Đăng ký Đăng nhập
Trang chủ La42.006_độ tin cậy chịu uốn của dầm bê tông cốt thép được tăng cường bằng tấm p...

Tài liệu La42.006_độ tin cậy chịu uốn của dầm bê tông cốt thép được tăng cường bằng tấm polymer cốt sợi carbon

.PDF
154
61649
159

Mô tả:

i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận án là trung thực và chưa được ai công bố trong bất kỳ công trình nào khác. Tác giả Ngô Thanh Thủy ii LỜI CẢM ƠN Sau thời gian học tập, nghiên cứu, với sự giúp đỡ của các thầy, cô Trường Đại học Giao thông Vận tải Hà Nội, tôi đã hoàn thành luận án Tiến sĩ Kỹ thuật “Độ tin cậy chịu uốn của dầm bê tông cốt thép được tăng cường bằng tấm polymer cốt sợi carbon (CFRP)”; Với tình cảm chân thành, tác giả xin bày tỏ lòng cám ơn đến Ban Giám Hiệu, Phòng đào tạo sau đại học, Khoa Công Trình - Bộ môn Cầu hầm Trường đại học Giao thông vận tải Hà Nội, Phòng Thí Nghiệm Kết cấu công trình- Đại học Bách Khoa Tp.Hồ Chí Minh, toàn thể quý thầy cô và các cán bộ quản lý đã tận tình giúp đỡ, tạo điều kiện cho tôi trong quá trình học tập và hoàn thành luận án này; Đặc biệt, tác giả xin bày tỏ lòng biết ơn sâu sắc đến PGS.TS Trần Đức Nhiệm, PGS.TS Nguyễn Ngọc Long đã tận tình giúp đỡ, hướng dẫn tôi nghiên cứu đề tài, hiệu chỉnh và hoàn thiện luận văn. Hà Nội, ngày 14 tháng 03 năm 2015 Tác giả Ngô Thanh Thủy iii MỤC LỤC Lời cam đoan ..........................................................................................................i Lời cảm ơn .............................................................................................................ii Mục lục................................................................................................................. iii Danh mục hình ảnh .............................................................................................. vi Danh mục bảng biểu ............................................................................................. ix Các chữ viết tắt ..................................................................................................... xi Các ký hiệu .........................................................................................................xiii MỞ ĐẦU ................................................................................................................ 1 CHƯƠNG 1: TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU KẾT CẤU CÓ SỬ DỤNG FRP ...................................................................................................... 5 1.1. Sơ lược lịch sử ứng dụng FRP trong sửa chữa tăng cường kết cấu ................ 5 1.2. Các đặc tính cơ bản của FRP ........................................................................ 8 1.2.1. Các tính chất vật lý của vật liệu polymer cốt sợi FRP ................................. 8 1.2.2. Cường độ chịu kéo .................................................................................... 9 1.2.3.Các tính chất dài hạn ................................................................................... 9 1.2.4. Độ bền ..................................................................................................... 10 1.3. Các ứng dụng của FRP ............................................................................... 10 1.3.1. FRP sửa chữa – tăng cường kết cấu .......................................................... 10 1.3.2. FRP làm cốt cho bê tông .......................................................................... 12 1.3.3. FRP làm kết cấu chịu lực chính ................................................................ 14 1.4. Các Hướng dẫn hiện hành cho thiết kế kết cấu có sử dụng FRP .................. 15 1.4.1. Các hướng dẫn thiết kế mặt cắt BTCT tăng cường bằng tấm sợi FRP ...... 16 1.5. Độ tin cậy của kết cấu công trình ................................................................ 19 1.5.1. Khái niệm độ tin cậy 1.5.2. Cơ sở đánh giá độ tin cậy chịu uốn của dầm BTCT được tăng cường bằng tấm sợi carbon .......................................................................................... 20 1.5.3. Chỉ số độ tin cậy ..................................................................................... 24 1.5.4. Phương pháp phân tích đặc trưng thống kê .............................................. 28 1.6. Phân tích, đánh giá một số công trình nghiên cứu liên quan ........................ 31 1.8. Mục tiêu của đề tài...................................................................................... 38 1.9. Nội dung và phương pháp nghiên cứu......................................................... 39 iv Kết luận chương 1 ................................................................................................. 43 CHƯƠNG 2: PHÂN TÍCH CHỈ SỐ ĐỘ TIN CẬY  CỦA DẦM BTCT ĐƯỢC TĂNG CƯỜNG BẰNG CFRP TRÊN CƠ SỞ MÔ HÌNH SỨC KHÁNG THEO ACI 440.2R-08.......................................................................... 41 2.1.Các tính chất thống kê của đặc trưng hình học và vật liệu ................................ 41 2.2. Miền nghiên cứu của sức kháng uốn của dầm BTCT được tăng cường bằng CFRP ........................................................................................................... 44 2.3. Các yếu tố ảnh hưởng đến sức kháng uốn của dầm BTCT được tăng cường bằng CFRP ............................................................................................................ 44 2.4. Mô hình tải trọng ............................................................................................ 47 2.5. Phân tích chỉ số độ tin cậy .............................................................................. 48 2.5.2. Xây dựng chương trình phân tích chỉ số độ tin cậy β của dầm BTCT 2.5.1. Xây dựng hàm trạng thái .......................................................................... 48 được tăng cường bằng CFRP ............................................................................. 49 2.5.3. Kết quả phân tích và nhận xét................................................................... 59 2.6. Kết quả chương 2........................................................................................... 78 CHƯƠNG 3: NGHIÊN CỨU THỰC NGHIỆM DẦM BTCT CHỊU UỐN ĐƯỢC TĂNG CƯỜNG BẰNG TẤM POLYMER CỐT SỢI CARBON ........ 80 3.1. Mục tiêu nghiên cứu thực nghiệm ................................................................... 80 3.2. Địa điểm thực nghiệm..................................................................................... 80 3.3. Các thí nghiệm vật liệu ................................................................................... 81 3.3.1. Thí nghiệm Bê tông .................................................................................. 81 3.3.2. Thí nghiệm cốt thép ................................................................................. 84 3.3.2. Thí nghiệm kéo tấm FRP.......................................................................... 85 3.4. Các đặc trưng hình học của mẫu dầm thí nghiệm ............................................ 86 3.5. Tiến hành thí nghiệm ...................................................................................... 88 3.5.1. Chuẩn bị bề mặt bê tông và tấm CFRP ..................................................... 88 3.5.2. Dán tấm CFRP ......................................................................................... 88 3.5.3. Bố trí thiết bị đo đạc ................................................................................. 89 3.5.4. Quy trình thí nghiệm ................................................................................ 89 3.5.5. Kết quả thí nghiệm ................................................................................... 90 v 3.6. Nhận xét về kết quả nghiên cứu thực nghiệm dầm BTCT tăng cường bằng tấm sợi carbon ................................................................................................. 100 CHƯƠNG 4: NGHIÊN CỨU THỰC NGHIỆM DẦM CẦU TRẦN HƯNG ĐẠO CHỊU UỐN ĐƯỢC TĂNG CƯỜNG BẰNG TẤM POLYMER CỐT SỢI CARBON ................................................................................................... 102 4.1. Mục tiêu của thực nghiệm cầu Trần Hưng Đạo ............................................. 102 4.2. Địa điểm thực nghiệm................................................................................... 102 4.3. Hiện trạng công trình trước sửa chữa nâng cấp ............................................ 103 4.4. Sửa chữa nâng cấp ........................................................................................ 104 4.5. Kiểm định sau khi sửa chữa nâng cấp .......................................................... 104 4.6. Xác định các thông số tính toán mặt cắt giữa nhịp ........................................ 105 4.6.1. Kích thước hình học của mặt cắt ............................................................ 105 4.6.2. FRP ........................................................................................................ 110 4.6.3. Vật liệu bê tông ...................................................................................... 111 4.6.4. Vật liệu thép ........................................................................................... 113 4.6.5. Hoạt tải .................................................................................................. 114 4.6.6. Tĩnh tải................................................................................................... 116 4.7. Tính toán và phân tích độ tin cậy chịu uốn cho mặt cắt giữa nhịp ................. 116 4.8. Kết luận về nghiên cứu ứng dụng đối với cầu Trần Hưng Đạo ...................... 118 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 120 TÀI LIỆU THAM KHẢO ................................................................................. 125 vi DANH MỤC HÌNH ẢNH Hình 1-1. Đường cong ứng suất-biến dạng điển hình của các loại FRP .................... 9 Hình 1-2. Đường cong tuổi thọ mỏi của các loại FRP với các loại sợi khác nhau .. 10 Hình 1-3. FRP sửa chữa – tăng cường kết cấu ....................................................... 11 Hình 1-4. FRP làm cốt cho bê tông ........................................................................ 12 Hình 1-5. FRP dạng thanh hoặc bó dự ứng lực ...................................................... 13 Hình 1-6. FRP dạng ván khuôn giữ lại trong kết cấu.............................................. 13 Hình 1-7. FRP làm kết cấu chịu lực chính ............................................................. 14 Hình 1-8. Kiểu phá hoại theo ACI 440.2R-08 ........................................................ 19 Hình 1-9. Biểu đồ các hàm phân phối xác suất của sức kháng R, hiệu ứng tải S và lượng dự trữ an toàn G................................................................24 Hình 2-1.Sơ đồ khối chương trình ......................................................................... 51 Hình 2-2. Khối CI.................................................................................................. 52 Hình 2-3. Khối CIIa............................................................................................... 53 Hình 2-4. Khối CIIb .............................................................................................. 54 Hình 2-5. Khối CIII ............................................................................................... 55 Hình 2-6. Khối CIV ............................................................................................... 56 Hình 2-7. Giao diện Nhập các số liệu thông số bê tông .......................................... 57 Hình 2-8. Giao diện Nhập các số liệu thông số FRP .............................................. 57 Hình 2-9. Giao diện Nhập các số liệu thông số thép............................................... 58 Hình 2-10. Giao diện Nhập các số liệu đặc trưng hình học .................................... 58 Hình 2-11. Giao diện Nhập các số liệu tải trọng .................................................... 59 Hình 2-12. Giao diện Tính toán chỉ số độ tin cậy β ................................................ 59 Hình 2-13. Các bài toán nằm trong miền nghiên cứu β .......................................... 61 Hình 2-14. Các trường hợp ứng suất sử dụng trong cốt thép không đạt yêu cầu .... 61 Hình 2-15. Phân bố xác suất dạng đồ thị và dạng cột của mặt cắt 6........................62 Hình 2-16. Độ tin cậy trung bình của các bài toán nằm trong miền nghiên cứu β0 . 64 Hình 2-17. Các bài toán nằm trong miền nghiên cứu β với các biến ρs/ρbl và ML/MD................................................................................................ 65 Hình 2-18. Độ tin cậy trung bình của các bài toán nằm trong miền nghiên cứu β với các biến ρs/ρbl và ML/MD .............................................................. 67 MPH ................................................................................................... 70 Hình 2-19. Các bài toán nằm trong miền nghiên cứu β với các biến ρs/ρbl và vii β với các biến ρs/ρbl và MPH.............................................................. 67 Hình 2-20. Độ tin cậy trung bình của các bài toán nằm trong miền nghiên cứu Hình 2-21. So sánh β với ψf = 0.85 và ψf = 0.90 với biến ML/MD .......................... 68 Hình 2-22. Sự khác biệt ∆β với ψf = 0.85 và ψf = 0.90 với biến ML/MD ................ 69 Hình 2-24. Sự khác biệt ∆βψf = 0.85 và ψf = 0.90 với biến ML/MD và ρs/ρbl ......... 70 Hình 2-23. Sự khác biệt ∆ĐTC với ψf = 0.85 và ψf = 0.90 với biến ML/MD........... 69 Hình 2-25. Xác suất xuất hiện giá trị β > 3.5 với ψf = 0.85 và ψf = 0.90 ................ 70 Hình 2-27. So sánh β với ψf = 0.85 và ψf = 0.90 với biến MPH ............................. 72 Hình 2-26. Khác biệt xác suất xuất hiện giá trị β>3.5 với ψf = 0.85 và ψf = 0.90 .. 71 Hình 2-28. So sánh β trung bình vớiψf = 0.85 và ψf = 0.90 với biến MPH ............. 72 Hình 2-29. So sánh β với ψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP ............ 73 Hình 2-30. So sánh β trung bình vớiψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP .................................................................................................... 73 Hình 2-31. So sánh %TC với ψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP (MC 1-8) ............................................................................................ 75 Hình 2-32. So sánh %TC với ψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP (MC 9-16) .......................................................................................... 76 Hình 2-33. Sự khác biệt %TC với ψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP .................................................................................................... 76 Hình 2-34. Sự khác biệt %TC đơn vị với ψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP(ρf) (MC 1-8) ..................................................................... 77 Hình 2-35. Sự khác biệt %TC đơn vị vớiψf = 0.85 và ψf = 0.90 với biến hàm lượng FRP(MC 9-16) ......................................................................... 77 Hình 3-1. Cấu tạo dầm ........................................................................................... 87 Hình 3-2a. Chuẩn bị bề mặt bê tông và tấm CFRP ................................................. 88 Hình 3-2b. Dán tấm FRP ở đáy dầm ...................................................................... 89 Hình 3-3. Thí nghiệm dầm RC21 ........................................................................... 90 Hình 3-4. Thí nghiệm dầm S21-1 .......................................................................... 91 Hình 3-5. Thí nghiệm dầm S21-2 .......................................................................... 92 Hình 3-6. Thí nghiệm dầm S21-3 .......................................................................... 94 Hình 3-7. Thí nghiệm dầm RC25 ........................................................................... 94 Hình 3-8. Thí nghiệm dầm S25-1 .......................................................................... 95 Hình 3-9. Thí nghiệm dầm S25-2 .......................................................................... 96 viii Hình 3-10. Thí nghiệm dầm S25-3 ........................................................................ 97 Hình 3-11: Quan hệ lực - độ võng của các dầm thí nghiệm .................................... 97 Hình 3-12. Quan hệ lực (P)- biến dạng tấm CFRP (εf) và biến dạng bê tông (εc) của nhóm 1. ........................................................................................ 98 Hình 3-13. Quan hệ lực (P)- biến dạng tấm CFRP (εf) và biến dạng bê tông (εc) của nhóm 2. ........................................................................................ 99 Hình 4-1. Mặt cắt ngang cầu Trần Hưng Đạo. ..................................................... 103 Hình 4-2. Mặt cắt ngang dầm chủ cầu Trần Hưng Đạo. ....................................... 106 Hình 4-3. Dạng phân bố của bề rộng B2+2a của 11 mặt cắt dầm ......................... 107 Hình 4-4. Dạng phân bố của chiều cao H2 của 11 mặt cắt dầm ............................ 107 Hình 4-5. Dạng phân bố của cường độ chịu kéo FRP........................................... 111 Hình 4-6. Dạng phân bố của biến dạng tương đối cực hạn FRP ........................... 111 Hình 4-7. Dạng phân bố của cường độ chịu nén bê tông mẫu khoan. ................... 112 Hình 4-8. Dạng phân bố của cường độ chảy của cốt thép D25 chịu kéo ............... 114 Hình 4-9. Chỉ số độ tin cậy cho cầu Trần Hưng Đạo ............................................ 117 Hình 4-10. Độ tăng chỉ số độ tin cậy sau sửa chữa tăng cường ............................ 117 ix DANH MỤC BẢNG BIỂU Bảng 1-1. Khối lượng riêng của FRP ............................................................ 8 Bảng 1-2. Hệ số giãn nở vì nhiệt của FRP, bê tông và thép ........................... 8 Bảng 1-3. So sánh các Hướng dẫn thiết kế ................................................... 16 Bảng 1-4. Chỉ số độ tin cậy mục tiêu βT theo Nowak .................................. 25 Bảng 1-5. Chỉ số độ tin cậy mục tiêu βT theo EC (Annex B2) ...................... 25 Bảng 1-6. Chỉ số độ tin cậy mục tiêu βT chi tiết cho RC2 theo EC (Annex C2) ................................................................................................ 26 Bảng 1-7. Khoảng tin cậy p .......................................................................... 29 Bảng 2-1. Các tham số thống kê của cường độ chịu nén bê tông f c' ............. 42 Bảng 2-2. Các tham số thống kê của cường độ chảy cốt thép chịu kéo fy ..... 43 Bảng 2-3. Các tham số thống kê cường độ chịu kéo f fu* của tấm CFRP .......... 44 Bảng 2-4. Các tham số thống kê biến dạng tương đối cực hạn ε *fu của tấm CFRP......................................................................................... 44 Bảng 2-5. Các thông số đặc trưng hình học và vật liệu được chọn................ 45 Bảng 2-6. Bảng các giá trị ảnh hưởng của phương pháp phân tích P ............ 47 Bảng 2-7. Các tham số thống kê của tĩnh tải ................................................. 47 Bảng 2-8. Các tham số thống kê của hoạt tải ................................................ 48 Bảng 2.9. Thông số các mặt cắt kiểm tra Phân bố của mô men kháng .......... 62 Bảng 2.10. Kết quả tính toán theo Phương pháp Shapiro-Wilk..................... 63 Bảng 2-11. Các mặt cắt đại diện từ MC1 đến MC16 .................................... 74 Bảng 3-1. Danh mục thiết bị thí nghiệm ....................................................... 81 Bảng 3-2. Kết quả nén các mẫu bê tông nhóm C25 ...................................... 82 Bảng 3-3. Kết quả nén các mẫu bê tông nhóm C21 ...................................... 83 Bảng 3-4. Kiểm tra cường độ bê tông theo Sapiro-Wilk ............................... 83 Bảng 3-5a. Kết quả thí nghiệm cường độ của 6 mẫu thép dầm thí nghiệm ... 87 Bảng 3-5b. Kiểm tra phân bố chuẩn theo Shapiro-Wilk của 6 mẫu thép Miền Nam .................................................................................... 85 Bảng 3-6. Kết quả thí nghiệm cường độ chịu kéo của 13 mẫu CFRP............86 x Bảng 3-7. Các thông số của dầm thí nghiệm................................................. 87 Bảng 3-8. Số liệu kết quả thí nghiệm của các dầm nhóm 1 ........................... 91 Bảng 3-9. Số liệu kết quả thí nghiệm của các dầm nhóm 2 ........................... 93 Bảng 3-10. Tổng hợp tải trọng - độ võng của các dầm thí nghiệm ................ 96 Bảng 3-11. Tính toán các tham số thống kê của P ........................................ 99 Bảng 3-12. Kiểm tra phân bố của P theo Shapiro-Wilk................................100 Bảng 3-13. Tính toán hiệu quả tăng cường của các dầm thí nghiệm ........... 100 Bảng 4-1. Tải trọng xe thử tải ..................................................................... 104 Bảng 4-2. Kết quả đo Biến dạng tương đối lớn nhất ε (x 10-5) .................... 105 Bảng 4-3. Kiểm tra phân bố chuẩn theo Shapiro-Wilk của chiều cao (H2) dầm cầu Trần Hưng đạo .............................................................. 107 Bảng 4-4. Kiểm tra phân bố chuẩn theo Shapiro-Wilk của chiều rộng cánh trên (B2+2a) dầm cầu Trần Hưng đạo ......................................... 108 Bảng 4-5. Các giá trị thống kê của bề rộng và chiều cao mặt cắt giữa nhịp cho từng dầm .............................................................................. 108 Bảng 4-6. Tham số thống kê của FRP ........................................................ 110 Bảng 4-7. Tham số thống kê của bê tông .................................................... 112 Bảng 4-8. Kiểm tra phân bố chuẩn theo Shapiro-Wilk của 12 mẫu BT cầu Trần Hưng đạo............................................................................ 115 Bảng 4-9. Tham số thống kê của cường độ cốt thép chịu kéo .................... 112 Bảng 4-10. Kiểm tra phân bố chuẩn theo Shapiro-Wilk của 3 mẫu thép cầu Bông .................................................................................... 114 Bảng 4-11. Ứng suất trong cốt thép chịu kéo và tấm FRP .......................... 115 Bảng 4-12. Lực kéo lớn nhất trong cốt thép và tấm FRP ............................ 115 Bảng 4-13. Mô men lớn nhất tại mặt cắt giữa nhịp ..................................... 115 Bảng 4-14. Kết quả mô men lớn nhất do tĩnh tải ........................................ 116 Bảng 4-15. Kết quả chỉ số độ tin cậy cho cầu Trần Hưng Đạo.................... 116 xi CÁC CHỮ VIẾT TẮT Chữ viết tắt %TC AASHTO Ý nghĩa Thành phần phần trăm tăng cường American Association of State Highway and Transportation Officials (Hiệp hội giao thông và vận tải đường bộ Hoa Kỳ) ACI ASCE American Concrete Institute (Viện bê tông Hoa Kỳ) American Society of Civil Engineers (Hiệp hội Kỹ sư xây dựng Hoa Kỳ) CNR National Research Council (Hội đồng quy trình quốc gia, Ý) FIB International Federation for Structural Concrete (Hiệp hội quốc tế về kết cấu bê tông, Châu Âu) ICC International Code Council (Hội đồng quy trình quốc tế, Hoa Kỳ) ISIS The Canadian Network of Centers of Excellent on Intelligent Sensing for Innovative Structures (Mạng lưới Trung tâm Thông minh Cải tiến Kết cấu Canada) JCI RTRI Japan Concrete Institute (Viện Bê Tông Nhật Bản) Railway Technical Research Intitute (Viện Nghiên cứu Kỹ Thuật Đường Sắt, Hoa Kỳ) BTCT Bê tông cốt thép RC Bê tông cốt thép thường PSC Bê tông cốt thép dự ứng lực DUL Dự ứng lực FRP Fiber Reinforced Polymer-vật liệu polymer cốt sợi AFRP Aramit Fiber Reinforced Polymer-tấm polymer cốt sợi a-ra-mit CFRP Carbon Fiber Reinforced Polymer-tấm polymer cốt sợi carbon GFRP Glass Fiber Reinforced Polymer-tấm polymer cốt sợi thủy tinh ĐKTC Điều kiện tăng cường MPH Kiểu (Mode) phá hoại TTGH Trạng thái giới hạn xii ĐỊNH NGHĨA CÁC THUẬT NGỮ Kết cấu công trình: sự tổ hợp có liên kết của các bộ phận (cấu kiện) với nhau nhằm tạo ra một khối vững chắc có khả năng làm việc (khả năng chịu tải) . Trạng thái làm việc: là trạng thái của đối tượng trong đó giá trị của tất cả các tham số đặc trưng cho khả năng thực hiện các chức năng cho trước thỏa mãn yêu cầu của tiêu chuẩn kỹ thuật. Sự cố (hư hỏng): là khi một bộ phận của kết cấu công trình không đáp ứng được chức năng chịu lực hoặc chức năng sử dụng của nó. Mức độ tin cậy của kết cấu công trình: là mức yêu cầu về độ tin cậy riêng đối với mỗi kết cấu công trình hoặc mỗi bộ phận kết cấu công trình. Biến số cơ bản: là các biến số đặc trưng cho các đại lượng vật lý miêu tả các tác động, tính chất cơ học của vật liệu và các đặc trưng của kết cấu công trình. Hàm trạng thái: là hàm G của các biến cơ bản biểu diễn trạng thái chịu lực của kết cấu công trình: G(X1, X2,…, Xn) = 0 tương ứng với TTGH; G > 0 tương ứng với trạng thái làm việc an toàn; G < 0 tương ứng với trạng thái làm việc không an toàn (làm việc có sự cố). Chỉ số độ tin cậy β: đặc trưng cho khả năng làm việc không sự cố của kết cấu công trình dưới tác dụng của tải trọng. Tác động ngẫu nhiên: là tác động mà mỗi khi xảy ra trong khoảng thời gian đang xem xét sẽ có một giá trị ảnh hưởng riêng biệt đối với kết cấu công trình. Đặc trưng thống kê của vật liệu: là quy luật phân phối thống kê về các tính chất vật liệu được xác định trong quá trình sản xuất vật liệu theo các tiêu chuẩn có liên quan. Thành phần phần trăm tăng cường: là tỷ số giữa hiệu mô men giới hạn sau sửa chữa tăng cường với mô men giới hạn trước sửa chữa tăng cường trên mô men giới hạn trước sửa chữa tăng cường. xiii CÁC KÝ HIỆU Af = diện tích của tấm FRP dán ngoài (10-6m2) b = bề rộng mặt cắt (10-3m) CDF = hàm phân phối xác suất   = diện tích FRP dán theo hình U kiểu chịu cắt để neo FRP chịu uốn COVMF = hệ số biến sai của M và F COVX C = hệ số biến sai của đại lượng ngẫu nhiên X D = tĩnh tải d = khoảng cách từ thớ chịu nén lớn nhất đến trọng tâm cốt thép chịu = hệ số chiết giảm điều kiện môi trường làm việc COV , COV , COV = hệ số biến sai của M, F, P kéo (10-3m) Ef = mô đun đàn hồi chịu kéo của tấm FRP (MPa) Es E = mô đun đàn hồi của cốt thép thường chịu kéo (MPa)  = mô đun đàn hồi của BT (MPa)  = hàm phân phối xác suất của đại lượng ngẫu nhiên X ∗  # = ứng suất giới hạn mỏi-đứt gãy f' f ,& = ứng suất chảy của cốt thép thường chịu kéo ffu = cường độ cực hạn của FRP sử dụng trong thiết kế (MPa) G = hàm trạng thái h = chiều cao mặt cắt (10-3m)   !"  , f&,& = hàm mật độ xác suất của đại lượng ngẫu nhiên X = cường độ chịu nén tính toán của bê tông (MPa) = cường độ cực hạn của FRP do nhà sản xuất cung cấp (MPa) = ứng suất trong cốt thép chịu kéo ở TTGH sử dụng = ứng suất trong tấm FRP ở TTGH sử dụng xiv () tấm FRP (10-3m) L M* = hoạt tải M+ = mô men do tĩnh tải sau khi sửa chữa tăng cường M,- = sức kháng uốn danh định của mặt cắt (103 Nm) M,& = sức kháng uốn danh định do đóng góp của FRP (103N m) M, = chiều dài neo giữ cần thiết để phát triển ứng suất có hiệu trong = mô men do hoạt tải sau khi sửa chữa tăng cường = sức kháng uốn danh định do đóng góp của cốt thép chịu kéo (103N M. m) MR = sức kháng uốn của mặt cắt n+* = số lớp tấm FRP tại mặt cắt được tăng cường PDF = mật độ xác suất Pf = xác suất sự cố của kết cấu công trình n = mô men uốn tính toán của mặt cắt (103N m) = tỷ lệ mô men hoạt tải trên tĩnh tải 0 X = đại lượng ngẫu nhiên α = hệ số giãn nở vì nhiệt β = chỉ số độ tin cậy của kết cấu công trình βT = chỉ số độ tin cậy mục tiêu β0 = chỉ số độ tin cậy trung bình µX = giá trị trung bình của đại lượng ngẫu nhiên X ε. = độ lệch chuẩn của đại lượng ngẫu nhiên X σX = chiều dày danh định của một lớp tấm FRP (10-3m) = biến dạng tương đối cực hạn của BT chịu nén, lấy bằng 0.003 λ , λ , λ = hệ số λ của M, F, P λ2 = tỷ lệ giữa giá trị trung bình và giá trị danh định của đại lượng ngẫu nhiên X xv µ , µ , µ = giá trị trung bình của M, F, P 3 ) 3 4 = biến dạng tương đối bong tróc tấm FRP 56 = biến dạng tương đối cực hạn của FRP do nhà sản xuất cung cấp (%) 3 # = là biến dạng tương đối có hiệu của tấm FRP ∗ 3 # = biến dạng tương đối cực hạn của FRP sử dụng trong thiết kế (%) = hàm lượng cốt thép chịu kéo cân bằng = hàm lượng cốt thép chịu kéo 57 ∅ = hệ số chiết giảm cường độ mặt cắt γD = hệ số tải trọng của tĩnh tải γL = hệ số tải trọng của hoạt tải εsy = biến dạng tương đối ứng với giới hạn chảy của cốt thép chịu kéo (%) εt = biến dạng tương đối của cốt thép chịu kéo (%) φ = hệ số λ của M và F λMF : ψf p e = hàm mật độ xác suất của Phân bố chuẩn hóa (µ=0 và σ=1) = hệ số chiết giảm cường độ của tấm sợi FRP = hàm phân bố xác suất của Phân bố chuẩn hóa (µ=0 và σ=1) = khoảng tin cậy = sai số cho phép của tập mẫu 1 MỞ ĐẦU Phương pháp dán tấm vật liệu polymer cốt sợi, FRP, xuất hiện trong vòng 30 năm trở lại đây và nhanh chóng chứng tỏ là một trong những biện pháp hiệu quả trong sửa chữa tăng cường kết cấu BTCT. Phương pháp này có nhiều ưu điểm so với phương pháp truyền thống như không làm tăng tĩnh tải, không thay đổi cấu trúc tổng thể kết cấu, tăng độ cứng chống uốn, hiệu quả trong việc ngăn chặn độ mở rộng và sự xuất hiện của vết nứt trong bê tông và thi công dễ dàng và nhanh chóng. FRP có cường độ cao và trọng lượng nhẹ, chịu tải trọng mỏi tốt, khả năng chống ăn mòn cao và dễ dàng thi công trên bề mặt bê tông, nên việc sử dụng FRP trong xây dựng công trình đã đạt được bước tiến lớn trong thập kỷ qua. Tấm polymer cốt sợi carbon, CFRP, có đầy đủ các ưu điểm của vật liệu sợi và đặc biệt có khả năng chịu mỏi tốt cho phép sửa chữa tăng cường cầu cũ, đặc biệt là cầu BTCT, một cách hiệu quả mà các biện pháp truyền thống như đặt thêm cốt thép chịu kéo, dự ứng lực ngoài, và dán bản thép không có được. Từ những năm1980s, ở Nhật Bản, Hoa Kỳ và châu Âu đã nghiên cứu áp dụng FRP trong sửa chữa tăng cường kết cấu nhà cửa và cầu. Ở Việt Nam, cầu bê tông cốt thép cũng chiếm tỷ lệ rất lớn, lên tới 64%. (theo nguồn Tổng Cục Đường Bộ Việt Nam).Tải trọng và tần suất khai thác tăng dần trong suốt quá trình sử dụng và các nguyên nhân khác làm cho nhiều cầu đã xuống cấp nghiêm trọng nhưng chưa có kinh phí để thay mới nên cần thiết phải sửa chữa tăng cường. Tấm polymer cốt sợi carbon đã và đang được sử dụng cho sửa chữa tăng cường cầu ở Việt Nam; trong khi đó Tiêu chuẩn thiết kế cầu hiện hành là 22TCN 272-05 [2] chưa có phần dành cho vật liệu CFRP. Một số cầu đã thiết kế và thi công, nghiệm thu theo ACI 440.2R-08. Các nghiên cứu, tính toán ở Việt Nam về sửa chữa tăng cường bằng vật liệu CFRP đều tiến hành theo phương pháp bán xác suất, chưa xem xét đầy đủ 2 tính chất thống kê của các tham số thiết kế. Trong khi đó, các nghiên cứu trên thế giới đã đề cập đến thiết kế trên cơ sở độ tin cậy ở những góc độ khác nhau. Tuy nhiên, các nghiên cứu chưa đề cập đầy đủ đến vấn đề đánh giá độ tin cậy chịu uốn của mặt cắt dầm BTCT tăng cường bằng tấm sợi carbon dán ngoài. Như vậy việc nghiên cứu ứng dụng tấm sợi carbon trên cơ sở lý thuyết độ tin cậy là vấn đề thời sự hiện nay được các nhà khoa học trên thế giới và Việt Nam quan tâm. Đây chính là lý do Nghiên cứu sinh chọn đề tài nghiên cứu. Tên đề tài: ‘‘Độ tin cậy chịu uốn của dầm BTCT được tăng cường bằng tấm polymer cốt sợi carbon (CFRP)’’. Mục tiêu của nghiên cứu: • Nghiên cứu các ảnh hưởng của vật liệu, cấu tạo, và mô hình phân tích sức kháng uốn theo ACI440.2R-08 đến Độ tin cậy của mặt cắt dầm BTCT thường chịu uốn được tăng cường bằng tấm polymer cốt sợi carbon dán ngoài. • Phân tích và đề xuất hệ số chiết giảm khả năng chịu lực của vật liệu CFRP và phạm vi ứng dụng giải pháp tăng cường chịu uốn dầm BTCT thường bằng tấm polymer cốt sợi carbon dán ngoài. Phương pháp nghiên cứu: • Phương pháp lý thuyết: ứng dụng lý thuyết độ tin cậy với mô hình phân tích và phân bố hợp lý của các biến ngẫu nhiên để xác định chỉ số độ tin cậy của mặt cắt dầm BTCT chịu uốn được tăng cường bằng tấm CFRP. • Phương pháp thực nghiệm: tiến hành các thí nghiệm trong phòng và nghiên cứu ứng dụng tại hiện trường để thu thập các kết quả đánh giá tính hợp lý của các giá trị và phân bố các biến ngẫu nhiên đã sử dụng và mô hình phân tích sức kháng uốn theo ACI440.2R-08. 3 Đối tượng nghiên cứu: Dầm BTCT thường được tăng cường bằng tấm polymer cốt sợi carbon dán ngoài. Phạm vi nghiên cứu : • Tính toán và phân tích chỉ số độ tin cậy β của các mặt cắt chữ nhật dầm BTCT thường được tăng cường bằng tấm CFRP. • Tiến hành các thực nghiệm trong phòng và hiện trường để xác định phân bố và các tham số thống kê của các biến ngẫu nhiên bao gồm kích thước hình học mặt cắt, cường độ bê tông, cường độ cốt thép chịu kéo, và ảnh hưởng của mô hình phân tích đến sức kháng uốn của dầm BTCT được tăng cường bằng tấm CFRP theo ACI 440.2R- 08. Ý nghĩa khoa học và thực tiễn của đề tài: • Về lý thuyết: - Xây dựng phương pháp luận tính toán độ tin cậy chịu uốn của dầm bê tông cốt thép được tăng cường bằng dán tấm polymer cốt sợi carbon trên cơ sở mô hình sức kháng uốn theo ACI 440.2R08. - Đề xuất phạm vi ứng dụng giải pháp tăng cường chịu uốn dầm BTCT thường bằng tấm polymer cốt sợi carbon dán ngoài và hệ số chiết giảm khả năng chịu lực của vật liệu CFRP trong mô hình tính toán. • Về thực nghiệm: xác định phân bố và giá trị của các tham số thống kê của các biến ngẫu nhiên bao gồm: kích thước hình học mặt cắt thông qua đo đạc công trình cầu thực tế; cường độ bê tông, cường độ cốt thép chịu kéo, cường độ chịu kéo của tấm CFRP và ảnh hưởng của mô hình phân tích đến sức kháng uốn theo ACI 440.2R-08 thông qua việc chế tạo mẫu và thí nghiệm trong phòng. 4 Nội dung nghiên cứu bao gồm phần mở đầu, 4 chương và phần kết luận như sau: Mở đầu: Giới thiệu sơ lược về tấm polymer cốt sợi carbon và tên đề tài. • Chương 1: Tổng quan tình hình nghiên cứu kết cấu có sử dụng FRP . • Chương 2: Phân tích chỉ số độ tin cậy, β, của dầm BTCT được tăng cường bằng CFRP trên cơ sở mô hình sức kháng theo ACI 440.2R-08. • Chương 3: Nghiên cứu thực nghiệm dầm BTCT chịu uốn được tăng cường bằng tấm polymer cốt sợi carbon. • Chương 4: Nghiên cứu thực nghiệm dầm cầu Trần Hưng Đạo chịu uốn được tăng cường bằng tấm polymer cốt sợi carbon. Kết luận và kiến nghị: Trình bày các kết luận trong quá trình nghiên cứu, nêu kiến nghị và hướng nghiên cứu tiếp theo. 5 Chương 1 TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU KẾT CẤU CÓ SỬ DỤNG FRP 1.1. Sơ lược lịch sử ứng dụng FRP trong sửa chữa tăng cường kết cấu Cầu bê tông cốt thép là loại cầu được sử dụng rộng rãi trên thế giới và ở Việt Nam. Hiện nay nhiều cầu đã xuống cấp nghiêm trọng nhưng chưa có kinh phí để thay mới nên cần thiết phải sửa chữa tăng cường. Các phương pháp sửa chữa rất đa dạng tùy theo từng loại kết cấu, trình độ kỹ thuật và yêu cầu đặt ra. Theo các thống kê, chủ yếu cầu được sửa chữa, tăng cường theo phương pháp truyền thống như: bọc bê tông, dán bản thép, và DUL ngoài. Phương pháp bọc bê tông là phương pháp sửa chữa thô sơ và có nhiều nhược điểm: liên kết giữa bê tông cũ và mới không đồng bộ và hệ số co ngót khác nhau giữa bê tông cũ và mới có thể phát sinh các vết nứt; tiết diện tăng lên, làm tăng tĩnh tải, thay đổi cấu trúc tổng thể của kết cấu; ván khuôn lắp đặt khó khăn, chi phí vật liệu và nhân công tăng. Phương pháp bọc bê tông hiện nay chủ yếu ứng dụng cho những sửa chữa nhỏ, hay ở những nơi mà công nghệ khác không đáp ứng được. Phương pháp dán bản thép được Fleming và King giới thiệu năm 1967 để tăng cường kết cấu BTCT [34]. Ưu điểm của phương pháp này là (1) độ cứng chống uốn tăng đáng kể, (2) rất hiệu quả trong việc ngăn chặn độ mở rộng vết nứt của bê tông và (3) thời gian ngừng khai thác của kết cấu ngắn. Phương pháp dán bản thép được ứng dụng rộng rãi để tăng cường kết cấu cầu và nhà cửa ở nhiều nơi trên thế giới. Nhược điểm lớn nhất của phương pháp này là tấm thép bị gỉ sét, dẫn tới làm giảm cường độ dính bám của thép và bê tông. Một vấn đề khác là dán bản thép rất khó khăn, đòi hỏi thiết bị nặng và cồng kềnh, đặc biệt khó khăn khi thiếu không gian thao tác. Phương pháp DUL ngoài có hai ưu điểm là (1) tăng cường khả năng chống nứt cho kết cấu BTCT và (2) lực căng có thể điều chỉnh trong quá trình
- Xem thêm -

Tài liệu liên quan