vì f (x) = (x − a)g(x) + r 5 nên ta có   bn−1 = an      ···    b = a + ab i−1 i i (1.1)  ···      b0 = a1 + ab1     r = a0 + b0 . Sơ đồ giúp ta tìm thương g(x) và dư r trong phép chia f (x) cho x − a, trong đó bi , i = 0, · · · , n − 1 được xác định theo 1.1 được gọi là sơ đồ chia Hocner an an−1 . . . α bn−1 bn−2 . . . a1 a0 b0 r Chú ý: Bằng phương pháp tương tự như trên ta cũng có sơ đồ Horner khi chia cho đa thức bậc hai x2 + px + q. Thực hiện liên tiếp các phép chia cho x−a, ta có khai triển Taylor của f (x) tại a, tức là f (x) có thể khai triển duy nhất dưới dạng n X f (x) = ck (x − a)k . k=0 Thật vậy, ta có f (x) = (x − a)f0 (x) + r0 , r0 ∈ R, deg(f0 (x)) = n − 1, f0 (x) = (x − a)f1 (x) + r1 , r1 ∈ R, deg(f1 (x)) = n − 2, ............ fn−2 (x) = (x − a)fn−1 (x) + rn−1 , rn−1 ∈ R, deg(fn−1 (x)) = 1, fn−1 = (x − a)an . Thế ngược lên ta có f (x) = an (x − a)n + rn−1 (x − a)n−1 + · · · + r1 (x − a) + r0 . Đặt cn = an , cn−1 = rn−1 , . . . , c1 = r1 , c0 = r0 , ta có điều phải chứng minh. 6 Bổ đề 1.1.8. Cho f (x) ∈ R[x]. Phần tử a ∈ R là nghiệm bội k của f (x) nếu và chỉ nếu f (x) = (x − a)k g(x) với g(x) ∈ R[x] và g(a) 6= 0. Sử dụng công cụ đạo hàm ta có thể mô tả khác cho các hệ tử trong khai triển Taylor của f (x) tại a. Định nghĩa 1.1.9. Cho f (x) ∈ R[x] với R là miền nguyên. Pn k (i) Nếu f (x) = a0 ∈ R, đặt f 0 (x) = 0. Nếu f (x) = k=0 ak x với P n ≥ 1, đặt f 0 (x) = nk=1 kak xk−1 . Ta gọi f 0 (x) là đạo hàm (hình thức) của f (x). (ii) Đặt f (0) (x) = f (x), f (1) (x) = f 0 (x), ..., f (k) (x) = (f (k−1) (x))0 , ∀k ∈ N∗ . Ta nói f (k) (x) là đạo hàm cấp k của f (x) với k ∈ N. Trong trường hợp R là trường số thực R thì đạo hàm hình thức ở đây là đạo hàm của hàm số f (x). Nếu f (x) và g(x) là hai đa thức thì đạo hàm hình thức của tổng và tích của hai đa thức này như sau (f + g)0 (x) = f 0 (x) + g 0 (x) (f.g)0 (x) = f 0 .g(x) + f.g 0 (x) Chú ý. Trong trường hợp R là trường có đặc số 0 thì các hệ số ck trong khai triển Taylor có thể tính theo các đạo hàm của f (x) như sau: f (k) (a) , ck = k! nghĩa là f (x) = n X f (k) (a) k! k=0 (x − a)k . Trong trường hợp a = 0, ta có khai triển Maclaurin f (x) = n X f (k) (0) k=0 k! xk . Định nghĩa 1.1.10 (Nghiệm bội). Cho f (x) ∈ R[x], α ∈ R, k ∈ Z, k ≥ 1. Ta gọi α là nghiệm bội k của f (x) nếu f (x) chia hết cho (x − α)k 7 nhưng không chia hết cho (x − α)k+1 nghĩa là: ( f (x) = (x − α)k g(x), ∀x ∈ R, g(α) 6= 0. Nếu k = 1, ta gọi α là nghiệm đơn hay còn gọi nghiệm, nếu k = 2, ta gọi α là nghiệm kép. Sử dụng công cụ đạo hàm ta có một số tính chất sau của nghiệm của đa thức. Định lý 1.1.11. Giả sử R là một trường tùy ý (có thể có đặc số p). Đa thức f (x) ∈ R[x] bậc n > 0 chỉ có nghiệm đơn khi và chỉ khi ƯCLN(f (x), f 0 (x)) = 1. Chứng minh. Giả sử f (x) là đa thức bậc n và chỉ có n nghiệm đơn, nếu ƯCLN(f (x), f 0 (x)) = d(x) là một đa thức có bậc dương thì nghiệm u của d(x) cũng là nghiệm của f (x) và f 0 (x). Khi đó f (x) = (x − u)g(x). Vì f (x) chỉ có nghiệm đơn nên suy ra g(x) không chia hết cho (x − u). Mặt khác, f 0 (x) = g(x) + (x − u)g 0 (x), mà f 0 (x) lại chia hết cho (x − u) nên g(x) phải chia hết cho (x − u). Mâu thuẫn. Do đó ta có ƯCLN(f (x), f 0 (x)) = 1. Đảo lại, giả sử ƯCLN(f (x), f 0 (x)) = 1, nhưng f (x) có nghiệm u bội k > 1. Khi đó f (x) = (x − u)k g(x), trong đó g(x) không chia hết cho (x − u). Và f 0 (x) = (x − u)k−1 [kg(x) + (x − u)g 0 (x)] . 8 Như vậy (x − u)k−1 là một ước chung bậc dương của f (x) và f 0 (x). Điều vô lý này chứng tỏ định lý được chứng minh. Định lý 1.1.12. Nếu R là trường có đặc số không thì mọi đa thức bất khả quy thuộc R[x] đều chỉ có nghiệm đơn. Chứng minh. Giả sử f (x) = an xn + an−1 xn−1 + · · · + a1 x + a0 ∈ R[x] là một đa thức bất khả quy. Vì trường R có đặc số 0, n > 0, an 6= 0 nên nan 6= 0. Do đó f 0 (x) = nan xn−1 + (n − 1)an−1 xn−2 + · · · + a1 6= 0. Vì f (x) bất khả quy và bậc của f 0 (x) nhỏ hơn n, nên f 0 (x) không chia hết cho f (x), nên ƯCLN(f (x), f 0 (x)) = 1. Vậy f (x) chỉ có nghiệm đơn. Định lý 1.1.13. a là nghiệm bội cấp k, k 6= 1 của f (x) khi và chỉ khi a là nghiệm của các đa thức f 0 , f 00 , . . . , f (k−1) , nhưng không là nghiệm của f (k) . Chứng minh. Nếu a là nghiệm bội cấp k, ta có f (a) = f 0 (a) = · · · = f (k−1)(a) = 0, f (k) (a) 6= 0. Đảo lại, giả sử các quan hệ trên thỏa mãn, theo công thức Taylor ta có: f (k) (a) f (n) (a) k (x − a) + · · · + (x − a)n = (x − a)k g, f (x) = k! n! với g= f (k) (a) f (n) (a) + ··· + (x − a)n−k . k! n! f (k) (a) Vậy g(a) = 6= 0, nên a là nghiệm bội cấp k của f (x). k! Định lý 1.1.14. Cho R là một miền nguyên. Cho 0 6= f (x) ∈ R[x] và a1 , a2 , . . . , ar ∈ R là các nghiệm phân biệt của f (x). Giả sử ai là nghiệm bội ki của f (x) với i = 1, 2, . . . , r. Khi đó ta có f (x) = (x − a1 )k1 (x − a2 )k2 . . . (x − ar )kr g(x) 9 trong đó g(x) ∈ R[x] và g(ai ) 6= 0 với mọi i = 1, . . . , r. Hệ quả 1.1.15. Cho R là một miền nguyên và f (x) ∈ R[x] là một đa thức khác 0. Khi đó số nghiệm của f (x), mỗi nghiệm tính với số bội của nó, không vượt quá bậc của của f (x). Hệ quả 1.1.16. Cho R là miền nguyên và f (x), g(x) ∈ R[x], trong đó deg(f (x)) 6 n và deg(g(x)) 6 n. Nếu f (x) và g(x) có giá trị bằng nhau tại n + 1 phần tử khác nhau của R thì f (x) = g(x). Chú ý rằng nếu R không là miền nguyên thì Hệ quả 1.1.16 không còn đúng nữa. Thật vậy, chọn R = Z6 , vành các lớp thặng dư theo môđun 6. Chọn f (x) = 3x và g(x) = 3x2 . Ta có deg(f (x)) = 1 và deg(g(x)) = 2, tức là deg(f (x)), deg(g(x)) 6 2. Dễ thấy f (x) và g(x) đều có 3 nghiệm phân biệt 0, 2, 4 trong Z6 , tức là chúng nhận giá trị như nhau tại 3 điểm phân biệt, nhưng chúng không bằng nhau. Hai trường hợp đặc biệt sau cũng rất hay được sử dụng trong các bài toán phương trình hàm.Ta xét các đa thức trên trường số thực R. Hệ quả 1.1.17. Nếu đa thức f (x) ∈ R[x] có vô số nghiệm thì f (x) = 0. Nói riêng, nếu số nghiệm lớn hơn bậc của đa thức f (x) thì f (x) = 0. Hệ quả 1.1.18. Nếu đa thức f (x) ∈ R[x] thỏa mãn f (x) = f (x + a), ∀x ∈ R (với a là một hằng số khác không nào đó) thì f (x) ≡ c (với c là hằng số). Cũng sử dụng tính chất trên của nghiệm ta có kết quả: Tồn tại đa thức f (x) bậc n nhận n + 1 giá trị cho trước tại n + 1 điểm khác nhau cho trước, còn gọi là công thức nội suy Lagrange. Định lý 1.1.19 (Lagrange). Cho f (x) là đa thức bậc n và x0 , x1 , ..., xn n Q là n + 1 số phân biệt. Đặt g(x) = (x − xi ). Khi đó ta có biểu diễn i=0 x − xk . (i) f (x) = f (xi ) i=0 k6=i,k=0 xi − xk n f (x ) g(x) P i (ii) f (x) = . 0 i=0 g (xi ) x − xi n P n Q 10 Công thức nội suy Lagrange có nhiều ứng dụng trong Đại số, Phương pháp tính cũng như giải quyết nhiều bài toán trong thực tế. 1.2. Nghiệm của đa thức trên trường số Tìm hiểu sự tồn tại nghiệm của đa thức trên các trường số ta có kết quả đơn giản sau. Bổ đề 1.2.1. Mọi đa thức với hệ số thực có bậc lẻ có ít nhất một nghiệm thực. Chứng minh. Giả sử f (x) = an xn + · · · + a1 x + a0 , n = 2k + 1, an 6= 0. Ta có thể giả sử thêm an > 0 (trường hợp an < 0 chứng minh tương tự). Khi đó lim f (x) = lim an xn = +∞, x→+∞ x→+∞ lim f (x) = lim an xn = −∞, x→−∞ x→−∞ Do vậy tồn tại α, β ∈ R sao cho f (α) > 0, f (β) < 0. Suy ra f (α)f (β) < 0. Mặt khác vì hàm số R −→ R, x 7−→ f (x) là hàm liên tục nên theo Định lý Giá trị trung bình tồn tại c ∈ R, c ∈ (α, β), sao cho f (c) = 0. Vậy f (x) có nghiệm thực c. Biết rằng các đa thức với hệ số thực, chẳng hạn đa thức x2 + 1 không có nghiệm thực. Vậy có thể tồn tại đa thức không có nghiệm phức hay không, ngay cả khi các hệ số của nó là các số phức. Định lý sau sẽ trả lời câu hỏi trên. Định lý 1.2.2 (Định lý cơ bản của Đại số). Mọi đa thức bậc lớn hơn 0 với hệ số phức có ít nhất một nghiệm phức. Hệ quả 1.2.3. Các đa thức bất khả quy của C[x] là các đa thức bậc nhất. Hệ quả 1.2.4. Giả sử f (x) ∈ C[x], bậc n > 0. Khi đó f (x) có sự phân tích duy nhất thành tích những đa thức bất khả quy, sai khác một nhân 11 tử khả nghịch f (x) = u(a1 x + b1 )n1 (a2 x + b2 )n2 · · · (ak x + bk )nk , với u 6= 0, ai , bi ∈ C, ai 6= 0, i = 1, 2, ..., k và n = n1 + n2 + · · · nk . Hệ quả 1.2.5. Mọi đa thức bậc n với hệ số phức có n nghiệm phức. Sau đây ta sẽ áp dụng Định lý cơ bản của Đại số để tìm hiểu nghiệm của các đa thức với hệ số thực. Trước hết ta cần bổ đề sau. Bổ đề 1.2.6. Giả sử z ∈ C, x ∈ R. Khi đó (x − z)(z − z) ∈ R. Bổ đề 1.2.7. Giả sử f (x) ∈ R[x] có nghiệm z ∈ C \ R, x ∈ R. Khi đó z cũng là nghiệm của f (x) và f (x) chia hết cho đa thức (x − z)(z − z) trong R[x]. Chứng minh. Giả sử f (x) = an xn + · · · a1 x + a0 ∈ R[x]. Vì f (z) = an z n + · · · a1 z + a0 = 0 nên 0 = an z n + · · · a1 z + a0 = an z n + · · · a1 z + a0 = an z n + · · · a1 z + a0 = f (z). Chia f (x) cho (x − z)(z − z) trong R[x], ta có f (x) = (x − z)(z − z)g(x) + r(x), deg r(x) < 2. Suy ra r(z) = r(z) = 0. Do đó theo hệ quả 1.1.15 r(x) = 0 hay f (x) chia hết cho đa thức (x − z)(z − z) trong R[x]. Hệ quả 1.2.8. Các đa thức bất khả quy trên R[x] là các đa thức bậc nhất và các đa thức bậc hai không có nghiệm trên R. Hệ quả 1.2.9. Giả sử f (x) ∈ R[x], bậc n > 0. Khi đó f (x) có sự phân tích duy nhất, sai khác một nhân tử khả nghịch f (x) = u(a1 x + b1 )n1 · · · (ak x + bk )nk (α1 x2 + β1 x + γ1 )m1 · · · 12 (α` x2 + β` x + γ` )m1 , với u 6= 0, ai x + bi , i = 1, 2, ..., k là các đa thức bậc nhất, ai 6= 0, αj x2 + βj x + γj , αj 6= 0 j = 1, 2, ..., l là các đa thức bậc hai với biệt số âm. Chú ý. Kronecker đưa ra kết quả: Cho f (x) ∈ R[x] với deg f (x) = n > 0 và R là một trường. Khi đó tồn tại một trường F chứa R sao cho f (x) có n nghiệm trên F. Từ đó ta có thể giả sử một đa thức f (x) bậc n có n nghiệm trên một trường nào đó. Định lý 1.2.10 (Định lý Viete thuận). Giả sử f (x) = an xn + an−1 xn−1 + . . . + a1 x + a0 , là đa thức bậc n có n nghiệm α1 , . . . , αn . Khi đó   α1 + α2 + . . . + αn = − aan−1  n  P  an−2   αi αj = an    i 0 thì f 0 (x) > 0 trong lân cận điểm α (tính liên tục của đạo hàm đa thức), bởi vậy trong lân cận đó f (x) đồng biến, nên f (x) đổi dấu từ − sang + khi qua x = α hay f (x)f1 (x) cũng đổi dấu từ − sang + khi qua x = α. Tương tự, xét trường hợp f 0 (α) < 0. Tiếp theo, chia có dư f (x) cho f1 (x); đổi dấu phần dư và kí hiệu là f2 (x), ta được f (x) = f1 (x)q1 (x) − f2 (x). Theo quy nạp giả sử fm−1 (x) và fm (x) đã tìm được, thì ký hiệu phần dư với dấu ngược lại của phép chia fm−1 (x) cho fm (x) là fm+1 (x), ta được fm−1 (x) = fm (x)qm (x) − fm+1 (x) (2.2) Phương pháp trình bày đây chỉ khác với thuật toán Euclid tìm ước chung lớn nhất của f (x) và f 0 (x) ở chỗ phần dư lấy dấu ngược lại. Nhưng trong thuật toán Euclid thì việc đổi dấu phần dư không ảnh hưởng đến kết quả cuối cùng. Vì vậy, quá trình sẽ dừng lại ở đa thức fs (x) = (f (x), f 0 (x)), và fs (x) là một số thực khác 0, do f (x) không có nghiệm bội. Từ đó suy ra hệ các đa thức f (x) = f0 (x), f 0 (x) = f1 (x), f2 (x), . . . , fs (x) thoả mãn điều kiện 2) của điều kiện hệ Sturm. Để chứng minh thoả mãn điều kiện 1), ta giả sử fm (x) và fm+1 (x) có nghiệm thực chung α. Khi 17
- Xem thêm -

Tài liệu liên quan