Đăng ký Đăng nhập
Trang chủ Chế tạo sợi nano vàng và khảo sát các điều kiện đo nồng độ as trong nước...

Tài liệu Chế tạo sợi nano vàng và khảo sát các điều kiện đo nồng độ as trong nước

.PDF
63
147
69

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH PTN CÔNG NGHỆ NANO LÊ ĐÌNH THƯỜNG CHẾ TẠO SỢI NANO VÀNG VÀ KHẢO SÁT CÁC ĐIỀU KIỆN ĐO NỒNG ĐỘ ASEN TRONG NƯỚC LUẬN VĂN THẠC SĨ Thành phố Hồ Chí Minh - 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH PTN CÔNG NGHỆ NANO LÊ ĐÌNH THƯỜNG CHẾ TẠO SỢI NANO VÀNG VÀ KHẢO SÁT CÁC ĐIỀU KIỆN ĐO NỒNG ĐỘ ASEN TRONG NƯỚC Chuyên ngành: Vật liệu và Linh kiện Nanô (Chuyên ngành đào tạo thí điểm) LUẬN VĂN THẠC SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS ĐẶNG MẬU CHIẾN Thành phố Hồ Chí Minh - 2014 1 LỜI CAM ĐOAN Tôi cam đoan nội dung đề tài này do chúng tôi và nhóm nghiên cứu thực hiện. Kết quả trình bày trung thực chính xác. Đề tài này chưa đươc công bố trên bất kỳ phương tiện nào. Kết quả thực nghiệm đo tác giả và nhóm nghiên cứu thực hiện. Mọi bảng biều, đồ thị, hình ảnh đo có được do chúng tôi xử lý kết quả thí nghiệm mà có. Xin cam đoan mọi thông tin là đúng sự thật, nếu có bất kỳ vấn đề gì tôi chịu hoàn toàn trách nhiệm. Tp. HCM, ngày 1 tháng 5 năm 2014 2 LỜI CẢM ƠN Lời đầu tiên tôi xin được gửi tới PGS.TS Đặng Mậu Chiến lời biết ơn chân thành và sâu sắc nhất. Thầy đã tận tình chỉ bảo, hướng dẫn, giúp đỡ tôi trong quá trình nghiên cứu và hoàn thành luận văn. Tôi xin chân thành cảm ơn TS. Tống Duy Hiển đã tạo điều kiện giúp tôi hoàn thành luận văn này. Tôi xin gửi lời cảm ơn tới các thầy, cô đã giảng dạy trong quá trình suốt khóa học. Xin chân thành cảm ơn Đai Học Công Nghệ và Phòng Thí Nghiệm Công Nghệ Nano đã tổ chức khóa học cao học này. Tôi xin chân thành cảm ơn PGS.TS Nguyễn Thị Phương Thoa,TS. Nguyễn Thái Hoàng, bạn Dương Nguyễn Quyết, Lê Văn Nghiêm, các thầy cô, anh chị và các bạn thuộc phòng thí nghiệm Hóa lý Ứng dụng, Trường ĐH KHTN TP.HCM, đã giúp đỡ, tạo điều kiện thuận lợi cho tôi trong suốt quá trình thực hiện việc đo đạc, phân tích Asen trong nước tại phòng thí nghiệm của bộ môn. Và tôi cũng xin chân thành cảm ơn các anh chị, các bạn ở LNT đã tạo điều kiện để tôi học tập, nghiên cứu hoàn thành tốt bản luận văn. Và đặc biệt gửi lời cảm ơn đến chị Nguyễn Thị Mỹ Lê - bộ phận đào tạo của Phòng Thí Nghiệm Công Nghệ Nano (LNT) đã hỗ trợ nhiệt tình trong suốt thời gian khóa học diễn ra. Xin cảm ơn tất cả bạn bè anh em gần xa, đặc biệt anh Phạm Minh Khang đã động viên và giúp tôi nhiều trong phần tài liệu, kiến thức. Cuối cùng tôi xin được cảm ơn ba mẹ, các anh chị em cùng những người thân yêu trong gia đình, đã luôn động viên, cổ vũ để tôi hoàn thành tốt luận văn của mình. 3 MỤC LỤC LỜI CAM ĐOAN ....................................................................................................................... 1 LỜI CẢM ƠN ............................................................................................................................. 2 MỤC LỤC .................................................................................................................................. 3 MỞ ĐẦU .................................................................................................................................... 8 CHƯƠNG 1: TỔNG QUAN VỀ ASEN VÀ TÁC HẠI CỦA ASEN ĐỐI VỚI CON NGƯỜI... 10 1.1 TỔNG QUAN VỀ As ...................................................................................................... 10 1.1.1 Tính chất vật lý As ............................................................................................... 10 1.1.2 Tính chất hóa học và các hợp chất As .................................................................. 10 1.1.3 Các dạng tồn tại của As trong môi trường ............................................................ 11 1.1.4 Độc học của As .................................................................................................... 13 1.2 TÌNH HÌNH NHIỄM As TRÊN THẾ GIỚI VÀ Ở VIỆT NAM ....................................... 15 1.2.1 Tình hình nhiễm As trên thế giới.......................................................................... 15 1.2.2 Tình hình nhiễm As ở Việt Nam .......................................................................... 16 1.3 MỘT SỐ PHƯƠNG PHÁP KĨ THUẬT ĐỂ PHÂN TÍCH, XÁC ĐỊNH As ..................... 19 1.3.1 Phương pháp khối lượng. ..................................................................................... 19 1.3.2 Phương pháp phân tích thể tích. ........................................................................... 19 1.3.3 Phương pháp phân tích trắc quang. ...................................................................... 19 1.3.4 Phương pháp phổ phát xạ nguyên tử. ................................................................... 20 1.3.5 Phương pháp huỳnh quang nguyên tử. ................................................................. 20 1.3.6 Phương pháp phổ khối plasma cao tần cảm ứng (Inductively Coupled PlasmaMass Spectrometer- ICP MS). .................................................................................................... 20 1.4 PHƯƠNG PHÁP ĐIỆN HÓA VON-AMPE HÒA TAN (ANODIC STRIPPING VOLTAMMETRY) .............................................................................................................. 21 1.4.1 Nguyên tắc chung của phương pháp von-ampe hoà tan ........................................ 21 1.4.2 Một số kỹ thuật ghi đường von-ampe hòa tan....................................................... 23 1.4.3 Ưu điểm của phương pháp Von-ampe hòa tan. ..................................................... 27 CHƯƠNG 2 : CHẾ TẠO SỢI NANO VÀNG VÀ CÁC ĐIỀU KIỆN THỰC NGHIỆM ĐỂ PHÂN TÍCH As ........................................................................................................................ 28 2.1 QUY TRÌNH CHẾ TẠO ĐIỆN CỰC CHIP NANO VÀNG ........................................ 28 2.1.1 Đế Si phủ lớp SiO2 và SiN ................................................................................... 28 4 2.1.2 Ăn mòn tạo bậc (gờ) lớp SiN ............................................................................... 28 2.1.3 Phủ lớp màng Au/Cr ............................................................................................ 29 2.1.4 Ăn mòn góc nghiêng lớp Au/Cr ........................................................................... 30 2.1.5 Ăn mòn lớp SiN còn lại tạo sợi nano Au .............................................................. 30 2.1.6 Tạo điện cực cho sợi Au ...................................................................................... 30 2.2 THIẾT BỊ ĐO ĐẠC, DỤNG CỤ VÀ HÓA CHẤT ..................................................... 31 2.2.1 Thiết bị đo As trong nước .................................................................................... 31 2.2.2 Hoá chất .............................................................................................................. 32 2.2.3 Chuẩn bị hóa chất ................................................................................................ 33 2.3 CÁC BƯỚC NGHIÊN CỨU ĐỂ XÂY DỰNG QUY TRÌNH PHÂN TÍCH BẰNG PHƯƠNG PHÁP VON-AMPE HÒA TAN ........................................................................... 33 2.3.1 Nghiên cứu chọn dung dịch nền điện li ................................................................ 33 2.3.2 Nghiên cứu chọn các thông số kỹ thuật ghi đo tối ưu ........................................... 33 2.3.3 Xây dựng đường chuẩn phân tích As.................................................................... 33 2.3.4 Xác định LOD, LOQ ........................................................................................... 34 CHƯƠNG 3 : KẾT QUẢ VÀ THẢO LUẬN ............................................................................ 35 3.1 KẾT QUẢ CHẾ TẠO SỢI NANO VÀNG .................................................................. 35 3.1.1 Hình ảnh SEM độ phân giải cao (High Resolution Scanning Electron MicroscopeSEM) của sợi nano Au chế tạo theo phương pháp DEA ..................................................... 35 3.1.2 Kết quả chụp kính hiển vi điện lực nguyên tử (AFM) ........................................... 36 3.1.3 Khảo sát tính chất điện ......................................................................................... 36 3.2 KHẢO SÁT CÁC ĐIỀU KIỆN ĐO NỒNG ĐỘ As TRONG NƯỚC .......................... 37 3.2.1 Đánh giá khả năng hoạt động của chip nano vàng ................................................ 37 3.2.2 Khảo sát khoảng làm việc của điện cực chip nano vàng ....................................... 38 3.2.3 Khảo sát dung dịch nền ........................................................................................ 42 3.2.4 Khảo sát ảnh hưởng của nồng độ H3PO4 .............................................................. 44 3.2.5 Khảo sát ảnh hưởng của thế tích góp ( deposite ).................................................. 45 3.2.6 Khảo sát thời gian tích góp .................................................................................. 47 3.3 DỰNG ĐƯỜNG CHUẨN PHÂN TÍCH, ĐỊNH LƯỢNG As ..................................... 49 3.3.1 Đường chuẩn As khoảng 10-100 ppb ................................................................... 50 3.3.2 Đường chuẩn As 100 – 800 ppb ........................................................................... 51 3.4 GIỚI HẠN PHÁT HIỆN VÀ GIỚI HẠN ĐỊNH LƯỢNG........................................... 51 CHƯƠNG 4: KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ............................................................ 54 5 TÀI LIỆU THAM KHẢO ......................................................................................................... 56 PHỤ LỤC ................................................................................................................................. 59 6 DANH MỤC BẢNG VÀ HÌNH ẢNH Hình 1.1 : Sự phụ thuộc dạng tồn tại của As vào môi trường địa hóa [4,6]……..…….…12 Hình 1.2 :Sự xâm nhậpcủa As và các hợp chất của nó trong cơ thể [6]…………….........14 Hình 1.3 : Sơ đồ phép đo vòng..…………………………...………………………...…...24 Hình 1.4 : Đặc trưng CV của hệ o xy hóa khử thuận nghịch ……………………………25 Hình 1.5 : (a) Sự biến thiên thế theo thời gian, (b) Dạng đường von-ampe hòa tan trong kỹ thuật von-ampe xung vi phân………………………………………………………..…...27 Hình 1.6 : Sự biến thiên thế theo thời gian và dạng đường von-ampe hòa tan trong kỹ thuật von - ampe sóng vuông…………………………..…………………………….…. 28 Hình 2.1 : Đế Si phủ lớp SiO2 và SiN ………………………..….………….…………...29 Hình 2.2 : Ăn mòn tạo bậc SiN………………………………………………………......30 Hình 2.3 : Phủ lớp Cr/Au bằng phương pháp lắng động chùm điện tử dưới góc nghiêng: (a) Chưa phủ; (b) Phủ Cr/Au (màu đỏ)……………………..……………………………30 Hình 2.4 : Ăn mòn bằng chùm điện tử khí Ar dưới góc nghiêng……………………… 31 Hình 2.5 : Ăn mòn SiO2 để lộ ra sợi nano Au: (a) hình minh họa từ mặt cắt phía trước; ( b) hình minh họa nhìn từ trên xuống……...…………………….………………...……...31 Hình 2.6 : Hình ảnh sợi Au sau khi tạo thành (ảnh chụp dưới kính hiển vi Leica - DM 2500M có độ phóng đại tối đa 100 lần – Phòng thí nghiệm Hóa Lý Ứng Dụng – ĐH KHTN TP.HCM)……......………………..……………………………………………....32 Hình 2.7: Thiết bị phân tích điện hoá µAUTOLAB Type III (ảnh chụp tại phòng thí nghiệm Hóa- Lý Ứng Dụng – ĐH KHTNTPHCM)………..……………………… ……33 Hình 3.1: (a), Hình ảnh tổng thể của chip chứa một dãy các sợi nano vàng; (b) Hình ảnh SEM độ phân giải thấp chụp phần Au nanowire array, chụp trên thiết bị SEM của Phòng Thí Nghiệm Công Nghệ Nano, VNU HCM…………………………………………..…36 Hình 3.2: Hình ảnh SEM độ phân giả cao (phóng đại 346.000 lần) của một đơn sợi nano Au( Chụp trên thiết bị nghiên cứu chuyên dụng của Viện MESA+, Hà lan )...................37 Hình 3.3: Hình ảnh AFM 2 chiều (A) và 3 chiều (B) của sợi nano Au………………….37 Hình 3.4 : Đặc trưng tính chất điện I-V của sợi nano Au...................................................38 Hình 3.5 : Hoạt tính điện cực chip nano vàng loại sợi dài1000 µm trong dung dịch nền K3Fe(CN)6 5mM ; KNO3 0.5M với các tốc độ quét 1, 10, 100 mV/s……………………38 Hình 3.6 : Đường CV của điện cực chip nano vàng trong dung dịch HCl 0.1M………...39 Hình 3.7 : Khoảng làm việc của điện cực chip vàng trong dung dịch H2SO4 0.01M...….40 Hình 3.8 : Khoảng làm việc của điện cực chip vàng trong dung dịch đệm phosphat 0.1M với pH=7………………………………………………………………………………....41 Hình 3.9 : So sánh khoảng làm việc của các dung dịch nền HCl 0.1M , H2SO4 0.01M, đệm phosphat 0.1M………………………………………………………………………42 Hình 3.10 : Hoạt hóa điện cực chip vàng trong dung dịch H2SO4 0.01M……………….42 7 Hình 3.11: Hình bề mặt chip Au sau 2,3 lần quét trong dung dịch HCl 0,1M………….43 Hình 3.12 : Tín hiệu dòng thu được khi quét bằng LSASV trong các dung dịch nền khác nhauvới nồng độ As(III) 50ppb…………………………………………………………44 Hình 3.13: Đồ thị biểu diễn ảnh hưởng của các dung dịch nền đến cường độ đỉnh…….44 Hình 3.14: Hình ảnh bề mặt chip Au sau 4,5 lần quét…………………………………..45 Hình 3.15: Đồ thị biểu diễn ảnh hưởng của nồng độ H3PO4 đến phân tích As (III) - As(III) 300ppb, tdep=200s , thế deposite -0.3V…………………………………………………..46 Hình 3.16 : Đường quét thế tuyến tính khi thay đổi thế tích góp từ -0,6–0 V;a)- 0,5V – 0V ; b) -0,5 V – 0,6V (Estep = 0,05V, tdep = 100s, v = 1V/s, As (III) 300ppb )……………….47 Hình 3.17: Đồ thị biểu diễn ảnh hưởng của thế tích góp ………………………………..47 Hình 3.18 : Quét thế tuyến tính (LSASV) của As (III) 300 ppb trong dung dịch H3PO4 tại thế tích góp 0.5 V 5 lần ………………………………………………………………..48 Hình 3.19 : Đường quét thế tuyến tính thời gian tích góp từ 15-300s…………………..49 Hình 3.20: Đồ thị biểu diễn ảnh hưởng của thời gian tích góp trong khoảng 15-300s…..49 Hình 3.21: Đồ thị biểu diễn ảnh hưởng của thời gian tích góp trong khoảng 15-150s…..50 Hình 3.22: Đường quét thế tuyến tính của nồng độ As (III) trong khoảng 0-1000 ppb,…51 Hình 3.23 : Đường chuẩn phân tích As (III) trong khoảng 10 - 100 ppb………………..52 Hình 3.24: Đường chuẩn As(III) 100 – 800 ppb…………………………………………52 Hình 3.25: Đường chuẩn As (III) 2-10 ppb………………………………………………53 8 MỞ ĐẦU Trong những năm gần đây, ô nhiễm môi trường nước và tác động của các yếu tố ô nhiễm lên sức khoẻ cộng đồng đang diễn biến phức tạp khiến rủi ro môi trường ngày càng tăng cao. Một vấn đề chung hiện đang dành được mối quan tâm hàng đầu ở nhiều nước lớn là vấn nạn ô nhiễm kim loại nặng, đặc biệt là ô nhiễm As (thạch tín) trong nước ngầm. Việc As tồn tại trong nguồn nước ăn uống và sinh hoạt của người dân với nồng độ quá mức cho phép đã tác động đến sức khoẻ của hàng triệu người trên thế giới. Tại Việt Nam, ô nhiễm As đã được phát hiện tại nhiều khu vực như đồng bằng sông Hồng: Hà Nội, Hưng Yên, Hà Tây, khu vực đồng bằng sông Cửu Long: An Giang, Đồng Tháp… Các nghiên cứu của các nhà khoa học trong nước và quốc tế trong thời gian qua cho thấy cả nguồn nước mặt và nước ngầm ở cả hai khu vực này đều có nồng độ As cao hơn gấp nhiều lần mức cho phép của tổ chức Y tế thế giới (WHO) là 10 μg/L. Trung bình ở ĐBSH là 159 μg/L còn ở ĐBSCL là 39 μg/L. Tính đến năm 2008, nhiều triệu dân Việt nam đã và đang phải sử dụng các nguồn nước mang hàm lượng As cao quá mức cho phép. Những hậu quả của việc sử dụng nước ngầm có nhiễm As vào mục đích sinh hoạt ảnh hưởng tới sức khỏe của người dân là rất nghiêm trọng gây nhiều bệnh nguy hiểm như các bệnh ngoài da, đường ruột, tim mạch,… thậm chí dẫn đến ung thư ở thận, phổi và da. Trước sự đe dọa về hiểm họa của tình trạng ô nhiễm As trong đất, nước sinh hoạt và ăn uống, việc nghiên cứu, khai thác các ưu việt của công nghệ nano - một trong các công nghệ mới nhất - để chế tạo ra các thiết bị nano có khả năng phát hiện As nhanh chóng, hiệu quả và kinh tế là điều hết sức cần thiết. Các nhóm nghiên cứu trên thế giới đã nghiên cứu các loại cảm biến nano dựa trên vật liệu platin, bạc, vàng…. để phát hiện As. Tuy nhiên trong các loại cảm biến này thì cảm biến nano dựa trên vật liệu vàng (Au) là loại có độ nhạy cao nhất trong việc phát hiện As, đặc biệt là cảm biến dựa trên sợi vàngở kích thước nano. Sử dụng vật liệu và công nghệ sợi nano Au sẽ cho phép tiết kiệm nguyên liệu vàng, hạ giá thành chế tạo đồng thời nâng cao độ nhạy trong việc phát hiện As. Trong thời gian mấy năm vừa qua, Phòng Thí Nghiệm Công Nghệ Nano (LNT), ĐHQG TP.HCM đã nghiên cứu và đưa ra một số phương pháp chế tạo sợi nano của các vật liệu khác nhau, sử dụng trong các phân tích trong lãnh vực Y- Sinh học và Môi trường. Trong các phương pháp chế tạo sợi nano của LNT có một phương pháp mới, cho phép chế tạo nhanh, hiệu quả sợi nano vàng ( Au ) đó là phương phápbốc bay và ăn mòn dưới góc nghiêng (Deposition and Etching under Angles - DEA). Trong luận văn này, chúng tôi sử dụng sợi nano Au được chế tạo bởi nhóm nghiên cứu bằng phương pháp trên, để khảo sát các điều kiện đo nồng độ As trong nước. Có nhiều phương pháp đã và đang được sử dụng để phát hiện As trong nước. Các phương pháp truyền thống bao gồm phổ plasma cảm ứng (ICP-MS), phổ hấp phụ nguyên 9 tử dùng lò graphite (AAS-FG), và sắc kí lỏng hiệu năng cao… Các phương pháp này có thể phát hiện As ở nồng độ siêu nhỏ 0.08 μg/L (mức cho phép của WHO là 10 μg/L). Tuy nhiên nhược điểm của chúng là phải sử dụng các thiết bị phân tích hiện đại, đắt tiền, thời gian dài…Phương pháp điện hóaVon-Ampe hòa tan anode (Anodic Stripping Voltammetry, ASV) là phương pháp có độ chính xác, độ nhạy cao, kỹ thuật phân tích lại không quá phức tạp, thiết bị phân tích đơn giản, thông dụng với các phòng thí nghiệm ở Việt Nam, sử dụng các hóa chất thông thường, tốn ít hóa chất, có thể định lượng đồng thời nhiều ion kim loại cùng có mặt trong dung dịch. Trên cơ sở đó chúng tôi lựa chọn đề tài là “Chế tạo sợi nano vàng và khảo sát các điều kiện đo nồng độ Asen trong nước” Trong khuôn khổ đề tài, chúng tôi tiến hành những nội dung chính như sau:  Tìm hiểu quy trình chế tạo sợi nano Au bằng phương pháp bốc bay và ăn mòn góc nghiêng - DEA của nhóm nghiên cứu và tham gia thực hiện bước quang khắc.  Kiểm tra khả năng hoạt động của điện cực chip nano Au.  Khảo sát khoảng làm việc của điện cực chip nano Au.  Khảo sát các điều kiện tối ưu của chất nền điện ly, nồng độ chất điện ly, thế tích góp, thời gian tích góp, tốc độ quét thế đối với As(III).  Xây dựng đường chuẩn đối với As (III).  Tính toán giới hạn phát hiện (limit of detection-LOD) và giới hạn định lượng (limit of quantitation-LOQ) của chip nano Au đối với As (III). Các công việc liên quan đến đo đạc nồng độ As trong nước được thực hiện tại Bộ môn Hóa – Lý Ứng Dụng, trường ĐH KHTN, ĐHQG TP. HCM. 10 CHƯƠNG 1: TỔNG QUAN VỀ ASEN VÀ TÁC HẠI CỦA ASEN ĐỐI VỚI CON NGƯỜI 1.1 TỔNG QUAN VỀ As 1.1.1 Tính chất vật lý As As chiếm 1.10-4 % tổng số nguyên tử trong vỏ trái đất, chúng tồn tại chủ yếu ở dạng khoáng vật sunfua: Sunfide Orpiment vàng – As2S3 và Realgar đỏ - As4S4;… Trong bảng hệ thống tuần hoàn các nguyên tố hoá học, Asen nằm ở phân nhóm Va với một số các đặc trưng: Bảng 1 : Tính chất hóa học của nguyên tử As[4] Ký hiệu hoá học As Z 33 Cấu hình e [Ar]3d104s24p3 Rn/tử (AO) 1,48 3O Rion E (A ) 1,92 5+ O Rion E (A ) 0,47 Eion hòa I (kcal/ntg) 226 Eion hòa II (kcal/ntg) 466 Eion hòa III (kcal/ntg) 653 Độ âm điện 2,0 3 Khối lượng riêng (g/cm ) 5,727 O O T nc( C) 817 O O T s ( C) 614 As tồn tại ở hai dạng kim loại và không kim loại: - Ở dạng không kim loại As là chất rắn màu vàng (còn gọi là As vàng) được tạo nên khi làm ngưng tụ hơi, có mạng lưới lập phương (giống Photpho trắng), kiến trúc mạng lưới bao gồm các phân tử As4 liên kết với nhau bằng lực Vanderwaals. Phân tử As4 có cấu tạo hình tứ diện đều với các nguyên tử As nằm ở đỉnh. Do có mạng lưới phân tử nên As vàng kém bền ở nhiệt độ thường dưới tác dụng của ánh sáng dễ chuyển sang dạng kim loại (dạng bền hơn). - Dạng kim loại có màu bạc trắng, hơi xám (gọi là As xám). As xám có cấu trúc dạng Polime, có mạng lưới nguyên tử giống Photpho đen, có khả năng dẫn nhiệt, dẫn điện nhưng giòn có thể nghiền thành bột dễ dàng [4,5,6]. 1.1.2 Tính chất hóa học và các hợp chất As As là nguyên tố bán kim loại, có tính chất hoá học gần với tính chất của á kim, cấu hình lớp vỏ điện tử hoá trị của As là 4s24p3. Trong cấu hình điện tử của As có sự tham gia của các vân đạo d vì vậy có khả năng mở rộng vỏ hoá trị, trong các hợp chất As có 4 số oxi hoá: -3, 0, +3, +5. Số oxi hoá -3 rất đặc trưng cho As. Về tính chất điện thế, As đứng 11 giữa hidro và đồng nên nó không tác dụng với các axit không có tính oxi hóa, nhưng dễ dàng phản ứng với các axit HNO3, H2SO4 đặc. As tinh khiết được xem là không độc, nhưng trong điều kiện bình thường As không bao giờ ở trạng thái tinh khiết, vì khi tiếp xúc với không khí một phần As bị oxi hóa thành các oxit rất độc. As có thể tạo thành ba oxit là trioxit asen, tetraoxit asen và pentaoxit asen. Sau đây là một vài dạng hợp chất điển hình của As. Trioxit asen (As2O3):còn được gọi là oxit asơ hay anhidrit asơ. Đó là dạng bột hoặc dạng vô định hình. Bột trioxit asen thô thu được từ các quặng chứa As được làm thăng hoa, hàm lượng As2O3trong bột thô là 97%. Trioxit asen phản ứng với nước tạo thành axit asơ (H3AsO3), từ axit này tạo thành các muối As. Pentoxit asen (As2O5): hay anhidrit asen là dạng bột màu trắng được sử dụng trong công nghệ thủy tinh, làm các hóa chất trừ dịch hại. Phản ứng với nước tạo thành axit asic (H2AsO4) và từ đó tạo thành các muối asat. Clorua asen (AsCl3): là dung dịch dầu, màu vàng nhạt, được sử dụng trong kỹ nghệ gốm. Asin (AsH3):là một hợp chất vô cơ của As ở thể khí, là một khí cực độc. Ngoài ra một số quặng As cũng có các hợp chất khác như sunfua aen (As2S2) có tên là reanga (realgar) và As2S3 là As vàng có tên opiment (orpiment). As là nguyên tố cancofil dễ tạo sunfua với lưu huỳnh, tạo hợp chất với selen, telua và đặc biệt là với đồng, niken, sắt, bạc. Có khoảng gần 140 khoáng vật độc lập của As, trong đó 60% là Asat và 35% làcác sunfua. Các khoáng vật quan trọng nhất của As là: rialga (AsS), opiment (As2S3), asopyrit (FeAsS)… As còn kết hợp các nguyên tố khác thay thế lưu huỳnh trong các hợp chất như: Lơlingit (FeAs2), Smartina (As2Co) [5,23]. 1.1.3 Các dạng tồn tại của As trong môi trường Những nghiên cứu về sự hình thành của As trong môi trường và trong các mẫu sinh học đang là những chủ đề được quan tâm đến nhiều nhất hiện nay. As xuất hiện trong tự nhiên một cách phổ biến trong các khoáng vật, bên cạnh đó, sự sử dụng As một cách rộng rãi trong các hoá chất nhuộm màu, thuốc trừ sâu, thuốc diệt cỏ là những nguồn chính cho sự có mặt của As trong môi trường. Trên thực tế, trước đây As được ứng dụng trong một số lĩnh vực như sau:  Trong y học: As được sử dụng trong thuốc bắc với tác dụng trị suyễn hoặc dùng để chữa các bệnh ngoài da …  Trong nông nghiệp: As có trong thành phần của một số loại thuốc bảo vệ thực vật. Khoảng 70% thuốc bảo vệ thực vật trong thành phần có chứa As nằm ở các dạng : (1) Monosodium methane Asate (MSMA) – HAsO3CH3Na (2) Disodium methane Asate (DSMA) – Na2AsO3CH3 (3) Dimethylarsinic acid (cacodylic acid) – (CH3)2 AsO2H 12 (4) As acid – H3AsO4 Trong công nghiệp: As và hợp chất của As cũng được sử dụng rộng rãi trong công nghiệp chẳng hạn như: bảo quản gỗ, sản xuất gương kính, hợp kim và các thiết bị điện tử, làm chất xúc tác hoặc chất phụ gia…. Các dạng tồn tại của As trong môi trường là vấn đề đáng quan tâm bởi vì có sự khác nhau về mức độ độc giữa chúng. Trong môi trường As tồn tại chủ yếu ở các dạng:Asite As(III), Asate As(V), Asious acids (H3 AsO3 , H2AsO3 –, HAsO32–), As acids (HAsO42–, H3AsO4, H2AsO4–) , dimethylarsinate (DMA), monomethylarsonate (MMA) , Asobetaine (AB) và Asocholine (AC) Những dạng hợp chất này minh hoạ cho sự đa dạng của các trạng thái oxy hoá của As và kết quả là đưa đến sự phức tạp về hoá tính của nó trong môi trường. Trong pha nước với môi trường thoáng khí acid, As chiếm ưu thế ở pH cực kỳ thấp (pH<2), trong khoảng pH từ 2 – 11 chúng được thay thế bởi H2AsO4– và HAsO42– . Asious acid xuất hiện trong điều kiện pH thấp và có sự khử nhẹ tuy nhiên khi pH gia tăng nó sẽ được thay thế bởi H2AsO3- và khi pH vượt quá 12 sẽ làm xuất hiện HAsO32–. Với môi trường pH thấp và có mặt sunfua có thể tạo thành HAsS2 [5, 6]. Các hợp chất Asine, dẫn xuất Asine và Arsen xuất hiện ở điều kiện khử cao. Bởi vì nó tạo thành dạng anion trong dung dịch nên As không kết hợp với các anion đơn giản như Cl-; SO43- như các cation kim loại. Đúng hơn là các hợp chất anion As giống như các gốc tự do trong nước. As (III) phản ứng với nhóm sulphur và sulphydryl như cystine, organic dithiols, proteins, enzymes nhưng không phản ứng với amine. Tuy nhiên As(V) lại phản ứng với nhóm nitrogen khử như amine nhưng lại không phản ứng với nhóm sulphydryl. Hàm lượng As trong nước ngầm phụ thuộc rất nhiều vào tính chất và trạng thái môi trường địa hóa.Dạng As tồn tại chủ yếu trong nước ngầm là H3AsO4-1 (trong môi trường pH acid đến gần trung tính), HAsO4-2 (trong môi trường kiềm). Hình 1.1 Sự phụ thuộc dạng tồn tại của As vào môi trường địa hóa [4,6]. Hợp chất H3AsO3 được hình thành chủ yếu trong môi trường oxy hóa-khử yếu. Các hợp chất của As với Na có tính hòa tan rất cao, còn những muối của As với Ca, Mg 13 và các hợp chất As hữu cơ trong môi trường pH gần trung tính và nghèo Ca thì độ hòa tan kém hơn các hợp chất As hữu cơ, đặc biệt là As-acid fulvic. Các hợp chất của As+5 được hình thành theo phương thức này. As trong nước ngầm thường tập trung cao trong kiểu nước bicarbonat như bicarbonat Cl, Na, B, Si. Nước ngầm trong những vùng trầm tích núi lửa, một số khu vực quặng hóa nguồn gốc nhiệt dịch, mỏ dầu khí, mỏ than, …thường giàu As. Thế oxy hóa khử, độ pH của môi trường và lượng kaloit giàu Fe3+…là những yếu tố quan trọng tác động đến quá trình oxy hóa - khử các hợp chất As trong tự nhiên. Những yếu tố này có ý nghĩa làm tăng hay giảm sự độc hại của các hợp chất As trong môi trường sống. 1.1.4 Độc học của As Về mặt sinh học, As là một chất độc có thể gây một số bệnh trong đó có ung thư da và phổi. Mặt khác As có vai trò trong trao đổi nuclein, tổng hợp protit và hemoglobin. As ảnh hưởng đến thực vật như một chất cản trao đổi chất, làm giảm mạnh năng suất, đặc biệt trong môi trường thiếu Photpho. Trong môi trường sinh thái, các dạng hợp chất As hóa trị III có độc tính cao hơn dạng hóa trị V. Môi trường khử là điều kiện thuận lợi để cho nhiều hợp chất As hóa trị V chuyển sang As hóa trị III. Trong các hợp chất của As trong môi trường thì Asite (As (III)) đáng được quan tâm tới nhiều nhất bởi vì tính độc của nó cao hơn gấp 10 lần so với Asate (As(V)) và hơn gấp 70 lần so với các dạng methyl hoá của nó. Sự nhiễm độc As ( còn gọi là Asosis )xuất hiện như một tai họa môi trường đối với sức khỏe con người trên thế giới. Theo các nghiên cứu những người sống trên khu vực có hàm lượng As trong nước giếng khoan cao hơn 0,05 mg/l cho thấy tới 20% dân cư bị sạm da, dầy biểu bì và có hiện tượng ung thư da.Hiện chưa có phương pháp hữu hiệu chữa bệnh nhiễm độc As [2-6]. Thông thường As đi vào cơ thể con người trong một ngày đêm thông qua chuỗi thức ăn khoảng 1mg và được hấp thụ vào cơ thể qua đường dạ dày nhưng cũng dễ bị thải ra. Hàm lượng As trong cơ thể người khoảng 0.08-0.2 ppm, tổng lượng As có trong người bình thường khoảng 1,4 mg. As tập trung trong gan, thận, hồng cầu, homoglobin và đặc biệt tập trung trong não, xương, da, phổi, tóc. Hiện nay người ta có thể dựa vào hàm lượng As trong cơ thể con người để tìm hiểu hoàn cảnh và môi trường sống, như hàm lượng As trong tóc nhóm dân cư khu vực nông thôn trung bình là 0,4-1,7 ppm, khu vực thành phố công nghiệp 0,4-2,1 ppm, còn khu vực ô nhiễm nặng 0,6-4,9 ppm. Sự xâm nhập, phân bố và lưu trữ của As cũng như các hợp chất của nó trong cơ thể người có thể hình dung theo sơ đồhình 1.2 : 14 Hình 1.2 Sự xâm nhập của As và các hợp chất của nó trong cơ thể [6] Sự nhiễm độc As có thể phân loại thành các dạng nhiễm độc cấp tính và nhiễm độc mãn tính với các biểu hiện:  Ngộ độc As cấp tính : khát nước dữ dội, đau bụng, nôn mửa, tiêu chảy, mạch đập yếu, bí tiểu và có thể tử vong .  Nhiễm độc As mãn tính: xuất hiện các đốm sẫm màu trên thân thể hay ở đầu các chi, niêm mạc lưỡi hoặc sừng hóa da (thường xuất hiện ở tay, chân, phần cơ thể bị cọ sát nhiều hoặc tiếp xúc với ánh sáng nhiều), có thể gây đến hoại tử, rụng dần từng đốt ngón chân... cuối cùng sẽ có thể dẫn đến ung thư, đột biến gen và tử vong.  Sự nhiễm độc As mãn tínhđược phân làm bốn giai đoạn chính:  Giai đoạn tiền lâm sàng: chưa có biểu hiện tổn thương thực thể nhưng As có thể phát hiện được tại các mẫu nước tiểu và mẫu mô cơ thể.  Giai đoạn lâm sàng: sự ảnh hưởng suất hiện trên da, hay gặp nhất là cơ thể có bầm tím tay chân, trong trường hợp nặng có hiện tượng hóa sừng tại da ban tay, lòng bàn chân. Theo Tổ chức y tế thế giới – WHO thì giai đoạn này xuất hiện sau 5 đến 10 năm uống nước nhiễm As quá tiêu chuẩn.  Giai đoạn biến chứng: khi các triệu trứng lâm sàng càng trở nên trầm trọng hơn, gan thận và lách sưng to, cơ thể bị viêm giác mạc, viêm phế quản và đái tháo đường.  Giai đoạn cuối: Sự xuất hiện của bệnh ung thư (da, phổi...) As(III) thể hiện độc tính của nó bằng sự tấn công vào nhóm –SH của enzyme làm ức chế hoạt động của enzyme [3,4,6] : 15 Dihydrolipoic acid protein là enzyme trong chu trình acid citric. Mặt khác do có tính chất hóa học tương tự như photpho mà As cũng có thể gây tương tác xấu trong các quá trình sinh hóa có sự tham gia của photpho. Chẳng hạn trong sự tạo thành ATP (ademosine triphoglyphate) khi có mặt của As sẽ gây trở ngại trong quá trình tạo 1,3 – Diphosphoglycerate cho ra sản phẩm 1–Aso –3–phosphoglycerate gây hiệu ứng xấu cho cơ thể[4,6] : 1.2 TÌNH HÌNH NHIỄM As TRÊN THẾ GIỚI VÀ Ở VIỆT NAM 1.2.1 Tình hình nhiễm As trên thế giới As đang là mối quan tâm hàng đầu của những nước như Băngladet, Ấn Độ, Hoa Kỳ, Myanma, Thái Lan và Việt Nam. Năm 2005, Trung Quốc là nhà sản xuất As trắng hàng đầu, chiếm gần 50% sản lượng thế giới. Sau đó là Chile và Peru, theo báo cáo của Khảo sát Địa chất Vương quốc Anh [4,6]. EPA Hoa kỳ định nghĩa As là một trong những hóa chất bền vững (persistent), sinh tụ (bioaccumulative) và độc hại (toxic) có khả năng kết tụ bền vững trong môi trường không khí, đất và nước. Về phía Việt Nam, As nằm trong danh sách các hóa chất bị cấm 16 sử dụng theo nghị định số 23/BVTV-KHKT/QD ngày 20/4/1992 do Bộ Nông nghiệp Lương thực phê chuẩn [4,6]. Cách đây khoảng nửa thế kỷ, các khoa học trên thế giới chưa lưu tâm nhiều đến nạn ô nhiễm As trong các mạch nước ngầm. Mãi đến năm 1961, ô nhiễm As trong nước ngầm mới được khám phá lần đầu tiên ở Taiwan. Và sau đó, các nước sau đây lần lượt khám phá ra tình trạng ô nhiễm trên như Bỉ, Hòa Lan, Đức, Ý, Bồ Đào Nha, Ghana, Hoa Kỳ và Thái Lan. Năm 1992, nhiễm độc As đã được khám phá và là một quốc nạn cho Ấn Độ tại West Bengal. Thảm trạng trên có thể được xem là một nguy cơ hủy diệt cho vùng này. As hiện diện trong bảy quận hạt bao gồm 37.500 km2 với 34 triệu dân sinh sống và theo Mandal, chuyên gia về độc hại của Ấn Độ, ước tính khoảng 17 triệu dân trong vùng bị nhiễm. Gần đây, ô nhiễm As ở Bangladesh còn trầm trọng hơn nữa, ảnh hưởng đến hơn 23 triệu dân năm 1997; con số này tăng lên gần 60 triệu theo công bố mới nhất của Bộ Water Resources của Bangladesh (2005) [6]. Nguyên nhân tạo ra hai thảm trạng ô nhiễm trên là do hàm lượng quá cao của As trong các mạch nước ngầm giữa biên giới Ấn Độ và Bangladesh, hàm lượng trên thay đổi từ 0.059 đến 0.105 mg/L. Theo Peter Ravenscroft từ khoa Địa -Trường Đại học Cambridge, khoảng 80 triệu người trên khắp thế giới tiêu thụ khoảng 10 tới 50 phần tỷ As trong nước uống của họ [6]. 1.2.2 Tình hình nhiễm As ở Việt Nam Các nghiên cứu của các nhà khoa học trong nước và quốc tế trong thời gian qua cho thấy cả nguồn nước mặt và nước ngầm ở đồng bằng sông Hồng (ĐBSH) và đồng bằng sông Cửu Long (ĐBSCL) đều có nồng độ ar cao hơn gấp nhiều lần mức cho phép của tổ chức Y tế thế giới (WHO) là 10 μg/L. Trung bình ở ĐBSH là 159 μg/L còn ở ĐBSCL là 39 μg/L. Tính đến năm 2008, nhiều triệu dân Việt nam đã và đang phải sử dụng các nguồn nước mang hàm lượng As cao quá mức cho phép. Tiêu chuẩn cho phép của Việt Nam là 50 μg/L. Đây là tiêu chuẩn được thế giới chọn từ những năm 40 thế kỷ trước. Tuy nhiên tiêu chuẩn này đã được WHO hạ thấp nghiêm ngặt hơn xuống còn 10μg/L [4,6]. Do cấu tạo địa chất, nhiều vùng ở nước ta nước ngầm bị nhiễm As. Theo thống kê chưa đầy đủ của Bộ Y tế (2009), cả nước có khoảng hơn 1 triệu giếng khoan, trong đó nhiều giếng có nồng độ As cao hơn từ 20-50 lần nồng độ cho phép (0.01mg/L), ảnh hưởng xấu đến sức khoẻ, tính mạng của cộng đồng. Hiện 21% dân số Việt Nam đang dùng nguồn nước nhiễm As vượt quá mức cho phép và tình trạng nhiễm độc As ngày càng rõ rệt và nặng nề trong dân cư. Song phần lớn người dân vẫn không hề hay biết những tác hại nghiêm trọng đối với sức khỏe khi tích tụ những chất độc này trong cơ thể. Theo kết quả cuộc khảo sát của Viện Công nghệ Môi trường, Viện Khoa học và Công nghệ Việt Nam, Cục Thuỷ Lợi, Trung tâm Nước sạch và Vệ sinh môi trường nông 17 thôn 2004, tại châu thổ sông Hồng, những vùng bị nhiễm nghiêm trọng nhất là phía Nam Hà Nội, Hà Nam, Hà Tây, Hưng Yên, Nam Định, Ninh Bình, Thái Bình và Hải Dương. Ở Đồng bằng sông Cửu Long, cũng phát hiện nhiều giếng khoan có nồng độ As cao nằm ở Đồng Tháp và An Giang [6,13]. Theo kết quả điều tra của Cục Thuỷ lợi thuộc Bộ NN&PTNT ngầm tại Hà Nội 2002, 2003, nguồn nước ngầm của Hà Nội cũng đang ở mức báo động vì bị nhiễm As vượt tiêu chuẩn cho phép. Khu vực nội thành, có 32% số mẫu bị nhiễm, các khu vực khác như Đông Anh 13%, Gia Lâm 26,5%, Thanh Trì 54%, Từ Liêm 21% [6,13]. Theo đánh giá hiện trạng ô nhiễm As trong nước ngầm của Viện Vệ sinh y tế công cộng (Bộ Y tế), mức độ nhiễm As ở 4 tỉnh ĐBSCL là Long An, Đồng Tháp, An Giang và Kiên Giang, hàm lượng khá cao, đe dọa sức khỏe của người dân. Tại một số huyện của Đồng Tháp và An Giang, tình trạng này rất đáng báo động khi phần lớn các mẫu khảo sát đều bị nhiễm với hàm lượng vượt ngưỡng 100 ppb, cá biệt có những mẫu lên tới 1.000 ppb. Tổng số mẫu khảo sát tại tỉnh An Giang là 2.699 mẫu với tỉ lệ nhiễm As là 20,18%, tập trung nhiều tại một số huyện như: An Phú 97,3%, Phú Tân 53,19%, Tân Châu 26,98% và Chợ Mới 27,82%. Hàm lượng As trong nước ngầm tại các huyện này khi phân tích đều từ 100 ppb trở lên, được tìm thấy ở các giếng tầng nông, độ sâu dưới 60m và được dùng cho sinh hoạt phổ biến trong người dân. Trong tháng 11/2006, Viện Y học lao động và môi trường TP.HCM đã tổ chức khám sức khỏe cho người dân tại 2 huyện Tri Tôn và An Phú, kết quả có đến 10 ca nghi nhiễm As với những biểu hiện như sừng hóa da, xuất hiện các đốm sẫm màu trên cơ thể. Tại thôn Thống Nhất (Ứng Hoà, tỉnh Hà Tây) có tới 22 người bị chết do ung thư mà nguyên nhân được xem là do nguồn nước nhiễm As cao gấp 17-30 lần mức độ cho phép (do công ty cổ phần hóa chất và công nghệ nước quốc tế đo Theo báo Tiền Phong) [6,13]. Khảo sát của các chuyên gia tại 3 xã Hòa Hậu, Bồ Đề và Vĩnh Trụ (Hà Nam), qua khám lâm sàng 650 người dân, trong đó xét nghiệm cận lâm sàng cho 100 người, Viện Y học lao động và vệ sinh môi trường đã phát hiện 28,3% bị các bệnh về da (so với tỷ lệ trung bình cả nước là 3-5%), tỷ lệ ung thư các bộ phận tiêu hóa và tiết niệu cao hơn các dạng ung thư khác, có 31 trường hợp thiếu máu trong đó 28 người thiếu máu có liên quan đến nhiễm độc As mãn tính Theo kết quả xét nghiệm As do UNICEF hỗ trợ Việt Nam từ 2001 đến 2004 tại 25 tỉnh thành thì Hà Nam đứng đầu vì mức độ ô nhiễm As nghiêm trọng nhất. Trong 7.040 mẫu nước lấy từ giếng khoan, có tới 3.530 mẫu có hàm lượng lớn hơn 0,05 mg/L. Theo thống kê ban đầu của UNICEF, tại Việt Nam có khoảng 10 triệu người có nguy cơ bị bệnh do tiếp xúc với As. Qua những số liệu thu thập được cho thấy sự ô nhiễm As ở miền Bắc cao hơn miền Nam. UNICEF khẳng định mức độ ô nhiễm As của Hà Nam nghiêm trọng như ở Bangladesh - nơi được đánh giá là có độ ô nhiễm As 18 cao trên thế giới. UNICEF cho rằng sự ô nhiễm As ở phía Nam của Hà Nội là vấn đề nghiêm trọng nhất ở Việt Nam hiện nay [6]. Những cuộc khảo sát về nồng độ As trong nước sinh hoạt của người dân khu vực nông thôn do Cục Thuỷ lợi, Trung tâm nước sạch và Vệ sinh môi trường nông thônCERWASS (Bộ NN&PTNT), Viện Công nghệ và Môi trường, Bộ Y tế tiến hành trên 23 tỉnh cho kết quả nồng độ As trong nước ở các tỉnh này vượt chuẩn cho phép 47,17%. Trong đó, các tỉnh có nguồn nước nhiễm As cao là Hà Nam (64,03%), Hà Nội (61,63%), Hải Dương (51,99%). Đáng nói là nhiều mẫu nước có hàm lượng As vượt quá 100 lần so với tiêu chuẩn cho phép [6]. Tại Việt Nam có rất nhiều công trình nghiên cứu và xử lý As [3,4,5,6,7] . Một trong những nghiên cứu nổi bật là của PGS.TS Phạm Hùng Việt, Giám đốc Trung tâm Nghiên cứu Công nghệ Môi trường & Phát triển Bền vững (CETASD), ĐHKHTN, ĐHQGHN. Trong đó nổi bật là công trình “Cơ chế làm chậm sự di chuyển của Asen qua tầng chứa nước sâu Pleistocene” được đăng lên tạp chí khoa học Nature tháng 9/2013. Nature là một tạp chí uy tín hàng đầu thế giới, có chỉ số ảnh hưởng IF = 38. Trong công trình này, các nhà khoa học ĐHQGHN đã có đóng góp từ việc đề xuất ý tưởng đến việc trực tiếp bố trí thực nghiệm, khảo sát hiện trường và xử lý số liệu. Ô nhiễm As trong nước ngầm tầng nông là một trong những mối đe dọa lớn nhất cho sức khỏe con người ở các nước đang phát triển. Tại đồng bằng sông Hồng, nước ngầm đang là nguồn nước chủ yếu phục vụ cho sinh hoạt của một trong những khu vực đông dân cư nhất thế giới. Trước nguy cơ đó, từ năm 1998 đến nay, CETASD đã cùng hợp tác với các nhà khoa học, các cơ quan nghiên cứu uy tín trên thế giới để triển khai hướng nghiên cứu về ô nhiễm As trong nước ngầm tại Việt Nam. Mục đích của công trình nghiên cứu nhằm phát hiện và khoanh vùng những khu vực ô nhiễm, đồng thời tìm hiểu cơ chế phát sinh ô nhiễm Asen để có biện pháp giảm thiểu. Trong nghiên cứu này, nhóm tác giả đã phát triển và tạo một mô hình dự đoán ô nhiễm As trên toàn đồng bằng châu thổ sông Hồng dựa trên dữ liệu địa chất 3 chiều. Nghiên cứu được thực hiện tại bãi giếng khoan xã Vạn Phúc nằm cách trung tâm Hà Nội khoảng 10 km về phía Đông Nam. Đây là vùng chuyển giữa hai môi trường có nồng độ As hoà tan thấp và cao rất sắc nét. Đặc biệt, vùng ranh giới chuyển tiếp này đang có nguy cơ di chuyển về phía Tây tương ứng với sự tăng cường mức độ khai thác nước ngầm ở Hà Nội. Dữ liệu nghiên cứu chỉ ra rằng sự ô nhiễm As trong các tầng nước ngầm được làm tăng thêm bởi các hoạt động của con người, ví dụ như sự khai thác một khối lượng nước ngầm từ các tầng nước Pleistocene. Phát hiện này có ý nghĩa quan trọng cho các khu vực bị nhiễm độc Asen khác trên thế giới với hệ thống dòng chảy ngầm tương tự và có hoạt động khai thác nước từ các tầng ngậm nước sâu với tốc độ cao. Công trình đã đưa ra bản đồ ô nhiễm As và một số nguyên tố khác như Mangan, Bari, Selen trong nước giếng khoan ở toàn bộ khu vực đồng bằng sông Hồng. Những bản đồ này có
- Xem thêm -

Tài liệu liên quan