Đăng ký Đăng nhập
Trang chủ Khảo sát các chữ kí số dựa trên hệ rsa, nghiên cứu lược đồ chữ kí rsa pss và nhữ...

Tài liệu Khảo sát các chữ kí số dựa trên hệ rsa, nghiên cứu lược đồ chữ kí rsa pss và những chuẩn hóa

.PDF
99
6
105

Mô tả:

MỤC LỤC LỜI CẢM ƠN ....................................................................................................................... 4 LỜI CAM ĐOAN ................................................................................................................. 5 CÁC KÝ HIỆU VIẾT TẮT .................................................................................................. 6 MỞ ĐẦU ............................................................................................................................... 7 Chƣơng 1 NGHIÊN CỨU HỆ MẬT KHOÁ CÔNG KHAI ..............................................10 1.1 Lịch sử ra đời và phát triển ..............................................................................................10 1.2 Định nghĩa hệ mật khoá công khai ...................................................................................11 1.3 Tính an toàn của hệ mật mã .............................................................................................14 1.4 Thám mã chống lại hệ mật khoá công khai ......................................................................14 1.5 Sự cần thiết của việc xác minh hệ thống khóa công khai. .................................................16 1.5 So sánh hệ mật khóa đối xứng và hệ mật khóa công khai .................................................17 1.5.1 Lợi thế của hệ mật khóa đối xứng. .....................................................................18 1.5.2 Điểm yếu của hệ mật khóa đối xứng. .................................................................18 1.5.3 Lợi thế của hệ mật khóa công khai ....................................................................18 1.5.4 Điểm yếu của hệ mật khóa công khai ................................................................19 1.6 Hệ chữ ký số....................................................................................................................21 1.6.1 Định nghĩa hệ chữ ký số ....................................................................................21 1.6.2 Các ưu điểm của chữ ký số ................................................................................23 1.6.3 Ứng dụng của chữ ký số ....................................................................................24 Chƣơng 2 NGHIÊN CỨU HỆ MẬT VÀ CHỮ KÝ SỐ RSA..................................................25 2.1 Tính an toàn các thuật toán mã hoá ..................................................................................25 2.2 Hệ mật RSA ....................................................................................................................26 2.2.1 Quá trình tạo khóa .............................................................................................26 2.2.2 Quá trình mã hóa ...............................................................................................27 1 2.2.3 Quá trình giải mã ..............................................................................................27 2.2.4 Chuyển đổi văn bản rõ ......................................................................................28 2.2.5 Tính không an toàn của hệ mật RSA .................................................................29 2.2 Hệ chữ ký số RSA ...........................................................................................................32 2.2.1 Định nghĩa hệ chữ ký số RSA ...........................................................................32 2.2.2 Hệ thống ký hiệu an toàn cho lược đồ ký số ......................................................33 2.2.3 Tính an toàn ......................................................................................................34 Chƣơng 3 CHỮ KÝ SỐ RSA-PSS ...........................................................................................35 3.1 Tổng quan về sơ đồ chữ ký RSA-PSS ..............................................................................35 3.1.1 RSA-PSS hoạt động như thế nào ? ....................................................................36 3.1.2 Ưu thế của RSA-PSS ........................................................................................38 3.1.3 Các công trình chuẩn .........................................................................................39 3.1.4 Một số nhận xét về lược đồ ký RSA-PSS ..........................................................40 3.2 Định nghĩa lược đồ ký PSS2000 ......................................................................................40 3.2.1 Lược đồ ký điện tử PSS96 .................................................................................40 3.2.2 Lược đồ ký điện tử PSS2000 .............................................................................41 3.2.3 Lược đồ tổng quát hóa.......................................................................................43 3.2.4 Định nghĩa lược đồ RSA-GENPSS....................................................................44 3.2.5 Các mô hình an toàn ..........................................................................................47 3.2.6 Một số xem xét về vấn đề lưu trữ ......................................................................48 3.2.7 Phân tích cấu trúc hàm băm ...............................................................................49 3.2.8 Phân tích chuỗi cố định E (bc) ...........................................................................51 Chƣơng 4 SỰ CHUẨN HOÁ CỦA LƢỢC ĐỒ KÝ RSA-PSS ...............................................54 4.1 Nguyên lý chung .............................................................................................................54 4.2 Các hàm chuyển đổi dữ liệu .............................................................................................55 4.2.1 Hàm cơ sở chuyển đổi từ dạng số sang dạng chuỗi Octet ...................................55 4.2.2 Hàm chuyển đổi từ dạng Octet sang dạng số nguyên .........................................55 2 4.3 Các phép toán mật mã cơ sở ............................................................................................56 4.3.1 Phép toán cơ sở RSASP1 ..................................................................................56 4.3.2 Phép toán cơ sở RSAVP1 ..................................................................................57 4.3.3 Phương pháp định dạng cho cho chữ ký với phần nối thêm vào .........................58 4.4 Lược đồ ký với phần nối thêm vào ...................................................................................64 4.4.1 Thao tác sinh chữ ký .........................................................................................65 4.4.2 Thao tác kiểm tra chữ ký ...................................................................................66 4.5 Tiêu chuẩn tham số sử dụng trong chữ ký số RSA-PSS ...................................................67 Chƣơng 5 CHỨNG MINH TÍNH AN TOÀN TỐI ƢU CHO LƢỢC ĐỒ KÝ DỰA VÀO PHƢƠNG PHÁP XÁC SUẤT ........................................................................................70 5.1 Các định nghĩa .................................................................................................................70 5.2 Một biến thể của PSS.......................................................................................................72 5.3 Áp dụng PSS ...................................................................................................................76 5.4 Chứng minh tính an toàn tối ưu cho PSS..........................................................................80 5.5 Bàn luận thêm .................................................................................................................85 Chƣơng 6 CHỨNG MINH TÍNH AN TOÀN CHO LƢỢC ĐỒ KÝ RSA-PSS .....................86 6.1 Kết quả chính ..................................................................................................................86 6.2 RSA-PSS với việc khôi phục thông điệp ..........................................................................93 6.3 Các mô hình an toàn của lược đồ ký RSA-PSS với việc khôi phục thông điệp .................95 KẾT LUẬN ..............................................................................................................................97 TÀI LIỆU THAM KHẢO .......................................................................................................98 3 CÁC KÝ HIỆU VIẾT TẮT CRT Chinese remainder theorem-Định lý số dƣ Trung Quốc EM Thông điệp đƣợc mã hoá, là một xâu gồm 8 bit IEEE Institute of Electrical and Electronics Engineers IFP IFSSA Bài toán phân tích số nguyên (Integer Factorization Problem) Integer Factorization Signature Scheme with AppendixLƣợc đồ ký thừa số nguyên với phần nối thêm vào I2OSP Interger to Octet String primitive- Nguyên thuỷ chuyển kiểu số sang xâu kiểu byte lcm Bội chung nhỏ nhất (Least Common Multiple) MGF Mask Generation Function- Hàm sinh mặt nạ MIT Massachusetts Institute of Technology NIST National Institute of Standards and Technology OS2IP Octet to Interger String primitive – Nguyên thuỷ chuyển kiểu byte sang kiểu số RSA Hệ mã hóa khóa công khai Rivest – Shamir – Adleman SSA Signature Scheme with Appendix- Lƣợc đồ ký với phần nối thêm vào 6 MỞ ĐẦU Trong kỷ nguyên công nghệ thông tin, Internet tại Việt Nam đã và đang có những bƣớc phát triển mạnh mẽ, tạo nền tảng cho những ứng dụng hết sức đa dạng và phong phú nhƣ chính phủ điện tử, giao dịch điện tử, truyền thông giải trí... Tuy nhiên một vấn đề lâu nay vẫn gây lo ngại cho các cấp quản lý cũng nhƣ đông đảo quần chúng và giới doanh nghiệp, đó là tính an toàn. Trên thực tế, rất nhiều website và thông tin dữ liệu về sản phẩm dịch vụ do không đảm bảo tính toàn vẹn đã bị sụp đổ. Các hacker có thể thâm nhập vào những hệ thống của các “đại gia” nhƣ Microsoft, Cisco, ở Việt Nam thì VDC, FPT cũng bị hacker thâm nhập. Việc bị cƣớp tên miền cũng xảy ra nhiều lần. Cho tới nay, việc mã hoá dữ liệu là một phƣơng pháp đủ mạnh để bảo vệ những dữ liệu quan trọng hoặc riêng tƣ không bị xâm phạm bởi chú ý, tò mò . Tuy nhiên, ngày càng có nhiều tin tặc có thể thêm, tráo đổi dữ liệu, mạo danh một cách táo tợn và thiện nghệ. Chữ ký điện tử giúp ngƣời ta tin tƣởng vào tính nguyên vẹn của thông báo, xác thực đƣợc ngƣời ký thông báo và tạo chứng cứ không thể chối bỏ đƣợc về trách nhiệm của ngƣời ký. Đó là lý do tại sao sự an toàn trong dữ liệu cần phải tích hợp các chữ ký điện tử, các chứng thực điện tử và phƣơng pháp quản lý khoá theo trật tự cấp bậc. Nếu áp dụng một cách khôn ngoan các phƣơng pháp này vào việc quản lý dữ liệu cùng với sự hỗ trợ của những khuôn mẫu thực thi, thì chúng ta sẽ có một nền tảng an toàn lƣu trữ đa tầng, toàn diện, có khả năng đối đầu đƣợc với tình trạng đe doạ đa chiều trƣớc mắt và trong tƣơng lai. Thị trƣờng an toàn thông tin tại Việt Nam đang bƣớc vào giai đoạn giao thời khi cơ cở hạ tầng truyền thông cơ bản đã hình thành rõ nét, nhu cầu sử dụng ngày càng nhiều các thiết bị của thời đại kỹ thuật số…Đã đến giai đọan cần phải nắn nót và trau chuốt lại hệ thống của mình, nếu không bảo đảm an toàn tốt, chúng ta sẽ đánh mất nhiều thứ. Có rất nhiều hệ mã hoá đã đƣợc biết đến trong lĩnh vực mật mã học. Nhƣng không phải hệ mã hoá nào cũng đáp ứng đủ các thuộc tính cần thiết của hệ mật: tính bí 7 mật, tính nguyên vẹn, tính xác thực, tính không bị từ chối và tính chống chối lặp. Có ba hệ mã hóa thông dụng đã đứng vững và đƣợc sử dụng để xây dựng các lƣợc đồ ký điện tử: RSA, hệ mã hoá dựa trên logarit rời rạc, và hệ mã hoá dựa trên đƣờng cong elliptic. Các hàm một chiều sử dụng trong hệ mã này đƣợc xem là an toàn theo thừa nhận,tức là không có thuật toán nào hữu hiệu để tính hàm ngƣợc của chúng. Trong khoảng mƣời năm trở lại đây, vấn đề này đang thu hút rất nhiều sự quan tâm của cộng đồng mật mã trên thế giới. RSA đƣợc liệt vào một trong các giải thuật mã hóa bất đối xứng đƣợc dùng thông dụng nhất cho đến ngày hôm nay (ra đời năm 1977 tại MIT), RSA đƣợc đặt tên từ ba nhà khoa học phát minh ra nó: Ron Rivest, Adi Shamir, và Leonard Adleman. Nó đƣợc dùng hàng ngày trong các giao dịch thƣơng mại điện tử qua web browser (SSL), PGP, dùng cho chữ ký số đảm bảo tính toàn vẹn của các thông điệp khi lƣu chuyển trên Internet, phân phối & cấp phát các khoá bí mật. Mật mã khoá công khai liên quan đến các khái niệm, định nghĩa và cấu trúc của các hệ thống tính toán, liên quan đến tính an toàn. Để thiết kế các hệ thống mật mã phải dựa trên cơ sở vững chắc. Nó dựa trên các công cụ toán học cơ bản nhƣ: lý thuyết số học-cụ thể lý thuyết đồng dƣ thức, logarit rời rạc, lý thuyết về độ phức tạp tính toán (hàm một chiều) cũng nhƣ khả năng phân tích các thuật toán… Ngƣời ta đang cố gắng đƣa ra những lƣợc đồ ký sao cho tính không thể giả mạo đƣợc của nó có thể đánh giá thông qua độ an toàn của các hàm một chiều mà nó sử dụng. Trong phạm vi luận văn này lƣợc đồ ký sử dụng hàm một chiều của hệ mã RSA-PSS đƣợc đi sâu nghiên cứu, trong đó nêu ra một số phƣơng pháp chứng minh cho tính an toàn của lƣợc đồ đó. Luận văn gồm 6 chƣơng: Chƣơng 1: Trong phần này luận văn trình bày những nghiên cứu lý thuyết về hệ mật khoá công khai bao gồm: Lịch sử ra đời và phát triển, định nghĩa hệ mật khoá công khai và xem xét tính an toàn của hệ mật khoá công khai. Chƣơng 2: Chƣơng này nghiên cứu cụ thể hệ mật khoá công khai và hệ chữ ký số RSA. Những lý thuyết đƣợc đề cập đến bao gồm: Nghiên cứu quá trình tạo khoá, mã 8 hoá, giả mã, và tính không an toàn của hệ mật RSA. Đồng thời cũng nghiên cứu tính an toàn của lƣợc đồ ký số RSA. Chƣơng 3: Giới thiệu tổng quan lƣợc đồ ký RSA-PSS bao gồm Cơ chế hoạt động, ƣu thế, các công trình chuẩn và một số nhận xét quý báo về lƣợc đồ ký này. Sau đấy định nghĩa và nghiên cứu cụ thể lƣợc đồ ký PSS2000. Chƣơng 4: Nghiên cứu sự chuẩn hoá của lƣợc đồ ký RSA-PSS, cụ thể là các tiêu chuẩn tham số sử dụng trong chữ ký số RSA-PSS để áp dụng lƣợc đồ vào các ứng dụng thực tế an toàn. Chƣơng 5: Chứng minh tính toàn cho lƣợc đồ ký dựa vào phƣơng pháp xác suất. Chƣơng 6: Chứng minh tính toàn cho lƣợc đồ ký RSA-PSS và giới thiệu các mô hình an toàn của lƣợc đồ ký RSA-PSS với việc khôi phục thông điệp 9 Chƣơng 1 NGHIÊN CỨU HỆ MẬT KHOÁ CÔNG KHAI 1.1 Lịch sử ra đời và phát triển Trong hầu hết lịch sử mật mã học, khóa dùng trong các quá trình mã hóa và giải mã phải đƣợc giữ bí mật và cần đƣợc trao đổi bằng một phƣơng pháp an toàn khác (không dùng mật mã) nhƣ gặp nhau trực tiếp hay thông qua một ngƣời đƣa thƣ tin cậy. Vì vậy quá trình phân phối khóa trong thực tế gặp rất nhiều khó khăn, đặc biệt là khi số lƣợng ngƣời sử dụng rất lớn. Mật mã khóa công khai đã giải quyết đƣợc vấn đề này vì nó cho phép ngƣời dùng gửi thông tin mật trên đƣờng truyền không an toàn mà không cần thỏa thuận khóa từ trƣớc. Mật mã khóa công khai đƣợc thiết kế đầu tiên bởi James H. Ellis, Clifford Cocks, và Malcolm Williamson tại GCHQ (Anh) vào đầu thập kỷ 1970. Sau này đƣợc phát triển và biết đến là một trƣờng hợp đặc biệt của RSA. Tuy nhiên những thông tin này chỉ đƣợc tiết lộ vào năm 1997. Năm 1976, Whitfield Diffie và Martin Hellman công bố một hệ thống mật mã khóa bất đối xứng trong đó nêu ra phƣơng pháp trao đổi khóa công khai. Công trình này chịu ảnh hƣởng từ xuất bản trƣớc đó của Ralph Merkle về phân phối khóa công khai. Trao đổi khóa Diffie-Hellman là phƣơng pháp có thể áp dụng trên thực tế đầu tiên để phân phối khóa bí mật thông qua một kênh thông tin không an toàn. Kỹ thuật thỏa thuận khóa của Merkle có tên là hệ thống câu đố Merkle. Thuật toán đầu tiên cũng đƣợc Rivest, Shamir và Adleman tìm ra vào năm 1977 tại MIT. Công trình này đƣợc công bố vào năm 1978 và thuật toán đƣợc đặt tên là RSA. RSA sử dụng phép toán tính hàm mũ môđun (môđun đƣợc tính bằng tích số của 2 số nguyên tố lớn khác nhau) để mã hóa và giải mã cũng nhƣ tạo chữ ký số. An toàn của thuật toán đƣợc đảm bảo với điều kiện là không tồn tại kỹ thuật hiệu quả để phân tích một số rất lớn thành thừa số nguyên tố.[3] 10 Kể từ thập kỷ 1970, đã có rất nhiều thuật toán mã hóa, tạo chữ ký số, thỏa thuận khóa.. đƣợc phát triển. Các thuật toán nhƣ ElGamal (mật mã) do Netscape phát triển hay DSA do NSA và NIST dựa trên các bài toán lôgarit rời rạc. Vào giữa thập kỷ 1980, Neal Koblitz bắt đầu cho một dòng thuật toán mới: mật mã đƣờng cong elliptic và cũng tạo ra nhiều thuật toán tƣơng tự. Mặc dù cơ sở toán học của dòng thuật toán này phức tạp hơn nhƣng lại giúp làm giảm khối lƣợng tính toán, đặc biệt khi khóa có độ dài lớn. 1.2 Định nghĩa hệ mật khoá công khai Định nghĩa một sơ đồ hệ thống mật mã Một sơ đồ hệ thống mật mã là một bộ năm S = (P,C,K,E,D) thoả mãn các điều kiện sau đây: 1. P là một tập hữu hạn các bản rõ. 2. C là một tập hợp hữu hạn các bản mã 3. K là một tập hữu hạn các khóa 4. E là một ánh xạ từ K  P  C, đƣợc gọi là phép lập mật mã và D là một ánh xạ từ K  C  P, đƣợc gọi là phép giải mã. Với mỗi k  K, ta định nghĩa ek: P  C, dk : : C  P là hai hàm cho bởi:  x  P: ek(x) = E(k,x);  y  C: dk(y) = D(k,y); ek và dk đƣợc gọi lần lƣợt là hàm lập mã và hàm giải mã ứng với khóa mật mã k. Các hàm đó phải thỏa mãn hệ thức:  x  P: dk(ek(x)) = x. Bây giờ chúng ta xem một bài toán truyền thông tin giữa hai thành phần là Bob và Alice đƣợc minh hoạ nhƣ hình vẽ dƣới đây. 11 Chọn một số ngẫu nhiên lớn để sinh cặp kkhóa. Dùng khoá công khai để mã hóa, nhƣng dùng khoá bí mật để giải mã. Hình vẽ 1.1 Minh họa sau hệ mật khoá công khai Bob chọn cặp khoá (e,d). Bob gửi khoá mã hoá e (đƣợc gọi là khoá công khai) cho Alice qua một kênh nào đó nhƣng giữ lại khóa giải mã d an toàn và bảo mật (đƣợc gọi là khóa bí mật). Sau đó Alice có thể gửi một thông điệp m cho Bob bằng cách áp dụng phép biến đổi mã hóa đƣợc xác định bởi khóa công khai của Bob để có đƣợc c=E e(m). Bob giải mã bản mã c bằng cách áp dụng phép biến đổi ngƣợc Dd đƣợc xác định duy nhất bởi d. 12 Ta có thể mô phỏng trực quan một hệ mật mã khoá công khai nhƣ sau : Bob muốn gửi cho Alice một thông tin mật mà Bob muốn duy nhất Alice có thể đọc đƣợc. Để làm đƣợc điều này, Alice gửi cho Bob một chiếc hộp có khóa đã mở sẵn và giữ lại chìa khóa. Bob nhận chiếc hộp, cho vào đó một tờ giấy viết thƣ bình thƣờng và khóa lại (nhƣ loại khoá thông thƣờng chỉ cần sập chốt lại, sau khi sập chốt khóa ngay cả Bob cũng không thể mở lại đƣợc-không đọc lại hay sửa thông tin trong thƣ đƣợc nữa). Sau đó Bob gửi chiếc hộp lại cho Alice. Alice mở hộp với chìa khóa của mình và đọc thông tin trong thƣ. Trong ví dụ này, chiếc hộp với khóa mở đóng vai trò khóa công khai, chiếc chìa khóa chính là khóa bí mật. Do khóa mã e không cần phải giữ bí mật mà nó đƣợc công khai, nên bất kỳ thực thể nào cũng có thể gửi các thông điệp đã đƣợc mã hóa cho Bob mà chỉ có Bob mới giải mã đƣợc nó. Hình 2 minh họa cho điều này, trong đó A1,A2,A3 là các thực thể khác nhau. Chú ý rằng nếu thực thể A1, gửi thông điệp m1 sau khi mã hóa nó thành c1 thì A1 không thể khôi phục lại m1 từ c1 Hình vẽ 1.2 Minh hoạ quá trình trao đổi khoá công khai Với mật mã khoá công khai nhƣ đã mô tả ở trên, giả sử rằng việc biết khóa công khai e cũng không cho phép tính toán đƣợc khóa bí mật d. Điều này đƣợc giả thiết rằng có sự tồn tại của hàm sập một cửa . 13 1.3 Tính an toàn của hệ mật mã Tính an toàn của một hệ mật mã phụ thuộc vào độ khó của bài toán thám mã khi sử dụng hệ mật đó. Ngƣời ta đã đề xuất ra một số cách hiểu cho khái niệm an toàn của hệ thống mật mã, để trên cơ sở các cách hiểu đó nghiên cứu tính an toàn của nhiều hệ mật mã khác nhau, sau đây là một số cách hiểu chung nhất: 1. An toàn vô điều kiện: Giả thiết ngƣời thám mã có đƣợc thông tin về bản mã. Theo quan niệm lý thuyết thông tin, nếu những hiểu biết về bản mã không thu hẹp đƣợc độ bất định về bản rõ đối với ngƣời thám mã, thì hệ mật mã là an toàn vô điều kiện, hay theo thuật ngữ của C.Shannon, hệ là bí mật hoàn toàn. Nhƣ vậy, hệ là an toàn vô điều kiện, nếu độ bất định về bản rõ sau khi ngƣời thám mã có đƣợc các thông tin (về bản mã) bằng độ bất định về bản rõ trƣớc đó. 2. An toàn chứng minh đƣợc: Một hệ thống mật mã đƣợc xem là có độ an toàn chứng minh đƣợc nếu ta có thể chứng minh đƣợc là bài toán thám mã đối với hệ thống đó khó tƣơng đƣơng với một bài toán khó đã biết, thí dụ bài toán phân tích một số nguyên thành tích các thừa số nguyên tố v..v ( khó tƣơng đƣơng có nghĩa là nếu bài toán này giải đƣợc thì bài toán kia cũng giải đƣợc với cùng một độ phức tạp nhƣ nhau). 3. An toàn tính toán: Hệ mật đƣợc xem là an toàn tính toán, nếu mọi phƣơng pháp thám mã đã biết đều đòi hỏi một nguồn năng lực tính toán vƣợt mọi khả năng (kể cả phƣơng tiện thiết bị ) tính toán của một kẻ tấn công. 1.4 Thám mã chống lại hệ mật khoá công khai Tính an toàn của một hệ mật đƣợc định nghĩa bằng một cuộc tấn công. Các tấn công tích cực đã đƣợc mô hình hoá thành 3 mô hình thông thƣờng. Các mô hình này đƣợc sử dụng để phân tích các hệ mật mã trong tài liệu này[4]. 1. Tấn công bản rõ đƣợc chọn (Chosen-plaintext attack -CPA) 14 Kẻ tấn công chọn bản rõ và sử dụng sự trợ giúp của hàm mã hoá để thu đƣợc bản mã tƣơng ứng. Mục đích của kẻ tấn công là phá vỡ hệ mật mã bằng cách sử dụng cặp bản rõ - bản mã . 2. Tấn công chọn bản mã (Chosen-ciphertext attack -CCA) Kẻ tấn công chọn bản mã và sử dụng sự trợ giúp của hàm giải mã để thu đƣợc bản rõ tƣơng ứng. Mục đích của nguời tấn công là phá vỡ hệ mật mã bằng cách sử dụng cặp bản rõ- bản mã. Việc tấn công thành công nếu anh ta có thể lấy lại thông tin bản rõ nào đó từ một bản mã đích chặn bắt bởi ngƣời tấn công sau khi hàm giải mã kết thúc. 3. Tấn công chọn thích hợp bản mã (Adaptive chosen-ciphertext attack CCA2) Đây là kiểu tấn công CCA trong đó sự trợ giúp của hàm giải mã của hệ mật mã đích luôn sẵn sàng, ngoại trừ bản mã đích. Nhƣ vậy chúng ta có thể hình dung 3 kiểu tấn công này với các tình huống nhƣ sau: 1 . Ở mô hình CPA, kẻ tấn công đƣợc quyền sở hữu một hàm mã hoá 2. Ở mô hình CCA kẻ tấn công đƣợc quyền sử dụng hàm giải mã: Hàm giải mã sẽ dừng lại khi ngƣời tấn công đƣa cho nó bản mã đích . 3. Ở mô hình CCA2 kẻ tấn công đƣợc quyền sử dụng một hàm giải mã mà anh ta muốn. Trƣớc hoặc sau khi kẻ tấn công có đƣợc bản mã đích, anh ta không cung cấp bản mã đích cho hàm giải mã. CPA và CCA đƣợc xem nhƣ là các mô hình thám mã chống lại hệ mật khoá khoá công khai trong đó mục tiêu của ngƣời tấn công là phá vỡ hệ mật mã đích bằng cách sử dụng cặp bản rõ-bản mã anh ta có đƣợc từ các kiểu tấn công. Chúng ta nên chú ý đến ba điểm sau đây đƣợc xác định cho một hệ mật khoá công khai[4] 1. Hàm mã hoá của hệ mật luôn dùng đƣợc đối với mọi ngƣời, do khi một khoá công khai đƣợc công khai thì mọi ngƣời dễ dàng điều khiển hoàn toàn hàm mã 15 hoá. Mặt khác CPA có thể luôn đƣợc dùng để chống lại một hệ mật khoá công khai. Vì vậy, chúng ta có thể gọi một tấn công đối với hệ mật khoá công khai là CPA nếu việc tấn công không sử dụng bất kỳ hàm giải mã nào. Do đó bất kỳ hệ mật nào cũng phải chống lại CPA, nếu không nó không phải là một hệ mật mã sử dụng đƣợc. 2. Thông thƣờng, lý thuyết toán làm cơ sở cho hầu hết các hệ mật khóa công khai có một vài thuộc tính của một cấu trúc đại số nhƣ là: tính kết thúc, tính kết hợp, tính đồng cấu. Kẻ tấn công có thể khai thác các thuộc tính này và thiết lập một bản mã qua một số tính toán khéo léo. Nếu kẻ tấn công đƣợc trợ giúp bởi một phép giải mã, thì những tính toán khéo léo của anh ta có thể cho phép anh ta có đƣợc một số thông tin văn bản gốc, hoặc thậm chí khoá bí mật của hệ mật đích. Do đó, hệ mật khoá công khai dễ bị tấn công bởi CCA và CCA2 3. Dƣờng nhƣ CCA bị giới hạn. Trong các ứng dụng ngƣời dùng bị tấn công thƣờng không biết việc tấn công đó. Do đó ngƣời dùng có thể không bao giờ biết khi nào nên bắt đầu dừng hỗ trợ sự trợ giúp giải mã. Chúng ta thƣờng giả sử rằng ngƣời dùng bình thƣờng không biết đƣợc sự tồn tại của việc giả mạo, do đó thông thƣờng sự trợ giúp của hàm giải mã luôn sẵn sàng. Mặt khác, bất kỳ hệ mật khoá công khai nào nên chống lại CCA do kẻ giả mạo luôn luôn tìm ra cách để thực hiện sự trợ giúp của hàm giải mã. 1.5 Sự cần thiết của việc xác minh hệ thống khóa công khai. Giả thiết rằng hệ mật khóa công khai là một hệ thống lý tƣởng, không yêu cầu một kênh truyền an toàn để truyền khóa mã hóa. Điều này ngụ ý rằng hai thực thể có thể truyền thông tin cho nhau bằng một kênh không an toàn mà không cần phải gặp nhau để trao đổi khóa. Thật chẳng may điều này không đảm bảo. Hình 3 minh họa một kẻ giả mạo có thể làm cho hệ thống thất bại mà không cần phải phá vỡ hệ thống mã hóa. Đây chính là kiểu giả mạo về danh nghĩa. Ở tình huống này ngƣời giả mạo làm giả thực thể B bằng cách gửi cho thực thể A một khoá công khai e’ mà A nghĩ rằng đó 16 là khóa công khai của B. Kẻ giả mạo chặn lấy thông điệp đƣợc mã hoá do A gửi cho B, giải mã với khoá bí mật riêng d’, rồi lại mã hoá thông điệp bằng khoá công khai e của A và gửi nó cho B. Điều này cho thấy cần thiết phải xác minh khoá công khai để có đƣợc sự xác minh nguồn gốc dữ liệu của khoá công khai. A phải đƣợc thuyết phục rằng anh ta đang mã hóa bằng khoá công khai hợp lệ của B. Do vậy, công nghệ mật mã khoá công khai phải chấp nhận một số giải pháp để giải quyết vấn đề này. Hình 1.3 Minh hoạ Kẻ giả mạo tấn công vào quá trình trao đổi thông tin giữa hai thực thể 1.5 So sánh hệ mật khóa đối xứng và hệ mật khóa công khai Sơ đồ khóa đối xứng và khóa công khai có những điểm thuân lợi và không thuận lợi khác nhau. Phần này nêu ra những đặc điểm này. 17 1.5.1 Lợi thế của hệ mật khóa đối xứng. 1. Mật mã khóa đối xứng có tốc độ xử lý cao. Sự bổ sung phần cứng nào đó có thể thu đƣợc tốc độ mã hoá hàng trăm mega byte trên một giây. 2. Khóa dùng cho hệ mật khóa đối xứng tƣơng đối ngắn. 3. Hệ mật khóa đối xứng có thể sử dụng nhƣ một nguyên thuỷ để tạo ra nhiều công nghệ mật mã khác nhau bao gồm bộ sinh số giả ngẫu nhiên, hàm băm, lƣợc đồ ký số có hiệu suất tính toán cao. 4. Hệ mật khóa đối xứng có thể đƣợc sử dụng để xây dựng các hệ mật tốt hơn. Các phép biến đổi đơn giản và dễ dàng phân tích.. 1.5.2 Điểm yếu của hệ mật khóa đối xứng. 1. Trong bài toán truyền thông tin giữa hai thực thể thì khoá phải đƣợc giữ bí mật ở cả hai ngƣời 2. Trong một mạng lớn thì có nhiều cặp khóa cần phải quản lý, do đó muốn quản lý khoá hiệu quả yêu cầu sử dụng một thành phần thứ ba đƣợc tin cậy không điều kiện. 3. Việc truyền thông tin giữa hai thực thể A và B trong một hệ mật khoá đối xứng yêu cầu thay đổi khoá thƣờng xuyên, có thể là phải thay đổi đối với mỗi phiên truyền tin. 4. Công nghệ chữ ký số dựa trên hệ mật khóa đối xứng càng lớn mạnh thì yêu cầu các khoá phải lớn hơn đối với việc xác minh công khai hoặc phải sử dụng thành phần thứ ba tin cậy. 1.5.3 Lợi thế của hệ mật khóa công khai 1. Chỉ cần giữ bí mật đối với khoá bí mật 2. Việc quản lý khóa trong một mạng yêu cầu sự hiện diện của duy nhất một bộ phận đƣợc tin cậy chứ không phải là một thành phần thứ ba tin 18 cậy không điều kiện. Phụ thuộc vào chế độ sử dụng, thành phần thứ ba đƣợc tin cậy có thể chỉ yêu cầu chế độ “off-line’ chứ không phải chế độ thời gian thực. 3. Phụ thuộc vào chế độ sử dụng, một cặp khoá khoá bí mật và khoá công khai vẫn không đƣợc thay đổi đối với một định kỳ thời gian đáng kể. Ví dụ qua nhiều phiên truyền tin hoặc thậm chí vài năm. 4. Nhiều lƣợc đồ ký khóa công khai mang lại nhiều công nghệ chữ ký số tƣơng đối hiệu quả. Khoá đƣợc sử dụng để mô tả hàm kiểm tra công khai nhỏ hơn nhiều so với bản sao của khóa đối xứng 5. Trong một mạng lớn, số lƣơng khoá cần thiết ít hơn nhiều so với trƣờng hợp dùng khóa đối xứng. 1.5.4 Điểm yếu của hệ mật khóa công khai 1. Tốc độ xử lý đối với hầu hết các phƣơng pháp mã hóa khóa công khai chậm hơn so với mã hoá khóa đối xứng. 2. Kích thƣớc khoá lớn hơn khóa đối xứng rất nhiều 3. Không có lƣợc đồ khóa công khai nào đƣợc chứng minh là an toàn. Lƣợc đồ mã hoá khoá công khai hiệu quả nhất đƣợc phát minh để khẳng định tính an toàn của chúng dựa vào một tập hợp nhỏ các bài toán lý thuyết số đƣợc thừa nhận là khó. 4. Hệ mật khoá công khai công không có bề dày lịch sử bằng hệ mật khóa đối xứng. Nó đã đƣợc phát minh vào giữa thập niên 1970. 19 Bảng tổng kết sự so sánh giữa hệ mật khóa đối xứng và hệ mật khóa công khai Đặc điểm Phân phối Khoá Khoá mã dịch Hệ mật khoá công khai Hệ mật khoá đối xứng Bí mật Công khai Khoá mã trùng với khoá dịch Khoá mã khác với khoá dịch Hệ mật này có ƣu điểm lớn là có thể dùng khoá ngẫu nhiên Độ vì thế mà có thể đạt tới độ bảo mật lý tƣởng. Hệ mật này mật thƣờng đƣợc dùng để mã hoá các thông tin đƣợc phân loại là tuyệt mật và tối mật. Lƣợng khoá Phân phối Đo độ mật Hệ mật không đối xứng chủ yếu đƣợc dùng trên các mạng thông tin công cộng nhƣ Internet. ở đó sự phân phối khoá bí mật là hết sức khó khăn. Hệ mật này dùng để xác thực và chữ ký số. Rất lớn Không lớn Phức tạp Đơn giản (công khai hoá) Không thể giải đƣợc bằng tính toán (lý tƣởng) Đo bằng độ phức tạp tính toán (thời gian để giải bài toán ngƣợc của hàm một chiều) Dùng khoá Một lần, không trùng Nhiều lần Có thể dùng hệ mật này để mã hoá các thông tin truyền - Xác thực và chữ ký số. Khả năng thông - mã hoá thông tin lƣu - Sử dụng để phân phối khoá khởi ứng dụng trữ (Khi phân phối khoá điểm cho hệ mật khó đối xứng. không trở thành vấn đề nan - Truyền thông. giải) 20 1.6 Hệ chữ ký số 1.6.1 Định nghĩa hệ chữ ký số Một sơ đồ chữ ký bao gồm các thành phần sau đây 1. M là một tập hữu hạn các thông báo có thể có 2. S là một tập hữu hạn các chữ ký có thể có 3. K là một tập hữu hạn các khoá ký và K' là tâp hữu hạn khoá kiểm thử 4. Một thuật sinh khoá hiêu quả Gen : N  K  K' trong đó K là khoá bí mật, K' là khoá công khai 5. Thuật toán ký Sign : M  K  S 6. Thuật toán kiểm thử Ver : M  S  K'  {true, false} Với mỗi sk  K và m  M nào đó, chúng ta biểu diễn phép toán ký bởi s  Signsk(m) với ý nghĩa " s là một chữ ký của m và đƣợc tạo ra bằng cách sử dụng khoá sk" Với mỗi khoá bí mật sk, gọi pk là khoá công khai tƣơng ứng với nó, và với mỗi m  M, s  S. điều cần thiết là: Verifypk(m, s) = true nếu Signsk(m)  s (mod N) ngƣợc lại trả về false. Chữ ký số khóa công khai dựa trên nền tảng mật mã hóa khóa công khai. Để có thể trao đổi thông tin trong môi trƣờng này, mỗi ngƣời sử dụng có một cặp khóa: một công khai và một bí mật. Khóa công khai đƣợc công bố rộng rãi còn khóa bí mật phải đƣợc giữ kín và không thể tìm đƣợc khóa bí mật nếu chỉ biết khóa công khai . Với sơ đồ trên, mỗi chủ thể sở hữu một bộ khoá K và K', công bố công khai khoá để mọi ngƣời có thể kiểm thử chữ ký của mình, và giữ bí mật khoá thực hiện chữ ký trên các thông báo mà mình muốn gửi đi. Các hàm Ver và Sign phải tính đƣợc một cách dễ dàng (trong thời gian đa thức), tuy nhiên hàm Sign là khó tính đƣợc nếu không biết khoá bí mật, điều này đảm bảo bí mật cho việc ký, tức là đảm bảo chống giả mạo chữ ký. 21
- Xem thêm -

Tài liệu liên quan