Đăng ký Đăng nhập
Trang chủ Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn ysz và điện cực nhạy khí nano ...

Tài liệu Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn ysz và điện cực nhạy khí nano - oxit kim loại

.PDF
53
446
74

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ ĐỖ VĂN HƢỚNG CẢM BIẾN ĐIỆN HÓA RẮN TRÊN CƠ SỞ CHẤT ĐIỆN LY RẮN YSZ VÀ ĐIỆN CỰC NHẠY KHÍ NANO – OXIT KIM LOẠI LUẬN VĂN THẠC SĨ VẬT LIỆU VÀ LINH KIỆN NANO HÀ NỘI - 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ ĐỖ VĂN HƢỚNG CẢM BIẾN ĐIỆN HÓA RẮN TRÊN CƠ SỞ CHẤT ĐIỆN LY RẮN YSZ VÀ ĐIỆN CỰC NHẠY KHÍ NANO – OXIT KIM LOẠI Chuyên ngành: Vật liệu và Linh kiện Nano Mã số: Chuyên ngành đào tạo thí điểm LUẬN VĂN THẠC SĨ VẬT LIỆU VÀ LINH KIỆN NANO NGƢỜI HƢỚNG DẪN KHOA HỌC: TS. HỒ TRƢỜNG GIANG HÀ NỘI - 2014 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của TS. Hồ Trường Giang. Các số liệu, kết quả nêu trong luận văn được trích dẫn lại từ các bài báo đã và sắp được xuất bản của tôi. Các số liệu, kết quả này là trung thực và chưa từng được ai công bố trong bất kì công trình nào khác. Hà Nội, ngày 30 tháng 10 năm 2014 Tác giả ĐỖ VĂN HƢỚNG LỜI CẢM ƠN Với lòng biết ơn sâu sắc, tôi xin gửi lời cảm ơn chân thành tới TS. Hồ Trường Giang, người đã trực tiếp giao đề tài và tận tình chỉ bảo, hướng dẫn tôi hoàn thiện luận văn này. Tôi xin gửi lời cảm ơn chân thành tới các cán bộ của Phòng Cảm biến và thiết bị đo khí, Viện Khoa học Vật liệu đã tạo điều kiện thuận lợi về trang thiết bị và giúp đỡ tôi nhiệt tình trong quá trình thực hiện luận văn. Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới thầy, cô giáo trong Khoa Vật lý kỹ thuật và công nghệ nano cũng như các thầy, cô giáo Trường Đại học Công Nghệ, Đại học Quốc gia Hà Nội đã chỉ bảo và giảng dạy tôi trong những năm học qua cũng như giúp cho tôi hoàn thiện luận văn này. Cuối cùng, tôi xin bày tỏ tình cảm tới những người thân trong gia đình, bạn bè đã động viên, giúp đỡ, hỗ trợ tôi về mọi mặt. Tôi xin chân thành cảm ơn! Hà Nội, ngày 22 tháng 11 năm 2014 Học viên Đỗ Văn Hướng MỤC LỤC MỞ ĐẦU .........................................................................................................................1 CHƢƠNG I: TỔNG QUAN .........................................................................................4 1.1. Cảm biến khí .........................................................................................................4 1.2. Các loại cảm biến điện hóa rắn .............................................................................6 1.2.1. Cảm biến điện hóa rắn kiểu dòng điện ...........................................................6 1.2.2. Cảm biến điện hóa rắn kiểu điện thế ..............................................................8 1.2.3. Cảm biến thế hỗn hợp (Mixed-potential gas sensor) ....................................10 1.3. Vật liệu dẫn ion YSZ...........................................................................................11 1.4. Vật liệu nhạy khí - oxit nano kim loại ................................................................13 1.4.1. Giới thiệu về vật liệu nhạy khí nano ABO3 ..................................................14 CHƢƠNG 2: PHƢƠNG PHÁP THỰC NGHIỆM VÀ NGHIÊN CỨU.................17 2.1. Chế tạo cảm biến .................................................................................................17 2.1.1. Vật liệu dẫn ion YSZ ....................................................................................17 2.1.2. Vật liệu nhạy khí nano-oxit kim loại ............................................................18 2.2. Phân tích tính chất nhạy khí của cảm biến ..........................................................22 CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN .............................................................24 3.1. Đánh giá đặc trưng dẫn ion của vật liệu YSZ .....................................................24 3.2. Cấu trúc các lớp của cảm biến ............................................................................27 3.3. Tính chất nhạy khí của cảm biến Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3 28 3.3.1. Đáp ứng cảm biến trong khí NOx .................................................................29 3.3.2. Đáp ứng cảm biến trong khí HC (C3H8 và C6H14)........................................33 3.3.3. Đáp ứng cảm biến trong khí CO ...................................................................35 3.4. So sánh tính chất nhạy khí của các cảm biến điện hóa rắn Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3 ...........................................................................................36 KẾT LUẬN ...................................................................................................................... DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT NOx NO2, NO LnMO3 Ln là kim loại đất hiếm: La, Nd, Sm, Gd…và M là kim loại chuyển tiếp 3d: V, Cr, Fe, Ni... TBP Điện cực - chất điện ly - khí SEM Kính hiển vi điện tử quét DANH MỤC CÁC BẢNG BIỂU Bảng 1: Một số loại cảm biến khí thường được sử dụng ................................................5 Bảng 2: Các phần tử điện tương đương của Pt/YSZ /Pt tại nhiệt độ hoạt động 400 oC. .......................................................................................................................................26 Bảng 3: So sánh độ nhạy các khí của cảm biến Pt/YSZ/LaNiO3 (ký hiệu CB1) và Pt/YSZ/LaNiO3-SmFeO3 (ký hiệu CB2). ........................................................................38 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Chƣơng 1 Hình 1. 1: Cấu trúc của cảm biến điện hóa rắn kiểu dòng điện [22]. ...........................7 Hình 1. 2: Cấu tạo của cảm biến điện hóa rắn kiểu dòng cho phát hiện đồng thời 2 khí O2 và NO [22]..................................................................................................................8 Hình 1. 3: Cấu trúc của cảm biến oxy dạng điện thế [19]. ............................................9 Hình 1. 4: Cấu trúc cảm biến thế hỗn hợp. ..................................................................11 Hình 1. 5: Cấu trúc mạng tinh thể lập phương của YSZ. .............................................12 Hình 1. 6: Cấu trúc perovskite (ABO3) lý tưởng (a); sự sắp xếp các bát diện trong cấu trúc perovskite lập phương lý tưởng (b); ......................................................................14 Chƣơng 2 Hình 2. 1: Giản đồ nhiễu xạ tia X của bột YSZ sau khi nung ở 500 oC [1]..................17 Hình 2. 2: Giản đồ nhiễu xạ (a); ảnh SEM (b) của mẫu bột SmFeO3 sau khi thiêu kết ở 500 oC [3]. .....................................................................................................................18 Hình 2. 3: Giản đồ XRD (a); ảnh SEM (b) của mẫu bột LaNiO3. ...............................19 Hình 2. 4: Hệ thiết bị in phủ. ........................................................................................20 Hình 2. 5: Sơ đồ quy trình chế tạo cảm biến điện hóa rắn với cấu hình Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3. ..........................................................................................21 Hình 2. 6: Ảnh chụp quang học của: chíp cảm biến Pt/YSZ/SmFeO3 (a); chip cảm biến Pt/YSZ/LaNiO3- SmFeO3 (b) được gắn trên đế Al2O3 ; bếp vi nhiệt Pt trên mặt sau đế Al2O3 (c). ........................................................................................................................22 Hình 2. 7: Vỏ cảm biến (buồng đo) được thiết kế chế tạo: (a) cấu trúc; (b) ảnh chụp lớp vỏ bên trong và bên ngoài .......................................................................................23 Hình 2. 8: Ảnh hệ phân tích tính chất nhạy khí. ...........................................................23 Chƣơng 3 Hình 3. 1: Cấu trúc lớp màng YSZ trong phương pháp đo tổng trở gồm 2 điện cực Pt ở 2 phía của lớp màng. ..................................................................................................24 Hình 3. 2: Ảnh SEM bề mặt viên nén YSZ sau khi nung ủ ở nhiệt độ 1300 oC. ...........24 Hình 3. 3: Kết quả đo tổng trở các màng YSZ sau khi ủ 1300 oC tại các nhiệt độ hoạt động 400 oC và đường khớp số liệu tổng trở theo mô hình tính toán;Hình chèn là phổ tổng trở của màng YSZ tại nhiệt độ hoạt động 500 oC và 600 oC. ...............................25 Hình 3. 4: Sơ đồ mạch tương đương ứng với hệ cảm biến điện hóa rắn. ....................26 Hình 3. 5: Ảnh SEM:lớp điện cực Pt trên YSZ (a); mặt cắt lớp điện cực Pt/YSZ (b); lớp nhạy khí LaNiO3 (c); lớp điện cực LaNiO3 trên YSZ (d). .......................................27 Hình 3. 6: Đáp ứng trong 15, 30, 60 và 90 ppm NO2 tại các nhiệt độ hoạt động 500, 550 và 600 oC của cảm biến: Pt/YSZ/ LaNiO3 (a); hình chèn là đáp ứng tại nhiệt độ 450 oC và Pt/YSZ/ LaNiO3-SmFeO3 (b). .......................................................................29 Hình 3. 7: Đáp ứng trong 15, 30, 60 và 90 ppm NO tại các nhiệt độ hoạt động 500, 550 và 600 oC của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). ..30 Hình 3. 8: Minh họa cấu trúc hình học của vùng chuyển tiếp 3 pha khí-điện cực-chất điện ly của 2 loại cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b)......31 Hình 3. 9: Đáp ứng của cảm biến Pt/YSZ/SmFeO3 trong khí CH4, C3H8, CO, C6H14, NO2 tại các nhiệt độ hoạt động khác nhau theo tài liệu [6]. ........................................33 Hình 3. 10: Đáp ứng trong 15, 30, 60 và 90 ppm C6H14 tại các nhiệt độ hoạt động 500, 550 và 600 oC của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b)...................................................................................................................................33 Hình 3. 11: Sự phụ thuộc của độ thay đổi điện thế vào nồng độ khí C6H14 ở các nhiệt độ hoạt động khác nhau của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3SmFeO3 (b).....................................................................................................................34 Hình 3. 12: Đáp ứng trong 30, 60 và 90 ppm C3H8 tại các nhiệt độ hoạt động 500, 550 và 600 oC của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). ..........35 Hình 3. 13: Đáp ứng trong 15, 30, 60 và 90 ppm CO tại các nhiệt độ hoạt động 500, 550 và 600 oC của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). ...35 Hình 3. 14: Biểu đồ so sánh độ nhạy khí của các 2 cảm biến Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3 hoạt động tại nhiệt độ 500, 550 và 60 oC. ............................36 Hình 3. 15: Cấu trúc và đặc trưng nhạy khí VOCs của 2 cấu hình cảm biến: Pt/YSZ/Pt và Pt/YSZ/Pt-SmFeO3 [8]. .............................................................................................37 1 MỞ ĐẦU Trong các quá trình đốt cháy nhiên liệu ở nhiệt độ cao, việc thừa khí oxy có thể sẽ tạo ra các khí độc như là NOx (bao gồm NO2 và NO) do oxy sẽ phản ứng với Nitơ (ở nhiệt độ cao), nếu thiếu khí oxy sẽ gây lãng phí nhiên liệu (không cháy hết) hoặc tạo ra các sản phẩm chứa các khí như: CO, HC. Các khí thải kể trên là rất độc hại đối với sức khoẻ con người và gây ô nhiễm môi trường chỉ với nồng độ rất nhỏ cỡ vài chục ppm (1ppm = 1/106). Vì vậy, việc khống chế, kiểm soát, phát hiện và phân tích nồng độ các khí này là rất quan trọng. Nó sẽ giúp ta xác định được nồng độ khí độc hại có trong không khí từ đó có thể đưa ra được các biện pháp xử lý, đặc biệt là kiểm soát được quá trình đốt cháy nhiên liệu để giảm thiểu các nguồn phát thải này. Với nồng độ khí trong khí thải (khoảng 0÷1000 ppm) trong vùng nhiệt độ cao có thể lên tới 1000 oC, loại cảm biến khí được nghiên cứu và ứng dụng nhiều nhất là cảm biến điện hóa dựa trên chất điện ly rắn của oxit kim loại. Do đây là loại cảm biến có độ ổn định tốt, độ chọn lọc cao và hoạt động trực tiếp được trong môi trường khắc nhiệt. Lambda là loại cảm biến điện hóa rắn đầu tiên đã được thương mại hóa chủ yếu trong ngành công nghiệp ôtô, với cấu hình Pt/YSZ (ZrO2 + Y2O3)/Pt để điều khiển trực tiếp nồng độ khí oxy trong quá trình đốt cháy nhiên liệu [49, 36, 40]. Tuy nhiên trên thực tế, đối với một hệ thống phân tích và kiểm soát các quá trình đốt cháy nhiên liệu hiện đại thì chỉ một loại cảm biến oxy là chưa đủ mà cần phải có sự kết hợp của nhiều loại cảm biến khí lại với nhau trong cùng một hệ thống đo đạc và điều khiển. Do đó, cảm biến điện hoá rắn cho phát hiện các khí như NOx, HC, CO, và CO2 cũng được quan tâm đặc biệt. Các loại cảm biến điện hóa rắn cho từng loại khí thải như NOx, HC, CO, và CO2 đã được nghiên cứu phát triển dựa trên cảm biến Lambda bằng cách thay thế hoặc phủ thêm lên trên một điện cực Pt bằng 1 điện cực nhạy khí oxit kim loại với cấu hình dạng Pt/YSZ/(oxit kim loại). Trên thế giới, cảm biến điện hóa rắn đã được nghiên cứu và ứng dụng từ lâu nhưng hiện nay vẫn đang thu hút được sự quan tâm từ các phòng thí nghiệm cũng như các hãng công nghiệp. Ngoài ra, các cảm biến điện hóa rắn cho các khí NOx, HC và CO hiện được nghiên cứu mạnh mẽ. Ở Việt Nam, theo như hiểu biết của tôi, lĩnh vực này vẫn còn rất hạn chế. Ví dụ có thể kể ra đó là: Viện vật lý kỹ thuật - Đại Học Bách Khoa Hà Nội, cảm biến được nghiên cứu ở đây là CO2 trên cơ sở chất điện ly rắn NASICON (hợp chất oxit Na-Zr-Si-P-O12) [3]. Những năm gần đây, Phòng cảm biến và thiết bị đo khí - Viện Khoa học Vật liệu, đã bắt đầu định hướng và thử nghiệm nghiên cứu cảm biến điện hóa rắn cho phân tích khí thải. Với một số đề tài đã và đang thực hiện như: đề tài Phòng thí nghiệm trọng điểm “Nghiên cứu chế tạo cảm biến khí NOx điện hóa rắn trên cơ sở chất điện ly YSZ” - mã số: CSTĐ01.12, và đề tài thuộc quỹ Nafosted “Nghiên cứu chế tạo cảm biến khí điện hóa trên cơ sở chất điện ly rắn YSZ”. Bước đầu, chúng tôi đã nghiên cứu chế tạo thử nghiệm chất điện ly rắn YSZ và 2 một số oxit đa kim loại perovskite định hướng cho nghiên cứu cảm biến điện hóa rắn cho khí thải với một số kết quả ban đầu đã được công bố [4, 2]. Trên những cơ sở đã trình bày trên, tôi đã lựa chọn vấn đề nghiên cứu của luận văn là: “Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy khí nano - oxit kim loại”. Ý tƣởng của luận văn: Yêu cầu quan trọng nhất đối với vật liệu được sử dụng làm điện cực nhạy khí trong cảm biến điện hóa rắn đó là: phải có độ dẫn điện tốt, thứ hai là có độ nhạy khí cao. Từ những yêu cầu trên, tôi đã lựa chọn oxit đa kim loại perovskite làm vật liệu nhạy khí do đây là vật liệu có những tính chất đặc biệt như: tính bền nhiệt cao, có khả năng điều khiển được về độ dẫn điện và tính chất tương tác với khí oxy hóa/khử. Do đó, các tham số này sẽ là ưu điểm cho thiết kế chế tạo cảm biến khí hoạt động ở nhiệt độ cao [1]. Vì vậy, các vật liệu này có thể được sử dụng làm điện cực để thay thế cho điện cực Pt. Từ đây ý tưởng của luận văn được đưa ra: Một là, sử dụng vật liệu oxit đa kim loại perovskite LaNiO3 có độ dẫn điện tốt làm điện cực nhạy khí để thay thế cho một điện cực Pt tạo thành cấu hình cảm biến Pt/YSZ/LaNiO3. Do LaNiO3 là vật liệu có độ dẫn điện cao [1], đặc biệt có độ bền nhiệt tốt và nó còn có khả năng tương tác thuận nghịch với khí oxy hóa/khử. Ngoài ra, dựa trên một số kết quả đã thực hiện tại Phòng “Cảm biến và Thiết bị đo khí” [2] và một số công trình đã công bố trên thế giới [32, 33], cảm biến điện hóa rắn Pt/YSZ/Pt-SmFeO3 cho độ nhạy cao với khí NOx và HC tuy nhiên độ ổn định của cảm biến này là không tốt có thể do SmFeO3 là vật liệu có độ dẫn điện kém. Vì thế, để cải thiện các đặc tính của cảm biến, tôi sẽ sử dụng vật liệu LaNiO3 có độ dẫn điện tốt làm lớp điện cực đệm ở bên dưới điện cực nhạy khí SmFeO3 để tạo thành cấu hình cảm biến Pt/YSZ/LaNiO3-SmFeO3. Mục tiêu: Trong luận văn này, tôi sẽ sử dụng hai cấu hình cảm biến Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3 để đánh giá, nghiên cứu đặc trưng nhạy khí thải, từ đó đánh giá ảnh hưởng của kim loại điện cực đến độ chọn lọc, độ nhạy và độ ổn định với các khí thải NOx, HC và CO. Nội dung nghiên cứu: - Nghiên cứu đặc trưng của lớp YSZ trong cảm biến điện hóa rắn về tính dẫn ion qua phép đo phổ tổng trở. - Chế tạo cảm biến điện hóa rắn dựa trên các nano-oxit đa kim loại perovskite với cấu trúc Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3. 3 - Nghiên cứu tính chất nhạy khí đối với một số khí thải thông dụng (NOx, CO, và khí HC) của cảm biến điện họa rắn Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3SmFeO3 đã chế tạo. Bố cục của luận văn: - Mở đầu - Chương I: Tổng quan. - Chương II: Các phương pháp thực nghiệm và nghiên cứu. - Chương III: Kết quả và thảo luận. - Kết luận. 4 CHƢƠNG I: TỔNG QUAN 1.1. Cảm biến khí Cùng với sự phát triển kinh tế đất nước, hội nhập với kinh tế khu vực và thế giới, nhiều khu công nghiệp nước ta đang phát triển nhanh chóng. Tuy nhiên, đi kèm với nó là những hệ lụy vô cùng xấu đó là khí thải làm ô nhiễm môi trường không khí. Các khí thải này bao gồm các khí độc, khí gây cháy nổ ví dụ như: CO, CO2, HC, SO2, NOx thường xuyên tồn tại trong môi trường không khí với nồng độ cao tập chung chủ yếu ở các thành phố lớn và các khu công nghiệp. Các khí độc chỉ với nồng độ rất nhỏ cỡ vài ppm đã ảnh hưởng đến sức khỏe con người. Do vậy, việc phát hiện, đo đạc và phân tích nồng độ khí thải là quan trọng nó sẽ giúp ta xác định được nồng độ khí thải có trong không khí từ đó có thể đánh giá và đưa ra được các biện pháp xử lý và chuyển hóa khí gây ô nhiễm hoặc là điều khiển, kiểm soát trực tiếp từ các nguồn phát thải. Có rất nhiều thiết bị để đo khí có thể kể đến như các thiết bị phân tích khí truyền thống là: “sắc ký khí”, “thiết bị phân tích phổ linh động ion”, “thiết bị phân tích phổ khối lượng” và “thiết bị phân tích phổ hấp thụ hồng ngoại” có độ chính xác cao hiện vẫn đang được sử dụng [31]. Tuy nhiên, các thiết bị này có hạn chế như là: kích thước lớn, cấu tạo phức tạp, giá thành cao, quá trình vận hành sử dụng thiết bị khó khăn và thời gian phân tích dài. Vì lý do này, các thiết bị đều được lắp đặt cố định và không thích hợp cho việc thực hiện phân tích nhanh và trực tiếp tại hiện trường nên chỉ phù hợp trong công nghiệp và trong các phòng thí nghiệm. Để đáp ứng được với yêu cầu thực tế, các cảm biến khí hóa học trên cơ sở vật liệu dạng rắn (solid-state chemical gas sensor) ngày càng được quan tâm và ứng dụng rộng rãi hơn. Một số loại cảm biến khí trên cơ sở oxit kim loại được quan tâm nghiên cứu nhiều như là: cảm biến độ dẫn điện (hay còn gọi là cảm biến bán dẫn), cảm biến nhiệt xúc tác, cảm biến điện hóa, cảm biến dựa trên hiệu ứng trường của một số linh kiện bán dẫn. Cảm biến dựa trên vật liệu nhạy khí là oxit kim loại có ưu điểm vượt trội: nguyên lý đơn giản, dải đo rộng, độ bền và ổn định cao, thiết kế đơn giản, giá thành rẻ, có khả năng chế tạo hàng loạt, thời gian thực hiện phép đo nhanh, có thể thực hiện đo trực tiếp và trực tuyến trong môi trường cần phân tích khí và dễ kết hợp với thiết bị điều khiển khác. Tuy nhiên, tính chất nhạy khí của oxit kim loại phụ thuộc vào rất nhiều yếu tố khó kiểm soát, ví dụ như: kích thước hạt và dạng hạt; kết cấu hình thái học của các hạt tinh thể; ảnh hưởng của các chất xúc tác; ảnh hưởng của điện cực; cấu hình cảm biến; ảnh hưởng của điều kiện hoạt động cảm biến; v.v. Hiện tại các nghiên cứu trong lĩnh vực này vẫn đang hướng tới mục đích là cải thiện các tham số của cảm biến đặc biệt là về: độ nhạy, độ chọn lọc, độ ổn định và độ tin cậy. Dưới đây là bảng liệt kê một số loại cảm biến khí thường được sử dụng bao gồm: cấu tạo, nguyên tắc hoạt động, ưu điểm và nhược điểm của từng loại. 5 Bảng 1: Một số loại cảm biến khí thường được sử dụng Các loại cảm biến Cảm biến khối lƣợng Cảm biến quang Cảm biến điện trở (trên cơ sở các oxit bán dẫn) Cảm biến điện hóa sử dụng chất điện ly lỏng Cảm biến dạng điện hóa rắn Cấu tạo Nguyên tắc Dựa trên sự thay đổi khối lượng do - Bộ phận nhận biết khí hấp phụ trên bề mặt vật liệu để xác sự thay đổi khối định nồng độ. lượng. - Bộ phận hấp phụ khí. - Bộ phận lấy mẫu khí. - Các đầu phát thu tín hiệu quang học. - Lớp vật liệu nhạy khí là oxit bán dẫn. - Bếp vi nhiệt. - Điện cực - Chất điện ly lỏng (dung dịch H2SO4) Dựa trên phổ hấp thụ quang học của từng loại khí khác nhau để xác định nồng độ khí. Ưu điểm - Công suất tiêu thụ nhỏ có thể đo trong khoảng nồng độ lớn. - Công suất tiêu thụ nhỏ. - Độ ổn định cao. Dựa trên sự thay đổi độ dẫn của của vật liệu nhạy khí trong môi trường có khí cần đo. - Độ nhạy cao hay độ phân giải tốt. Hoạt động của cảm biến này dựa trên các nguyên lý về điện hóa. - Hoạt động tại nhiệt độ phòng. - Điện cực nhạy khí Hoạt động của cảm biến này dựa trên - Chất điện ly các nguyên lý về - Điện cực so sánh điện hóa. Nhược điểm - Thiết kế thiết bị đo phức tạp. - Thời gian hồi đáp chậm. - Độ phân giải kém. - Thiết kế rất phức tạp. - Cần có xử lý tín hiệu phổ hấp thụ, thời gian phân tích lâu. - Độ chọn lọc, độ ổn định kém. - Chế tạo đơn giản. - Độ chọn lọc cao. - Độ chọn lọc cao. - Độ phân giải tốt. - Tuổi thọ kém, giá thành cao. - Thiết kế khá phức tạp. - Tuổi thọ cao, giá thành thấp. Trong bảng 1 chúng ta thấy rằng mỗi một loại cảm biến đều có những ưu, nhược điểm khác nhau. Tuy nhiên để có thể ứng dụng được vào thực tế trong việc đo đạc và phân tích nồng độ khí thải yêu cầu chung đối với cảm biến khí là: 6  Độ nhạy cao;  Độ chọn lọc khí tốt;  Thời gian hồi đáp nhanh;  Độ ổn định tốt;  Độ già hóa hay thời gian sống phải lâu;  Giá thành rẻ; Từ những yêu cầu trên và so sánh các ưu, nhược điểm của từng loại cảm biến như ở trong bảng 1, nhận thấy cảm biến dạng điện hóa rắn là phù hợp cho thiết bị dạng phân tích khí thải trong môi trường chứa nhiều loại khí và có thể hoạt động trực tiếp trong môi trường khắc nhiệt (có nhiệt độ cao, thường xuyên xảy ra các phản ứng oxy/hóa khử…). 1.2. Các loại cảm biến điện hóa rắn Cảm biến điện hóa bao gồm: cảm biến sử dụng chất điện ly lỏng và cảm biến sử dụng chất điện ly rắn. Ưu điểm của cảm biến sử dụng chất điện ly lỏng đó là: hoạt động tại nhiệt độ phòng và có độ chọn lọc cao, tuy nhiên nhược điểm của nó là: tuổi thọ kém, giá thành cao và do sử dụng các chất điện ly lỏng thường là dung dịch H2SO4 nên đôi khi cũng khá là độc hại. Trong khi đó, cảm biến điện hóa sử dụng chất điện ly rắn có nhiều ưu điểm nổi trội như: độ chọn lọc cao, độ phân giải tốt, tuổi thọ cao và giá thành rẻ; nhược điểm của cảm biến này là: thiết kế khá phức tạp cho hoạt động nhiệt độ cao. Theo yêu cầu thực tế, để cảm biến có thể đo đạc và phân tích được trực tiếp trong môi trường khí thải (điều kiện nhiệt độ cao, thường xuyên có các tác nhân oxy hóa/khử), cảm biến điện hóa sử dụng chất điện ly rắn dựa trên các oxit kim loại vẫn là lựa chọn tối ưu nhất từ trước đến nay. Dưới đây là trình bày về cấu tạo, cơ chế hoạt động và ưu, nhược điểm của một số loại cảm biến điện hóa rắn theo kiểu dòng và thế. 1.2.1. Cảm biến điện hóa rắn kiểu dòng điện Cảm biến điện hóa rắn kiểu dòng có ưu điểm là đặc trưng tín hiệu ra (I) phụ thuộc tuyến tính vào nồng độ khí (Cgas). Cấu trúc của cảm biến điện hóa rắn dạng dòng (ví dụ, cho khí oxy) như trong hình 1.1, bao gồm: lớp điện ly rắn; 2 điện cực anode (cực dương) và cathode (cực âm) được phủ lên trên 2 mặt của lớp chất điện ly. Ngoài ra, trong cấu trúc này còn có khe để điều khiển khí khuếch tán vào bề mặt điện cực. 7 Hình 1. 1: Cấu trúc của cảm biến điện hóa rắn kiểu dòng điện [22]. Nguyên lý làm việc chung của cảm biến này là dựa trên sự kích thích các phản ứng điện hóa (trao đổi 𝑒 −) giữa khí và điện cực xảy ra bằng một điện thế ngoài đặt vào hai đầu điện cực. Khi đó sẽ xảy ra phản ứng điện hóa tại điện cực cathode theo phương trình (1.1): − − 𝑂2(𝑘ℎí) + 4𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) → 2𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) (1.1) Ion oxy (𝑂−) được tạo ra sẽ di chuyển bên trong chất điện ly để tới điện cực anode tại đây chúng sẽ kết hợp lại với nhau để tạo thành phân tử oxy và trả lại điện tử (e-) như phương trình (1.2): − − 2𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) → 𝑂2(𝑘ℎí) + 4𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) (1.2) − Ở đó, 𝑂2(𝑘ℎí) là oxy trong không khí , 𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) là ion oxy linh động trong mạng tinh thể của chất điện ly. Phương trình (1.1) thể hiện các phân tử oxy trong môi trường khí cần đo sau khi đi qua khe điều khiển tới điện cực cathode tại đây chúng sẽ tác dụng với 4 điện tử của điện cực cathode để tạo thành các ion oxy, sau đó các ion oxy này sẽ di chuyển bên trong mạng tinh thể chất điện ly để tới điện cực anode, tại đây sẽ xảy ra phản ứng oxy hóa tạo ra các phân tử oxy và thoát ra môi trường không khí bên ngoài. Dòng điện tới hạn (I) hay tín hiệu ra của cảm biến phụ thuộc vào nồng độ khí cần đo và các thông số hình học của khe khuếch tán (như diện tích khe…). Đặc trưng dòng điện tới hạn của cảm biến dòng phụ thuộc vào nồng độ khí có dạng: I = nFkAC exp(nFE/RT) (1.3) Ở đó: k là hằng số chuẩn; F là hằng số Faraday; T là nhiệt độ K; A là diện tích điện cực; C là nồng độ khí; n đặc trưng số điện tử tham gia vào phản ứng;  và E là hệ số liên quan đến sự khuếch tán và điện thế tổng cộng. Với thiết kế cấu trúc và điều kiện nhiệt nhất định công thức (1.3) khi đó có dạng phụ thuộc tuyến tính vào nồng độ khí: I = k Cgas (1.4) Điểm đặc biệt của cảm biến dạng dòng là không chỉ đo được một loại khí duy nhất mà còn có thể đo được nhiều loại khí khác nhau trong cùng một cấu trúc cảm 8 biến. Khi đó, cảm biến sẽ được bổ sung thêm các cặp điện cực với các vật liệu nhạy khí khác nhau. Chỉ cần điều chỉnh thế áp vào tại mỗi cặp điện cực để tạo ra vùng hoạt động riêng cho từng loại khí. Ví dụ như: hơi nước sẽ bị điện ly khi đặt điện thế trong khoảng 1,2 V tại 800° 𝐶 [34, 30] theo phương trình: − 2− 𝐻2 𝑂(𝑔𝑎𝑠 ) + 2𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) → 𝐻2(𝑔𝑎𝑠 ) + 𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) (1.5) Trong khi đó, khí 𝐶𝑂2 bị điện ly khi đặt điện thế khoảng 1,6 V [34, 30] theo phương trình: − 2− 𝐶𝑂2(𝑔𝑎𝑠 ) + 2𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) → 𝐶𝑂(𝑔𝑎𝑠 ) + 𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) (1.6) Trong hình 1.2 là thiết kế cảm biến điện hóa rắn dạng dòng dùng để xác định đồng thời cả hai loại khí NO và 𝑂2 [45, 43]. Trong cấu trúc này, một điện áp 300 mV được đặt vào cặp điện cực đầu tiên cho việc phát hiện nồng độ khí 𝑂2 , trong khi đó điện áp 550 mV được đặt vào cặp điện cực thứ hai cho phát hiện khí NO. Hình 1. 2: Cấu tạo của cảm biến điện hóa rắn kiểu dòng cho phát hiện đồng thời 2 khí O2 và NO [22]. Ƣu điểm của cảm biến dạng dòng: tín hiệu ra có thể điều khiển phụ thuộc tuyến tính vào nồng độ khí và ít bị ảnh hưởng bởi nhiệt độ. Có thể đo được nhiều loại khí khác nhau trong cùng một cấu trúc. Nhƣợc điểm: thiết kế phức tạp, độ ổn định kém, tín hiệu ra phụ thuộc vào vi cấu trúc của cảm biến và của khe khuếch tán. Đặc biệt cảm biến loại này thường có tuổi thọ không cao. Tuy nhiên hiện nay, bằng một số công nghệ hiện đại đã có thể hạn chế được một số nhược điểm này. 1.2.2. Cảm biến điện hóa rắn kiểu điện thế Cảm biến điện hóa rắn kiểu điện thế thường hoạt động trong khoảng nhiệt độ khá cao từ (500 – 1600° 𝐶) và có điện thế giữa hai điện cực tuân theo dạng phương trình định luật Nernst: 9 V = EMF = E0 + RT/nF(ln(Pw/P0)) (1.7) Ở đó: E0 là điện thế ở điều kiện chuẩn tại áp suất 1 barr; Pw là áp suất khí riêng phần ở điện cực trong môi trường cần phân tích; P0 là áp suất khí riêng phần ở điện cực so sánh hay điện cực chuẩn; EMF (ElectroMotive Force) là thế suất điện động (hay hiệu điện thế hoặc thế điện hóa) giữa hai điện cực. Một trong những loại cảm biến tiêu biểu nhất cho cảm biến dạng thế đó là cảm biến Lambda. Cảm biến Lambda (𝜆) hiện nay được sử dụng rộng rãi để đo nồng độ oxy trong khí thải của xe ôtô (với 𝜆 là tỷ lệ giữa oxy và khí thải trong động cơ). Khi 𝜆 > 1 ta có một hỗn hợp khí dư oxy khi đó động cơ sẽ thải ra rất nhiều khí CO, HC và khi 𝜆 < 1 khi ta có một hỗn hợp thiếu oxy khi đó động cơ sẽ thải ra các khí NOx. Trong cả hai trường hợp trên đều cần phải tránh. Người ta cố giắng tiến đến tỷ lệ λ = 1 để trong khí thải có ít khí độc và hiệu suất cháy nổ của động cơ được tối ưu. Cấu tạo của cảm biến Lambda như trên hình 1.3 bao gồm [22]: 2 điện cực Platin (Pt) phủ lên 2 mặt của 1 ống gốm là chất có khả năng dẫn ion cao (ví dụ ZrO2). Trong thiết kế này 2 điện cực Pt phải tách rời nhau tức là chúng không được ở trong cùng một môi trường khí (1 điện cực ở trong môi trường chứa khí thải, 1 điện cực ở trong môi trường không khí bên ngoài). Hình 1. 3: Cấu trúc của cảm biến oxy dạng điện thế [19]. Cơ chế hoạt động của cảm biến như sau: theo cơ chế vật lý cảm biến hoạt đông dựa trên sự dẫn điện do các ion trong chất điện ly và sự có mặt của lực cơ điện do sự khác biệt giữa áp suất riêng phần của khí cần đo (ví dụ: khí oxy trong khí thải) và áp suất khí chuẩn (ví dụ: không khí). Sự dẫn điện ở đây không xảy ra trên bề mặt mà trong cả thể tích của cảm biến. Khi số phân tử oxy tại bề mặt của điện cực và chất điện ly là cân bằng, tại cathode (nơi có áp suất riêng phần của oxy lớn hơn tại anode) các phản ứng điện hóa sẽ xảy ra theo phương trình: − − 𝑂2(𝑘ℎí) + 4𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) → 2𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) (1.8) 10 Tại anode: − − 2𝑂(đ𝑖ệ𝑛 𝑙𝑦 ) → 𝑂2(𝑘ℎí) + 4𝑒(đ𝑖ệ𝑛 𝑐ự𝑐) (1.9) Khi đó 1 hiệu điện thế sẽ được hình thành giữa 2 đầu điện cực theo phương trình (1.7). Ƣu điểm của cảm biến kiểu điện thế: tín hiệu điện áp ra (xét mặt lý thuyết) không phụ thuộc vào kích thước, vi cấu trúc các lớp của cảm biến (vùng tiếp xúc của ba pha: khí - điện cực - chất điện ly), do đó cảm biến loại này thường có tuổi thọ và độ bền cao (có thể lên đến 10 năm, như cảm biến lambda [49]). Nhƣợc điểm: Khó chế tạo, tín hiệu ra thường không ổn định trong môi trường chứa nhiều loại khí và tín hiệu điện áp ra EMF không phụ thuộc tuyến tính vào nồng độ khí. 1.2.3. Cảm biến thế hỗn hợp (Mixed-potential gas sensor) Trong cảm biến điện hóa rắn kiểu thế khi ở trạng thái cân bằng điện hóa thì tín hiệu ra của cảm biến là tuân theo định luật Nernst. Tuy nhiên xét trong một môi trường chứa nhiều loại khí oxy hóa/khử, phụ thuộc vào vật liệu làm điện cực (ví dụ: Pt) trạng thái cân bằng này chỉ được thiết lập khi mà nhiệt độ hoạt động của cảm biến là trên 700° 𝐶. Khi nhiệt độ hoạt động nhỏ hơn 700° 𝐶 các thành phần khí này là không cân bằng nhiệt động và sẽ tham gia vào các phản ứng điện hóa. Ví dụ trong môi trường chỉ bao gồm các khí O2 và HC, khi đó ở 1 trong 2 điện cực của cảm biến đều có thể xảy ra đồng thời các phản ứng khử của khí oxy và phản ứng oxy hóa của khí HC (C3H6) theo các phương trình (1.10), (1.11) [37]: 𝑔 1 2 𝑂2 + 𝑉𝑂" + 2𝑒 − ↔ 𝑂02− 𝑔 (1.10) 𝑔 𝐶3 𝐻6 + 9𝑉𝑂" → 3𝐶𝑂2 + 3𝐻2 𝑂 𝑔 + 9𝑉𝑂" + 18𝑒 − (1.11) Ở đó, 𝑉𝑂" là lỗ trống khuyết thiếu oxy, 𝑂02−là ion oxy trong mạng tinh thể của chất điện 𝑔 ly, 𝑂2 là oxy trong không khí. Tín hiệu ra lúc này của cảm biến là không tuân theo phương trình định luật Nernst nó là thế hỗn hợp ở cả hai điện cực khi đó cảm biến thường được biết đến với tên gọi cảm biến thế hỗn hợp (tên tiếng anh là “mixed potential sensors”). Cảm biến thế hỗn hợp thường có cấu tạo như trong hình 1.4 bao gồm: 2 điện cực là các vật liệu khác nhau được phủ lên trên bề mặt của lớp chất điện ly, cả 2 điện cực này ở trong cùng một môi trường khí (không cần tách riêng điện cực ở môi trường khí chuẩn và môi trường khí cần đo). Trong đó 1 điện cực được chọn sao cho chỉ nhạy với khí oxy (điện cực chuẩn - reference electrode), điện cực này thường là kim loại như Pt hoặc Au; và một điện cực đóng vai trò chính tương tác với khí oxy hóa/khử (điện cực nhạy khí - sensing electrode), điện cực này thường là các oxit kim loại (SnO2, WO3, NiO, v.v.). 11 Hình 1. 4: Cấu trúc cảm biến thế hỗn hợp. Cơ chế hoạt động của cảm biến thế hỗn hợp dựa trên tương tác của khí oxy, khí cần đo (ví dụ C3H6) tại vùng tiếp giáp của ba pha (TBP: điện cực-chất điện ly-khí). Khi đó các phản ứng hóa học của khí oxy và khí cần phân tích tại vùng chuyển tiếp TBP xảy ra đồng thời ở trên mỗi điện cực theo các phương trình (1.10) và (1.11). Phương trình (1.10) thể hiện oxy trong không khí tương tác tại điện cực để sinh ra ion oxy (Oo2-) tham gia vào độ dẫn ion của của lớp điện ly. Trong phương trình (1.11) thể hiện tính tương tác của khí cần đo tại điện cực, trong ví dụ trên C3H6 tương tác với ion oxy trong chất điện ly để tạo ra điện tử và lỗ trống khuyết thiếu oxy Vo...Do đó, khi các phương trình phản ứng (1.10) và (1.11) xảy ra sẽ hình thành điện thế phân cực tại hai điện cực, ký hiệu là EMF. Ưu điểm lớn nhất của cảm biến loại này chính là kết hợp được nhiều oxit kim loại trong một cấu trúc rất đơn giản, dễ chế tạo, và tính chất nhạy khí phong phú. Ngoài ra, dựa trên công nghệ chế tạo planar (tạo các lớp vật liệu ở dạng mặt phẳng), người ta có thể chế tạo được cảm biến cảm biến dạng này với số lượng lớn có công suất nhỏ và giá thành rẻ. Do cấu trúc đơn giản và điện cực nhạy khí kết hợp được nhiều oxit kim loại với nhau nên cảm biến điện hóa rắn dạng “mixed potential gas sensor” được đặc biệt quan tâm nghiên cứu và cả phát triển ứng dụng. Do đó trong đề tài luận văn này, tôi sẽ tập trung, nghiên cứu chế tạo cảm biến điện hóa rắn dạng “mixed potential gas sensor” cho việc phát hiện khí thải. 1.3. Vật liệu dẫn ion YSZ Vật liệu dẫn ion đầu tiên được ứng dụng trong cảm biến khí đó là các oxit của kim loại chuyển tiếp nhóm IVB (ZrO2, HfO2, CeO2,...) được pha tạp vào trong cấu trúc mạng tinh thể của các oxit kim loại kiềm thổ nhóm IIA (BeO, MgO, CaO, SrO, BaO,...) hoặc oxit của các kim loại đất hiếm (Sc2O3, Y2O3,...) [14] . Có nhiều vật liệu dẫn ion rắn dựa trên các oxit kim loại mới đã được tìm thấy như: Gd pha tạp CeO2, Bi2O3 pha tạp 25% mol Er2O3, v.v. Các vật liệu này có đặc tính dẫn ion rất tốt thậm trí còn cao hơn nhiều so với vật liệu dẫn ion YSZ (ZrO2 + Y2O3) tuy nhiên chúng thường
- Xem thêm -

Tài liệu liên quan