Đăng ký Đăng nhập
Trang chủ đánh giá mức độ ảnh hưởng của các loại công nghệ turbine gió đến dòng ngắn mạch ...

Tài liệu đánh giá mức độ ảnh hưởng của các loại công nghệ turbine gió đến dòng ngắn mạch trên lưới điện

.PDF
75
19
51

Mô tả:

ĐẠI HỌC ĐÀ NẴNG TRƢỜNG ĐẠI HỌC BÁCH KHOA DƢƠNG VĂN SƠN C C R L T. ĐÁNH GIÁ MỨC ĐỘ ẢNH HƢỞNG CỦA CÁC LOẠI CÔNG NGHỆ TURBINE GIÓ ĐẾN DÒNG NGẮN MẠCH TRÊN LƢỚI ĐIỆN DU LUẬN VĂN THẠC SĨ KỸ THUẬT ĐIỆN Đà Nẵng - Năm 2020 ĐẠI HỌC ĐÀ NẴNG TRƢỜNG ĐẠI HỌC BÁCH KHOA DƢƠNG VĂN SƠN ĐÁNH GIÁ MỨC ĐỘ ẢNH HƢỞNG CỦA CÁC LOẠI CÔNG NGHỆ TURBINE GIÓ ĐẾN DÒNG NGẮN MẠCH TRÊN LƢỚI ĐIỆN C C R L T. DU Chuyên ngành : Kỹ thuật điện Mã số : 8520201 LUẬN VĂN THẠC SĨ KỸ THUẬT ĐIỆN NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. PHAN ĐÌNH CHUNG Đà Nẵng - Năm 2020 i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, dưới sự hướng dẫn của TS. Phan Đình Chung. Các kết quả nêu trong luận văn là trung thực và chưa từng công bố trong bất kỳ một công trình nào. Tác giả luận văn Dƣơng Văn Sơn C C DU R L T. ii ĐÁNH GIÁ MỨC ĐỘ ẢNH HƢỞNG CỦA CÁC LOẠI CÔNG NGHỆ TURBINE GIÓ ĐẾN DÒNG NGẮN MẠCH TRÊN LƢỚI ĐIỆN Học viên: Dương Văn Sơn. Chuyên ngành: Kỹ thuật điện Mã số: 8520201 Khóa: 36. Trường Đại học Bách khoa - ĐHĐN Tóm tắt: Hiện nay, điện gió đã và đang được khai thác rất nhanh ở nhiều nơi trên thế giới vì nó là nguồn năng lượng tái tạo và vô tận. Việc kết nối các nhà máy điện gió vào hệ thống điện nhằm góp phần đáp ứng nhu cầu phát triển của phụ tải. Tuy nhiên, một trong những vấn đề phát sinh khi kết nối các nhà máy điện gió vào hệ thống điện, đó là làm cho dòng ngắn mạch của lưới điện tăng cao, ảnh hưởng đến việc đóng góp dòng ngắn mạch của từng loại máy phát-turbine gió đến lưới, hư hỏng các khí cụ điện trên lưới. Nhưng do các loại máy phát-turbine gió có cấu tạo khác nhau nên dòng ngắn mạch đối với từng loại máy phát-turbine gió đến dòng ngắn mạch trên lưới sẽ khác nhau. Vì vậy, tác giả đã nghiên cứu mức độ ảnh hưởng của các loại công nghệ turbine gió, từ đó đề nghị nên chọn loại máy phátturbine gió nào để giảm chi phí thay thế các khí cụ điện. Kết quả nghiên cứu cho thấy, với máy phát turbine gió loại 4 sẽ đóng góp dòng ngắn mạch đến lưới là nhỏ nhất. Vì vậy, luận văn khuyến cáo nên sử dụng máy phát turbine gió loại 4 nhằm hạn chế việc thay thế thiết bị đóng cắt trên lưới. Từ khóa : Máy phát turbine gió - Dòng ngắn mạch - Mức độ ảnh hưởng C C R L T. DU ASSESSMENT OF THE INFLUENCE OF THE TYPES OF WIND TURBINE TECHNOLOGIES ON THE SHORT-CIRCUIT CURRENT ON THE GRID Student: Duong Van Son - Specialized:Electrical Engineering Code: 8520201, Course: 36. The University of Danang–University of Scienceand Technology Abstract: Currently, wind power has been exploited in many countries in the world because it is a plentiful and renewable energy source. The integration of large wind power plants into the power system contributes to meet the increasing demand of the load. However, one of the arising problems when connecting a wind power plant to the power system is that the short-circuit current of the grid increases, affecting the contribution of short-circuit current of each wind turbine to the grid, damaging the electric equipments on the grid. Practically, the difference in the structure of wind turbine makes short-circuit current of each wind turbine to the grid different. Therefore, the author researched theimpact of the type of wind turbine technologies, on the short-circuit current contribution to the connected grid and then, author will suggest the kind of wind turbine should be used to reduce the replacement cost of electric equippent on the connected grid. The research results show that, the type 4 wind tubine short-circuit current contribution is the smallest. Therefore, the thesis recommends the type 4 wind turbine should be used to restrict the replacement of switchgear on the connected grid. Keyword:the windturbine, the short-circuitcurrent, the influencedegree iii MỤC LỤC LỜI CAM ĐOAN .......................................................................................................... i TÓM TẮT .................................................................................................................... ii MỤC LỤC ....................................................................................................................iii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT ............................................. v DANH MỤC CÁC BẢNG........................................................................................... vi DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ................................................................... vii MỞ ĐẦU........................................................................................................................ 1 1. Tính cấp thiết của đề tài ....................................................................................... 1 2. Mục tiêu nghiên cứu ............................................................................................ 1 3. Đối tượng và phạm vi nghiên cứu ....................................................................... 1 4. Phương pháp nghiên cứu ..................................................................................... 1 5. Ý nghĩa khoa học và tính thực tiễn ...................................................................... 2 6. Bố cục đề tài......................................................................................................... 2 C C R L T. CHƢƠNG 1. TỔNG QUAN VỀ NHÀ MÁY ĐIỆN GIÓ VÀ PHẦN MỀM ETAP.............................................................................................................................. 3 1.1. Khái quát chung ....................................................................................................... 3 1.2. Lợi ích của năng lượng điện gió .............................................................................. 3 1.3. Tình hình năng lượng điện gió trên thế giới. ........................................................... 4 1.4. Tiềm năng gió ở Việt Nam. ..................................................................................... 4 1.5. Giới thiệu chung về máy phát-turbine gió ............................................................... 5 1.5.1. Các dạng máy phát-turbine gió ...................................................................... 5 1.5.2. Các loại máy phát-turbine gió ........................................................................ 5 1.5.3. Cấu tạo của máy phát-turbine gió .................................................................. 6 1.5.4. Nguyên lý hoạt động của các máy phát-turbine gió ...................................... 7 1.5.5 Các kiểu máy phát-turbine gió hiện nay: ........................................................ 8 1.5.6. Công suất các loại tuabin gió ......................................................................... 8 1.6. Giới thiệu về các loại máy phát-turbine gió ............................................................ 8 1.6.1. Giới thiệu về máy phát-turbine gió sử dụng SCIG: ....................................... 8 1.6.2. Giới thiệu về máy phát-turbine gió sử dụng DFIG:....................................... 9 1.6.3. Giới thiệu về turbine gió sử dụng PMSG .................................................... 10 1.7. Tổng quan về chương trình ETAP ........................................................................ 11 1.7.1. Sơ lược về ETAP ......................................................................................... 11 1.7.2. Ứng dụng của phần mềm ETAP .................................................................. 12 1.7.3. Giao diện phần mềm ETAP ......................................................................... 12 DU iv 1.7.4. Các phần tử chính của ETAP ....................................................................... 14 1.8. Kết luận chương 1 ................................................................................................. 22 CHƢƠNG 2. MÔ HÌNH TÍNH TOÁN NGẮN MẠCH CHO CÁC LOẠI MÁY PHÁT TURBINE GIÓ ............................................................................................... 24 2.1. Máy phát turbine gió loại 1 (SCIG)....................................................................... 24 2.2. Máy phát turbine gió loại 3 (DFIG) ...................................................................... 27 2.3. Máy phát turbine gió loại 4 (PMSG) ..................................................................... 30 2.4. Kết luận chương 2 ................................................................................................. 31 CHƢƠNG 3. ĐÁNH GIÁ DÕNG ĐIỆN SỰ CỐ Ở LƢỚI ĐIỆN MẪU ................ 32 3.1. Giới thiệu về lưới điện mẫu ................................................................................... 32 3.1.1. Lưới hệ thống ............................................................................................... 32 3.1.2. Các máy phát điện ........................................................................................ 32 3.1.3. Thông số máy biến áp của lưới hệ thống ..................................................... 33 3.1.4. Thông số thanh góp của lưới hệ thống......................................................... 33 3.1.5. Thông số chiều dài của lưới hệ thống .......................................................... 34 3.1.6. Thông số phụ tải của lưới hệ thống.............................................................. 34 3.2. Hệ thống điện gió kết nối với lưới......................................................................... 34 3.3. Dòng ngắn mạch khi có nhà máy điện gió kết nối vào lưới .................................. 35 3.3.1. Sự cố ngắn mạch 3 pha trên lưới điện mẫu.................................................. 36 3.3.2. Sự cố ngắn mạch 1 pha trên lưới điện thực tế ............................................. 45 3.4. So sánh và đánh giá mức độ ảnh hưởng. ............................................................... 51 3.4.1. So sánh chênh lệch dòng ngắn mạch 3 pha khi không kết nối với nhà máy điện gió và khi kết nối nhà máy điện gió, nhà máy điện truyền thống................. 51 3.4.2. So sánh chênh lệch dòng ngắn mạch 1 pha khi không kết nối với nhà máy điện gió và khi kết nối nhà máy điện gió, nhà máy điện truyền thống................. 52 3.4.3. Đánh giá mức độ ảnh hưởng ........................................................................ 52 3.5. Kết luận Chương 3................................................................................................. 53 KẾT LUẬN VÀ KIẾN NGHỊ .................................................................................... 54 C C R L T. DU DANH MỤC TÀI LIỆU THAM KHẢO QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN (Bản sao) v DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT AC Dòng điện xoay chiều ACSR Dây nhôm lõi thép Bus Thanh góp Cable Dây cáp điện CB Máy cắt điện CS Công suất CSPK Công suất phản kháng DC Dòng điện một chiều DFIG Máy phát điện cảm ứng ro to dây quấn - loại 3 Gen Máy phát điện Isc Dòng điện sự cố MPĐĐB Máy phát điện đồng bộ NLTT Năng lượng tái taọ NM3P Ngắn mạch 3 pha NM1P Ngắn mạch 1 pha NMĐG Nhà máy điện gió PMSG máy phát điện đồng bộ nam châm vĩnh cửu SCIG Máy phát điện cảm ứng roto lồng sóc - loại 1 T Máy biến áp TG Thanh góp Turbine Tua bin VSC Bộ chuyển đổi nguồn điện áp WRIG Máy phát điện cảm ứng rôto dây quấn WRSG Máy phát đồng bộ rotor dây quấn WTG Máy phát turbine gió C C R L T. DU vi DANH MỤC CÁC BẢNG Số hiệu bảng Tên bảng Trang 1.1. So sánh đặc tính 2 loại tua bin 5 3.1. Công suất phát và điện áp định mức của máy phát điện 33 3.2. Thông số máy biến áp 33 3.3. Thông số của thanh góp 33 3.4. Thông số chiều dài của đường dây 34 3.5. Thông số phụ tải của lưới điện mẫu 34 3.6. Dòng ngắn mạch 3 pha trên thanh góp khi có kết nối và không kết nối với nhà máy điện gió, nhà máy điện truyền thống 36 3.7. Dòng ngắn mạch 3 pha của NMĐG DFIG khi Qmax = 0, Qmin=0, % V = 100%và Qmax = +5MVAr, Qmin= - 5 MVAr, % V = 110% 44 3.8. Dòng ngắn mạch 3 pha của NMĐG PMSG khi Qmax = 0, Qmin=0, % V = 100% và Qmax = +5MVAr, Qmin= - 5 MVAr, % V = 110% 45 3.9. Dòng ngắn mạch 1 pha trên thanh góp khi có kết nối và không kết nối với nhà máy điện gió, máy phát điện đồng bộ 45 3.10. Dòng ngắn mạch 1 pha của NMĐG DFIG khi Qmax = 0, Qmin=0, % V = 100% và Qmax = +5MVAr, Qmin= - 5 MVAr, % V = 110% 50 3.11. Dòng ngắn mạch 1 pha của NMĐG PMSG khi Qmax = 0, Qmin=0, % V = 100% và Qmax = +5MVAr, Qmin= - 5 MVAr, % V = 110% 50 3.12. So sánh chênh lệch dòng ngắn mạch 3 pha khi không kết nối NMĐG và khi kết nối NMĐG. 51 3.13. So sánh chênh lệch dòng ngắn mạch 1 pha khi không kết nối NMĐG và khi kết nối NMĐG. 52 C C R L T. DU vii DANH MỤC CÁC HÌNH Số hiệu hình Tên hình Trang 1.1. Hình dạng các máy phát-turbine gió 5 1.2. Cấu tạo của máy phát-turbine gió 6 1.3. Tuabin gió 2 MW có chiều dài cánh quạt 40 m 8 1.4. Tuabin 10 MW có chiều dài cánh quạt 210 m 8 1.5. Máy phát nối trực tiếp với lưới 9 1.6. Máy phát cảm ứng nguồn kép 9 1.7. Máy phát nối lưới thông qua bộ biến đổi điện tử công suất đầy đủ 10 1.8. Giao diện phần mềm ETAP 13 1.9. Các chức năng tính toán 13 1.10. Các thiết bị AC 1.11. Trang info của nguồn 1.12. Trang Rating của nguồn 1.13. Trang Rating của máy phát 17 1.14. Trang info của máy phát 18 1.15. Trang info đường dây 18 1.16. Trang parameter của máy phát 19 1.17. Trang infor của máy biến áp 20 1.18. Trang Rating của máy biến áp 21 2.1. Sơ đồ đơn tuyến của máy phát turbine gió loại 1- SCIG 24 2.2. Mạch tương đương của máy phát turbine gió loại 1- SCIG 25 2.3. Sơ đồ thay thế của máy phát turbine gió loại 1- SCIG 26 2.4. Sơ đồ thay thế của máy phát turbine gió loại 3- DFIG 27 3.1. Lưới điện 230kV-9 thanh góp 32 3.2. Mô phỏng kết nối các máy phát turbine gió trong hệ thống điện gió 35 3.3. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG1 (Isc từ TG4TG1) 37 3.4. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG2 (Isc từ TG7TG2) 38 3.5. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG3 (Isc từ TG9TG3) 38 C C R L T. DU 14 15 16 viii Số hiệu hình Tên hình Trang 3.6. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG5(Isc từ NM10TG5) 39 3.7. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG6 (Isc từ NM11TG6) 40 3.8. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG7 (Isc từ TG5TG7) 40 3.9. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG8 (Isc từ TG7TG8) 41 3.10. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG9 (Isc từ TG6TG9) 41 3.11. Biểu đồ so sánh dòng ngắn mạch 3 pha tại TG10 (Isc từ TG4NM10): 3.12. C C 42 Biểu đồ so sánh dòng ngắn mạch 3 pha tại NM11 (Isc từ TG4NM11) 42 3.13. Biểu đồ so sánh dòng ngắn mạch 3 pha tại các thanh góp 43 3.14. Biểu đồ so sánh dòng ngắn mạch 1 pha tại TG1 (Isc từ TG4TG1) 46 3.15. Biểu đồ so sánh dòng ngắn mạch 1 pha tại TG2 (Isc từ TG7TG2) 47 3.16. Biểu đồ so sánh dòng ngắn mạch 1 pha tại TG3 (Isc từ TG9TG3) 47 3.17. Biểu đồ so sánh dòng ngắn mạch 1 pha tại TG6 (Isc từ NM11TG6) 48 3.18. Biểu đồ so sánh dòng ngắn mạch 1 pha tại các thanh góp 48 T U R L . D 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Hiện nay, nước ta đang khuyến khích sản xuất điện năng từ nguồn năng lượng sạch như gió, mặt trời… Nhiều nhà máy/dự án điện gió và điện mặt trời kết nối lưới đã và đang thực hiện. Khi kết nối nhà máy điện gió vào lưới điện hiện hữu chắc chắn sẽ thay đổi dòng ngắn mạch đi qua thiết bị hiện hữu và ảnh hưởng đến cài đặt hệ thống bảo vệ rơ le. Tuy nhiên, khác so với các máy phát đồng bộ trong các nhà máy điện truyền thống, Các máy phát trong tuabin gió thường được kết nối với lưới thông qua bộ biến tần (hoặc có thể kết nối trực tiếp với lưới khi sử dụng máy phát điện cảm ứng). Khả năng cung cấp dòng điện ngắn mạch trên lưới của các máy phát này sẽ phụ thuộc vào bộ chuyển đổi DC/AC. Vấn đề đặt ra là mức độ ảnh hưởng của nhà máy điện gió đến dòng ngắn mạch trên lưới hiện hữu sẽ nhiều hơn hay ít hơn so với nhà máy điện truyền thống. Hơn nữa, do cấu trúc của các nhà máy điện gió khác nhau nên mức độ ảnh hưởng của từng loại máy phát-turbine gió đến dòng ngắn mạch sẽ khác nhau. Để có cơ sở xác định điều kiện cho phép 1 nhà máy điện sử dụng năng lượng gió kết nối vào lưới hiện hữu hoặc khuyến khích loại nhà máy nào được nối vào lưới hiện hữu thì việc so sánh và đánh giá mức độ ảnh hưởng của các nhà máy điện gió đến dòng ngắn mạch trên lưới điện hiện hữu là cần thiết. C C R L T. DU 2. Mục tiêu nghiên cứu - Xác định được dòng ngắn mạch tại các điểm nút của lưới điện hiện hữu khi có nhà máy điện gió kết nối vào. - Đánh giá mức độ ảnh hưởng của các nhà máy điện gió đến dòng ngắn mạch trên lưới điện hiện hữu. 3. Đối tƣợng và phạm vi nghiên cứu - Đối tượng nghiên cứu: Lưới điện nơi mà có các nhà máy điện gió sẽ kết nối vào. - Phạm vi nghiên cứu: Đánh giá mức độ ảnh hưởng của nhà máy điện gió đến dòng ngắn mạch trên lưới hiện hữu. 4. Phƣơng pháp nghiên cứu - Xây dựng được mô hình tính toán dòng ngắn mạch cung cấp từ các nhà máy điện gió đến điểm ngắn mạch; - Sử dụng phần mềm ETAP để đánh giá mô hình trên; - Áp dụng để tính toán cho một lưới điện mẫu 2 5. Ý nghĩa khoa học và tính thực tiễn 5.1. Ý nghĩa khoa học Kết quả nghiên cứu là 1 cơ sở ban đầu để xác định điều kiện cho phép 1 nhà máy điện sử dụng năng lượng sạch kết nối vào lưới hiện hữu hoặc khuyến khích loại nhà máy nào được nối vào lưới hiện hữu. 5.2. Tính thực tiễn Áp dụng cho nhà máy năng lượng gió thực tế ở Việt Nam trong thời gian tới. 6. Bố cục đề tài Ngoài các phần mở đầu và kết luận kiến nghị, nội dung đề tài có 3 chương bao gồm: Chƣơng 1: Tổng quan về nhà máy điện gió 1.1. Khái quát chung 1.2. Lợi ích của năng lượng điện gió 1.3. Tình hình năng lượng điện gió trên thế giới. 1.4. Tiềm năng gió ở việt nam 1.5. Giới thiệu chung về máy phát turbine gió 1.6. Giới thiệu về các nhà máy điện gió 1.7. Nguyên lý hoạt động của các máy phát turbine gió 1.8. Kết luận chương 1 C C R L T. DU Chƣơng 2. Mô hình tính toán ngắn mạch cho các loại tuabin 2.1. Máy phát turbine gió loại 1 (SCIG) 2.2. Máy phát turbine gió loại 3 (DFIG) 2.3. Máy phát turbine gió loại 4 (PMSG) 2.4. Kết luận chương 2 Chƣơng III. Đánh giá dòng điện sự cố ở lƣới điện thực tế 3.1. Giới thiệu về lưới điện mẫu 3.2. Hệ thống điện gió kết nối với lưới 3.3. Dòng ngắn mạch khi có nhà máy điện gió kết nối vào lưới 3.4. So sánh và đánh giá mức độ ảnh hưởng 3.5. Kết luận chương 3 3 CHƢƠNG 1 TỔNG QUAN VỀ NHÀ MÁY ĐIỆN GIÓ VÀ PHẦN MỀM ETAP 1.1. Khái quát chung Hiện nay cùng với sự phát triển công nghiệp và sự hiện đại hoá thì nhu cầu năng lượng cũng rất cần thiết cho sự phát triển của đất nước. Vấn đề đặt ra là phát triển nguồn năng lượng sao cho phù hợp mà không ảnh hưởng tới môi trường và cảnh quang thiên nhiên. Trong khi đó, các nguồn năng lượng như than đá, dầu mỏ, khí đốt ngày càng cạn kiệt và gây ô nhiễm môi trường và là nguyên nhân gây ra hiệu ứng nhà kính. Để giảm những vấn đề trên ta phải tìm nguồn năng lượng tái tạo, năng lượng sạch để thay thế hiệu quả, giảm nhẹ tác động của năng lượng đến tình hình kinh tế an ninh chính trị quốc gia. Nhận thấy được tầm quan trọng của vấn đề về năng lượng để phát triển. Việt Nam có các quan điểm về chính sách sử dụng năng lượng hiệu quả nguồn năng lượng tái sinh trong đó có năng lượng gió. Năng lượng gió là nguồn năng lượng tự nhiên dồi dào và phong phú, được ưu tiên được đầu tư và phát triển ở Việt Nam. Nhiều dự án công trình đã được khởi công và xây dựng với quy mô vừa và nhỏ tiêu biểu là điện gió ở bán đảo Bạch Long Vĩ có công suất khoảng 800kW và công trình phong điện Phương Mai III ở tỉnh Bình Định Năng lượng điện gió là nguồn năng lượng sạch và có tìm năng rất lớn. Nhà máy điện gió được xây dựng đầu tiên ở vùng nông thôn Mỹ vào năm 1890. Ngày nay công nghệ điện gió phát triển mạnh và có sự cạnh tranh lớn, với tốc độ phát triển như hiện nay thì không bao lâu nữa năng lượng điện sẽ chiếm phần lớn trong thị trường năng lượng của thế giới. C C R L T. DU 1.2. Lợi ích của năng lƣợng điện gió - Dễ khai thác – không gây ô nhiễm môi trường : Gió được tạo ra ở mọi nơi, từ vùng núi, đồng bằng, biển…với nhiều tốc độ khác nhau vào từng thời điểm khác nhau, và đặc biệt đối với khí hậu Việt Nam thuộc khí hậu nhiệt đới gió mùa. Hiện nay, các nhà máy điện truyền thống đều ảnh hưởng đến môi trường, gây thiên tai lũ lụt…Nhưng đối với gió, đó là một nguồn năng lượng rất sạch nên được khuyến khích khai thác và đưa vào sử dụng - Có lợi về diện tích khai thác : Tuy các tua bin gió có chiều dài cánh quạt đến vài trăm mét, nhưng vì trụ gió rất cao và chiếm diện tích rất ít, nên xung quanh trụ gió, chúng ta có thể khai thác để 4 làm các công việc khác, như trồng trọt, chăn nuôi…Nếu so với hệ thống sử dụng năng lượng mặt trời thì máy phát-turbin gió tiết kiệm được diện tích hơn rất nhiều - Hiệu quả về mặt chi phí : Vì năng lượng gió không gây ô nhiễm môi trường nên không cần tốn chi phí để đầu tư máy móc xử lý ô nhiễm. Công nghệ sản xuất càng ngày càng hiện đại, tự động hóa nên việc sản xuất ra các tuabin gió ngày càng đơn giản và giá thành càng hạ - Góp phần làm giảm sự phụ thuộc vào thủy điện : Nguồn điện nước ta trước đây phụ thuộc rất nhiều vào nhà máy thủy điện. Nhưng do điều kiện thời tiết nên mùa hè các hồ thủy điện có tình trạng thiếu nước, mùa mưa thì dư nước nên phải xả đập, ảnh hưởng rát lớn đến sinh hoạt của người dân. Do vậy, khi nhà máy điện gió càng phát triển, việc phụ thuộc vào các nhà máy thủy điện cũng giảm đi nhiều hơn. - Tạo công ăn việc làm : Khi nhà máy điện gió ra đời và phát triển, cũng sẽ tạo cơ hội nghề nghiệp, công ăn việc làm cho người dân địa phương. Năng lượng điện gió đóng vai trò hết sức quan trọng trong đảm bảo Quốc phòng an ninh năng lượng. C C R L T. 1.3. Tình hình năng lƣợng điện gió trên thế giới. Nhiên liệu hoá thạch như dầu và khí thiên nhiên chiếm hai phần ba năng lượng sử dụng trên thế giới. Phần lớn những tài nguyên này đã được phát hiện, trữ lượng có thể khai thác lâu dài các tài nguyên này là một dấu hỏi. Theo đánh giá của các chuyên gia năng lượng, với mức độ sử dụng hiện nay, các nhiên liệu hoá thạch sẽ cạn kiệt trong vòng 100 năm nữa. Trong hoàn cảnh đó, đương nhiên con người quan tâm đến việc tìm kiếm phương án thay thế nhiên liệu hoá thạch, đáp ứng nhu cầu năng lượng của mình. Mặt khác trong nhiều thập niên qua, những lo ngại về nóng ấm và biến đổi khí hậu toàn cầu đã bắt buộc các nhà lập chính sách tìm cách thoát khỏi việc dùng nhiên liệu hoá thạch, nguồn gốc gây nên hiệu ứng nhà kính. Trong hoàn cảnh này, đòi hỏi phát triển công nghệ khai thác nguồn NLTT. Trong NLTT, NLG thường là lựa chọn hấp dẫn nhất cho phát triển nguồn điện mới nhìn từ góc độ kinh tế, an ninh năng lượng và bảo vệ môi trường.[5] DU 1.4. Tiềm năng gió ở Việt Nam. Việt Nam có cơ sở để hy vọng và phát triển mở rộng hơn nữa các nhà máy điện gió để nâng cao sản lượng điện của Việt Nam trong những năm tới vì có địa hình thuận lợi, đường bờ biển dài trên 3.000 km2. Dự kiến, Việt Nam sẽ đạt 2.000 MW điện gió vào năm 2025 và 6.000 MW vào năm 2030. Việt Nam là nước có tiềm năng gió lớn nhất trong 4 nước khu vực, với hơn 39% tổng diện tích của Việt Nam được ước tính là có tốc độ gió trung bình hàng năm 5 lớn hơn 6m/s, ở độ cao 65m, tương đương với tổng công suất 512 GW. Đặc biệt, hơn 8% diện tích Việt Nam được xếp hạng có tiềm năng gió rất tốt (tốc độ gió ở độ cao 65m là 7 - 8 m/giây), có thể tạo ra hơn 110 GW.[4] 1.5. Giới thiệu chung về máy phát-turbine gió 1.5.1. Các dạng máy phát-turbine gió Hiện nay trên thế giới có rất nhiều dạng máy phát-turbine gió khác nhau từ loại chỉ có 1 cánh tới loại có rất nhiều cánh với hình dạng và kích thước cũng khác nhau được thể hiện như hình 1.1[7] C C R L T. Hình 1.1. Hình dạng các máy phát-turbine gió 1.5.2. Các loại máy phát-turbine gió Tuabin gió thường có 2 loại: Điều khiển được và không điều khiển được, so sánh 2 tua bin như sau: DU Bảng 1.1. So sánh đặc tính 2 loại tua bin Loại tuabin Loại không điều khiển đƣợc Loại điều khiển đƣợc Cấu tạo Phức tạp có cơ cấu điều chỉnh Đơn giản không có cơ cấu điều cánh và các thành phần liên chỉnh cánh quan Tính năng Công suất giảm khi quá Công suất không thay đổi khi ngưỡng vận tốc đo của gió vận tốc gió quá ngưỡng Điều khiển công suất Hình dáng của cánh điều khiển Điều khiển cơ bằng cách thay công suất sau ngưỡng đổi góc của cánh Tính thích hợp Phản ứng với thời gian trễ nhất Phản ứng trực tiếp từ mọi thay định sau khi có gió mạnh tác đổi của chế độ gió động lên bề mặt của cánh Bảo trì máy móc Chi phí Dễ dàng, số bộ phận cơ cấu ít Phức tạp cần thiết bảo trì máy điều tốc và các bộ phận áp dầu Rẻ Đắt 6 1.5.3. Cấu tạo của máy phát-turbine gió C C R L T. Hình 1.2. Cấu tạo của máy phát-turbine gió [6] - Anemometer: Bộ đo lường tốc độ gió và truyền dữ liệu tốc độ gió tới bộ điều khiển. DU - Blades: Cánh quạt. Gió thổi qua các cánh quạt và là nguyên nhân làm cho các cánh quạt chuyển động và quay. Nhiệm vụ chính của cánh turbine là để chuyển đổi năng lượng gió (động năng) thành cơ năng trên trục turbine. - Brake: Bộ hãm (phanh). Bộ hãm dùng để dừng rotor trong tình trạng khẩn cấp bằng điện, bằng sức nước hoặc bằng động cơ. - Controller: Bộ điều khiển. Thông thường bộ điều khiển sẽ khởi động động cơ khi tốc độ gió khoảng 8 đến 14 dặm/giờ tương ứng với 12 km/h đến 22 km/h và ngừng động cơ khi tốc độ gió khoảng 65 dặm/giờ tương đương với 104 km/h bởi vì các máy phát này có thể phát nóng do bị quá tải. Ngoài ra bộ điều khiển còn có nhiệm vụ đưa các xung đóng cắt các van (điện tử công suất ) trong bộ biến tần nhằm đạt được mục tiêu đặt ra của bộ điều khiển. - High - speed shaft: Trục truyền động của máy phát ở tốc độ cao-trục máy phát. - Low - speed shaft: Trục quay tốc độ thấp-trục turbine. - Gear box: Hộp số. Bánh răng được nối với trục có tốc độ thấp với trục có tốc độ cao và tăng tốc độ quay từ 30 đến 60 vòng/ phút lên 1200 đến 1500 vòng/ phút, tốc độ quay là yêu cầu của hầu hết các máy phát điện sản xuất ra điện. Bộ bánh răng này rất đắt tiền, nó là một phần của bộ động cơ và tuabin gió. Hộp số được cấu tạo từ các bộ bánh răng có số răng khác nhau. Hộp số được 7 dùng để nối trục turbine ( trục có tốc độ thấp- tốc độ quay từ 30 đến 60 vòng/ phút) với trục máy phát (trục có tốc độ cao - 1200 đến 1500 vòng/ phút, tốc độ quay là yêu cầu của hầu hết các máy phát điện sản xuất ra điện. Thông qua hộp số, công suất cơ (mô men cơ trên trục turbine) được truyền đến trục máy phát. - Generator: Máy phát. Nhiệm vụ của máy phát là để chuyển công suất cơ trên trục máy phát thành điện năng đầu ra cuộn dây của máy phát. - Nacelle: vỏ bọc ngoài turbine, vỏ được đặt trên đỉnh trụ. Bên trong vỏ bao gồm các phần: Hộp số, trục truyền động của máy phát ở tốc độ cao và thấp, máy phát điện, bộ điều khiển, và bộ hãm. Vỏ bọc ngoài dùng bảo vệ các thành phần bên trong vỏ. Một số vỏ phải đủ rộng để một kỹ thuật viên có thể đứng bên trong khi làm việc. - Pitch: Bước răng. Cánh được xoay hoặc làm nghiêng một ít để giữ cho trục của turbine không quá cao nhằm đảm bảo các thiết bị (turbine, máy phát…) trong máy phát-turbine gió không bị quá tải. - Rotor: Bao gồm các cánh quạt và trục. - Tower: Trụ đỡ Nacelle. Trụ đỡ được làm bằng thép hình trụ hoặc thanh dằn bằng thép. Bởi vì tốc độ gió tăng lên nếu trụ càng cao, trụ đỡ cao hơn để thu được năng lượng gió nhiều hơn và phát ra điện nhiều hơn. - Wind vane: Để xử lý hướng gió và liên lạc với “yaw drive” để định hướng tuabin gió. - Yaw drive: Dùng để giữ cho rotor luôn luôn hướng về hướng gió chính khi có sự thay đổi hướng gió. - Yaw motor: Động cơ cung cấp cho “yaw drive” định được hướng gió. 1.5.4. Nguyên lý hoạt động của các máy phát-turbine gió - Gió là một dạng của năng lượng mặt trời. Gió được sinh ra là do nguyên nhân mặt trời đốt nóng khí quyển, do trái đất xoay quanh mặt trời và do sự không đồng đều trên bề mặt trái đất. Luồng gió thay đổi tuỳ thuộc vào địa hình trái đất, luồng nước, cây cối, con người sử dụng luồng gió hoặc sự chuyển động năng lượng cho nhiều mục đích như: đi thuyền, thả diều và phát điện. - Năng lượng gió được mô tả như một quá trình, nó được sử dụng để phát ra năng lượng cơ hoặc điện. Tuabin gió sẽ chuyển đổi từ động lực của gió thành năng lượng cơ. Năng lượng cơ này có thể sử dụng cho những công việc cụ thể như là bơm nước hoặc các máy nghiền lương thực hoặc cho một máy phát có thể chuyển đổi từ năng lượng cơ thành năng lượng điện. Hay nói cách khác, tuabin gió hoạt động theo một nguyên lý rất đơn giản. Năng lượng của gió làm cho 2 hoặc 3 cánh quạt quay quanh 1 rotor. Mà rotor được nối với trục chính và trục chính sẽ truyền động làm quay trục quay máy phát để tạo ra điện. C C DU R L T. 8 1.5.5 Các kiểu máy phát-turbine gió hiện nay: Các máy phát-turbine gió hiện nay được chia thành hai loại: - Một loại theo trục đứng giống như máy bay trực thăng. - Một loại theo trục ngang. Các loại tuabin gió trục ngang là loại phổ biến có 2 hay 3 cánh quạt. Máy phátturbin gió 3 cánh quạt hoạt động theo chiều gió với bề mặt cánh quạt hướng về chiều gió đang thổi. Ngày nay, máy phát-turbine gió 3 cánh quạt được sử dụng rộng rãi. Sau đây là một vài máy phát-turbine gió 3 cánh quạt điển hình như hình 1.3, hình 1.4[8] Hình 1.3. Tuabin gió 2 MW có chiều dài cánh quạt 40 m C C DU R L T. Hình 1.4. Tuabin 10 MW có chiều dài cánh quạt 210 m 1.5.6. Công suất các loại tuabin gió Dãy công suất tuabin gió thuận lợi từ 50 kW tới công suất lớn hơn cỡ vài MW. Để có dãy công suất máy phát-turbine gió lớn hơn thì tập hợp thành một nhóm những tuabin với nhau trong một trại gió và nó sẽ cung cấp năng lượng lớn hơn cho lưới điện. Các máy phát-turbine gió loại nhỏ có công suất dưới 50 kW được sử dụng cho gia đình, viễn thông hoặc bơm nước, sử dụng cho các vùng sâu vùng xa, những địa phương chưa có lưới điện, những nơi mà mạng điện không thể nối tới các khu vực này. 1.6. Giới thiệu về các loại máy phát-turbine gió Ta chỉ tập trung nghiên cứu 3 loại máy phát turbine gió loại 1(SCIG), loại 3(DFIG) và loại 4(PMSG). Còn máy phát turbine gió loại 2 ở đây ta không nghiên cứu vì trong thực tế rất ít sử dụng. 1.6.1. Giới thiệu về máy phát-turbine gió sử dụng SCIG: Máy phát-turbine gió loại này có tốc độ quay turbine là cố định. Loại máy phát được sử dụng trong loại turbine này là máy phát điện không đồng bộ rotor lồng sóc (SCIG-squirrel cage induction generator) và được kết nối trực tiếp vào lưới điện thông qua máy biến áp được mô tả theo hình 1.5[1] 9 Bộ khởi động SCIG Lưới Hệ thống bù Hình 1.5. Máy phát nối trực tiếp với lưới Máy phát-turbine gió sử dụng SCIG đòi hỏi phải lắp hệ thống bù một lượng công suất phản kháng để giảm việc tiêu thụ công suất phản kháng từ lưới điện. Để giảm ảnh hưởng của dòng khởi động máy phát-turbine gió này đến lưới điện được kết nối, hệ thống khởi động mềm được sử dụng. Đối với loại turbine này, do không có hệ thống điều khiển nên sự biến động của tốc độ gió, gây nên các dao động công suất làm cho điện áp tại đầu cực máy phát bị bị thay đổi và kết quả, các nút lân cận cũng bị dao động điện áp(trường hợp công suất lưới là yếu). Nhược điểm chính của loại máy phát-turbine gió sử dụng SCIG này là không thể điều khiển tốc độ, yêu cầu phải có một hệ thống lưới có công suất vô cùng lớn và bộ phận cơ khí của turbine gió phải có khả năng chịu được ứng suất cơ học cao gây ra bởi những cơn gió giật. Máy phát-turbine gió sử dụng SCIG có kết cấu rất đơn giản và tin cậy nhưng không cho phép điều khiển tích cực để thu năng lượng tối đa và tốc độ của máy phát phụ thuộc hoàn toàn vào tần số và công suất của lưới điện. Ngoài hiệu suất chuyển đổi thấp, chất lượng điều khiển kém còn có sự biến động của công suất tác dụng và phản kháng. C C R L T. DU 1.6.2. Giới thiệu về máy phát-turbine gió sử dụng DFIG: DFIG bao gồm một WRIG với cuộn dây stato kết nối trực tiếp với lưới ba pha, tần số không đổi và cuộn dây rotor kết nối với lưới thông qua một bộ chuyển đổi tần số, sử dụng phương pháp điều chế độ rộng xung PWM, được mô tả trên hình 1.6[1] DFIG Lưới RSC GSC Hình 1.6. Máy phát cảm ứng nguồn kép 10 Máy phát-turbine gió loại này cho phép hoạt động khi tốc độ thay đổi trên một phạm vi rộng. Bộ biến tần bao gồm hai bộ chuyển đổi: chuyển đổi phía rotor và chuyển đổi phía lưới điện, chúng được điều khiển độc lập với nhau. Bộ chuyển đổi phía rotor thường là điều khiển công suất phản kháng và công suất tác dụng bằng cách điều khiển các thành phần dòng điện rotor, trong khi bộ chuyển đổi phía đường dây điều khiển điện áp một chiều DC. Máy phát-turbine gió loại này sử dụng chiến lược điều khiển tốc độ thay đổi – góc nghiêng thay đổi (Variable Speed – Variable Pitch). Chiến lược này đang ngày càng trở nên thông dụng trong các máy phát-turbine gió hiện đại. Trong chiến lược này, máy phát-turbine gió được lập trình vận hành với tốc độ thay đổi, góc nghiêng không đổi ở tốc độ gió dưới tốc độ định mức, và thay đổi góc nghiêng khi tốc độ gió lớn hơn tốc độ định mức. Thay đổi tốc độ (Variable Speed) làm tăng năng lượng thu được khi tốc độ gió thấp trong khi thay đổi góc nghiêng (Variable Pitch) sẽ điều chỉnh được hiệu suất công suất khi tốc độ gió cao hơn tốc độ định mức. Chất lượng điện năng rất tốt ở tốc độ gió thấp cũng như ở tốc độ gió cao. Turbine gió loại này điều khiển hoàn toàn dòng công suất phản kháng và công suất tác dụng đưa vào lưới điện. C C R L T. DU 1.6.3. Giới thiệu về turbine gió sử dụng PMSG Turbine gió loại này được sử dụng với mục tiêu đáp ứng với mọi dạng biến đổi tốc độ của gió. Máy phát được kết nối với lưới điện thông qua bộ biến tần sử dụng nguồn điện áp (VSC) [1] SCIG SG/PMSG Lưới RSC GSC Hình 1.7. Máy phát nối lưới thông qua bộ biến đổi điện tử công suất đầy đủ Ưu điểm của bộ biến đổi (VSC) là bộ chuyển đổi bên phía máy phát có thể kiểm soát tốc độ của máy phát điện trong khi bộ chuyển đổi bên phía đường dây có thể điều chỉnh công suất phản kháng và ổn định hệ thống điện trên toàn dải tốc độ hoạt động. Nhà máy này dùng máy phát điện sử dụng nam châm vĩnh cửu để tạo kích từ (máy phát điện đồng bộ nam châm vĩnh cửu PMSG). Sự phát triển mạnh mẽ của ngành điện tử công suất đã cho ra đời các bộ chuyển đổi điều khiển được nguồn công suất lớn với giá cả hợp lý. Các bộ chuyển đổi điện
- Xem thêm -

Tài liệu liên quan