Đăng ký Đăng nhập
Trang chủ Các phương pháp cân bằng động chi tiết quay...

Tài liệu Các phương pháp cân bằng động chi tiết quay

.PDF
59
6
119

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CƠ HỌC Phạm Thị Thúy CÁC PHƯƠNG PHÁP CÂN BẰNG ĐỘNG CHI TIẾT QUAY LUẬN VĂN THẠC SĨ HÀ NỘI 2007 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CƠ HỌC Phạm Thị Thúy CÁC PHƯƠNG PHÁP CÂN BẰNG ĐỘNG CHI TIẾT QUAY Chuyên ngành: Cơ học Vật thể rắn Mã số: 60.44.21 LUẬN VĂN THẠC SỸ NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TSKH. NGUYỄN CAO MỆNH HÀ NỘI 2007 MỤC LỤC MỤC LỤC ..................................................................................................... 2 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ................................................... 4 MỞ ĐẦU ....................................................................................................... 5 Chƣơng 1. TỔNG QUAN VỀ VẤN ĐỀ CÂN BẰNG ĐỘNG RÔ TO .......... 7 1.1. Một số khái niệm về cân bằng rô to ...................................................... 7 1.1.1. Rô to cứng ..................................................................................... 7 1.1.2. Rô to mềm ..................................................................................... 7 1.1.3. Mất cân bằng của rô to cứng .......................................................... 7 1.1.4. Mất cân bằng của rô to dạng đĩa..................................................... 9 1.1.5. Mất cân bằng của rô to dài ........................................................... 10 1.1.6. Định nghĩa về cân bằng rô to cứng ............................................... 11 1.2. Giới thiệu tổng quan các phƣơng pháp cân bằng động đang đựơc sử dụng .......................................................................................................... 11 1.2.1. Cân bằng rô to phẳng ................................................................... 12 1.2.2. Cách chọn khối lƣợng thử ............................................................ 13 1.2.3. Cân bằng rô to dài ........................................................................ 15 1.2.4. Cân bằng rô to mềm ..................................................................... 16 1.3. Kết luận chƣơng 1 .............................................................................. 17 Chƣơng 2. CÂN BẰNG ĐỘNG RÔ TO PHẲNG ........................................ 18 2.1. Các phƣơng pháp cân bằng rô to phẳng trong hệ tuyến tính ............... 18 2.1.1. Mô hình dao động của hệ có rô to mất cân bằng .......................... 18 2.1.2. Phƣơng pháp cân bằng “Tải trọng vòng quanh” ........................... 21 2.1.3. Phƣơng pháp cân bằng 3 lần thử .................................................. 23 2.1.4. Phƣơng pháp cân bằng 2 lần thử .................................................. 25 2 2.1.5. Phƣơng pháp “Gắn khối lƣợng thử cách đều 1200” hay còn gọi là phƣơng pháp 4 lần chạy máy [3] ............................................................ 27 2.1.6. Phƣơng pháp đo đƣợc biên độ dao động và pha ........................... 29 2.2. Mô phỏng cân bằng động đối với rô to phẳng trong hệ phi tuyến [12] 30 2.2.1. Mô hình tính toán......................................................................... 30 2.2.2. Mô phỏng số và quy trình cân bằng động hệ phi tuyến ................ 32 2.3. Kết luận của chƣơng 2........................................................................ 36 Chƣơng 3. PHƢƠNG PHÁP CÂN BẰNG RÔ TO DÀI............................... 38 3.1. Mô hình dao động của rô to dài và cứng trên ổ đỡ .............................. 38 3.2. Các phƣơng pháp cân bằng động rô to dài trong hệ tuyến tính ........... 40 3.2.1. Phƣơng pháp cân bằng thứ nhất ................................................... 41 3.2.1. Phƣơng pháp cân bằng thứ hai ..................................................... 44 3.2.3. Phƣơng pháp cân bằng thứ ba ...................................................... 49 3.3. Sự phụ thuộc của hệ số ảnh hƣởng vào khối lƣợng............................. 52 3.4. Kết luận của chƣơng 3........................................................................ 54 KẾT LUẬN CHUNG ................................................................................... 56 TÀI LIỆU THAM KHẢO ............................................................................ 58 3 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1. Tiêu chuẩn lựa chọn số mặt phẳng cân bằng. .................................. 8 Hình 1.2. Đƣa mất cân bằng rô to dài về 2 mặt phẳng I và II. ....................... 10 Hình 2.1. Mô hình dao động của hệ rô to mất cân bằng. ............................... 18 Hình 2.2. Đồ thị biên độ A trên mặt phẳng (ω2, A) khi h thay đổi. ............... 19 Hình 2.3. Đồ thị biên độ A khi mất cân bằng U thay đổi. ............................. 20 Hình 2.4. Mô tả phƣơng pháp tải trọng vòng quanh...................................... 21 Hình 2.5. Đồ thị biên độ dao động của phƣơng pháp tải trọng vòng quanh. .. 23 Hình 2.6. Mô tả phƣơng pháp cân bằng 3 lần thử. ........................................ 24 Hình 2.7. Mô tả phƣơng pháp cân bằng 2 lần thử. ........................................ 26 Hình 2.8. Sơ đồ hợp lực của phƣơng pháp cân bằng 2 lần thử. ..................... 27 Hình 2.9. Phƣơng pháp gắn khối lƣợng thử cách đều 1200. .......................... 28 Hình 2.10. Phƣơng pháp đo dao động và pha. .............................................. 29 Hình 2.11. Đồ thị mô tả giữa A và  của hệ phi tuyến. ................................ 31 Hình 2.12. Phổ dao động với f3 = 3 Hz, A0 =0,87992. ................................ 33 Hình 2.13. Phổ dao động ở f4 = 24Hz, xuất hiện 2 đỉnh 8Hz và 24Hz, không thể lấy biên độ để cân bằng nhƣ dạng tuyến tính. ......................................... 34 Hình 2.14. Phổ dao động ứng với f5 = 34Hz. ................................................ 34 Hình 2.15. Dao động của rô to trƣớc cân bằng A0, sau 2 lần cân bằng là Acb1 và Acb2. ......................................................................................................... 35 Hình 2.16. Đồ thị phổ dao động trƣớc khi cân bằng A0, sau khi cân bằng 2 lần là Acb1 và Acb2. .............................................................................................. 36 Hình 3.1. Mô tả rô to dài và cứng trên ổ đỡ. ................................................. 38 Hình 3.2. Mô hình lập phƣơng trình dao động rô to dài và cứng................... 38 Hình 3.3. Mô tả phƣơng pháp cân bằng thứ nhất. ......................................... 41 Hình 3.4. Ví dụ............................................................................................. 44 Hình 3.5. Véc tơ dao động do mất cân bằng của ví dụ .................................. 44 Hình 3.6. Phƣơng pháp cân bằng thứ 2 ......................................................... 45 Hình 3.7. Cách xác định C1 và C2. ................................................................ 49 Hình 3.8. Kết quả thu đƣợc khi cân bằng rô to ............................................. 51 Hình 3.9. Đồ thị giá trị K12 phụ thuộc vào M ............................................... 54 Hình 3.10. Giá trị tuyệt đối K12 phụ thuộc vào M ........................................ 54 4 MỞ ĐẦU Một trong các bộ phận thƣờng gặp trong máy là các chi tiết quay (thƣờng gọi là rô to, theo định nghĩa của ISO, rô to là vật quay có các cổ trục tựa trên ổ đỡ [5]). Nguồn gây ra dao động phổ biến nhất là mất cân bằng của rô to. Mất cân bằng xẩy ra trong trƣờng hợp chung nhất là khi trục quán tính chính của rô to không trùng với trục quay hình học, một trong các thể hiện của nó là trọng tâm của rô to không nằm trên trục quay. Khi rô to quay sẽ sinh ra lực ly tâm mà tổng hợp các lực này tạo thành hợp lực và ngẫu lực. Các lực này gây ra dao động và tiếng ồn khi máy chạy, truyền lực xuống ổ đỡ và móng, làm giảm tuổi thọ của máy do mòn ổ đỡ, cổ trục và đồng thời làm ảnh hƣởng đến sức khỏe của công nhân do làm việc trong môi trƣờng rung và ồn quá mức cho phép. Lực ly tâm do mất cân bằng còn gây ra những hiện tƣợng khác nhƣ hiện tƣợng đảo dầu ở các ổ trƣợt dẫn đến hiện tƣợng mất ổn định của máy [3]. Việc cân bằng động tức là căn chỉnh lại khối lƣợng để làm giảm các hiện tƣợng trên xuống dƣới mức cho phép. Hầu nhƣ đối với tất cả rô to, việc cân bằng ngày nay đƣợc xem nhƣ một công việc tối quan trọng vì xu thế hiện nay là để tăng công suất máy, ngƣời ta tăng tốc độ quay tới vài chục nghìn vòng/phút. Lực ly tâm tỷ lệ với bình phƣơng tốc độ quay, nên dù khối lƣợng mất cân bằng (lệch tâm) rất nhỏ nhƣng cũng tạo ra lực ly tâm lớn [6]. Đối với các máy quay hiện đại nhƣ động cơ điện, máy phát điện, máy tuốc bin, máy nén khí, quạt thông gió v,v... với việc tăng tốc độ quay thì việc cân bằng động coi nhƣ một mệnh lệnh và mức dao động cho phép phải chấp nhận một cách nghiêm ngặt [3,6]. Đối với cân bằng động rô to, có thể phân ra thành 2 loại: Cân bằng động trên máy chuyên dụng và cân bằng động tại hiện trƣờng. Cân bằng động trên máy chuyên dụng tức là sau khi chế tạo rô to ngƣời ta cân bằng hàng loạt ngay tại xƣởng trên máy cân bằng chuyên dụng cho vài loại sản phẩm. Còn cân bằng tại chỗ tức là 5 khi hệ thống máy đã đƣợc lắp ráp hoàn chỉnh, ta tiến hành cân bằng rô to tại nơi làm việc, hoặc cũng có thể máy đã đƣa vào sản xuất một thời gian, khi phát hiện vấn đề về rung, ồn mạnh do mất cân bằng gây ra thì ta phải tiến hành cân bằng tại chỗ. Cân bằng động tại chỗ có các ƣu điểm là: Không cần phải tháo máy làm mất thời gian dừng máy lâu và không phải tốn kém cho việc tháo lắp và chuyên chở; các bộ phận của máy đƣợc cân bằng đồng thời và kết quả cuối cùng là dao động tổng thể của máy giảm xuống dƣới mức cho phép, vì trong thực tế có khi từng bộ phận cân bằng tốt, nhƣng khi lắp tổng thể vẫn bị dao động mạnh; đƣợc tiến hành trong điều kiện vận hành bình thƣờng gần nhƣ khi sản xuất nên kết quả cuối cùng là tình trạng chấp nhận đƣợc trong sản xuất. Ngƣời ta thấy rằng những hƣ hỏng cơ học giảm đi nhiều nếu rô to không những chỉ đƣợc cân bằng tại xƣởng mà còn đƣợc kiểm tra sau lắp ráp và cân bằng động tại hiện trƣờng khi cần. Tuy nhiên, nhiều loại rô to sản xuất hàng loạt thì việc cân bằng động tại xƣởng trên máy cân bằng động chuyên dụng là rất cần thiết và quan trọng. Trong sản xuất có cả cân bằng tĩnh và cân bằng động. Về nguyên lý, đối với rô to ngắn (còn gọi là chi tiết quay phẳng) thì chỉ cần cân bằng tĩnh là đủ, nhƣng trong thực tế do ảnh hƣởng của ma sát và nhiều nguyên nhân khác nữa nên đối với các loại rô to việc cân bằng động sẽ giải quyết tổng thể hơn. Tóm lại, cân bằng động là một khâu rất quan trọng đối với rô to, làm giảm dao động và ồn của máy, tăng tuổi thọ cho máy, giảm ảnh hƣởng xấu đến môi trƣờng làm việc của công nhân và giảm thời gian sửa chữa, dừng máy và gián đoạn sản xuất. 6 Chƣơng 1. TỔNG QUAN VỀ VẤN ĐỀ CÂN BẰNG ĐỘNG RÔ TO 1.1. Một số khái niệm về cân bằng rô to Để có thể làm quen với những thuật ngữ dùng sau này, ở đây xin giới thiệu một số khái niệm mang tính chất nhƣ định nghĩa về rô to và cân bằng rô to. 1.1.1. Rô to cứng Một rô to dài đƣợc gọi là rô to cứng khi mất cân bằng của nó có thể căn chỉnh trong hai mặt phẳng bất kỳ (chọn tùy ý) và sau khi đƣợc căn chỉnh thì mất cân bằng không thay đổi đáng kể ở bất kỳ tốc độ nào nhỏ hơn tốc độ làm việc cực đại. 1.1.2. Rô to mềm Là rô to không thỏa mãn định nghĩa của rô to cứng. Trong luận văn này giới hạn khảo sát chủ yếu các loại rô to cứng. 1.1.3. Mất cân bằng của rô to cứng Để hiểu thế nào là khái niệm mất cân bằng ta cần biết thêm một số định nghĩa sau: - Đường trục là đƣờng thẳng nối tâm của cổ trục. Đƣờng trục cố định cùng với rô to trong cả quá trình chuyển động. - Đại lượng mất cân bằng của rô to: Khi có một khối lƣợng u ở cách đƣờng trục một khoảng r thì đại lượng đo mất cân bằng của rô to là:   (1.1) U  ur  r - véc tơ có gốc là đƣờng trục và đỉnh là tâm khối lƣợng u trong mặt phẳng vuông góc với đƣờng trục. - Lực ly tâm quán tính: Khi trục quay với vân tốc góc  thì khối lƣợng u ở cách trục quay một khoảng r sẽ sinh ra lực ly tâm quán tính cho bởi công thức: 7    F  u 2 r   2U (1.2) - Căn chỉnh mất cân bằng là quá trình thay đổi lại phân bố khối lƣợng của rô to bằng cách thêm hoặc bớt khối lƣợng để cho mất cân bằng bằng không:   U  ua ra  0 (1.3) trong đó ua là khối lƣợng cần thêm vào (hoặc bớt đi) còn ra là bán kính tính từ tâm khối lƣợng ua đến đƣờng trục trong mặt phẳng vuông góc với đƣờng trục. Mất cân bằng U đƣợc căn chỉnh bởi thêm khối lƣợng vào phía đối diện với u hoặc lấy bớt đi khối lƣợng ở cùng phía với u. Do cấu tạo của rô to, khối lƣợng thêm vào hoặc bớt đi có thể lấy ở nhiều vị trí, sao cho tổng hợp lại thỏa mãn điều kiện (1.3). Để cân bằng rô to cứng, từ thực nghiêm trong thực tế ngƣời ta phân chia thành hai loại, một loại là rô to ngắn (còn gọi là rô to dạng đĩa) đƣợc tiến hành cân bằng trên 1 mặt phẳng, một loại là rô to dài (còn gọi là rô to dạng ru-lô) đƣợc cân bằng trên hai mặt phẳng. Có thể tham khảo tiêu chuẩn lựa chọn số mặt phẳng cân bằng trên hình 1.1. Trên hình 1.1, L/D là tỷ số chiều dài và đƣờng kính của rô ro, hoành độ chỉ tốc độ quay của rô to theo vòng/phút. Vùng gạch-gạch chỉ loại rô to có thể cân bằng động trong một mặt phẳng (ta sẽ gọi là rô to ngắn hay rô to dạng đĩa), còn vùng để trắng chỉ loại rô to cần cân bằng động trên hai mặt phẳng (ta sẽ gọi là rô to dài). 1 2 mặt phẳng 0,5 1 mặt phẳng L/D 0 900 1800 v/ph Hình 1.1. Tiêu chuẩn lựa chọn số mặt phẳng cân bằng. 8 1.1.4. Mất cân bằng của rô to dạng đĩa Trong thực tế, trƣờng hợp đơn giản nhất là đĩa gắn trên trục và trục quay với tốc độ góc . Khi đó giả sử các khối lƣợng lệch tâm là mi với bán kính  tính từ tâm khối lƣợng mi đến đƣờng trục là ri sẽ sinh ra lực ly tâm:   Fi  mi ri 2 , i  1, 2,... Các lực ly tâm này đồng quy nên có hợp lƣc:     F   Fi   2  mi ri  mc rc 2 i (1.4) i trong đó mc là tổng các khối lƣợng mi, đặt tại trọng tâm chung C và với bán kính quay là rc .   Nếu F = 0 thì rô to không mất cân bằng, nếu F  0 thì rô to mất cân bằng, Trong trƣờng hợp mất cân bằng công thức (1.4) có thể viết:     F  mc rc 2   2 ur   2U (1.5) Nhƣ vậy, đối với rô to cứng dạng đĩa, có thể mô tả bởi 1 véc tơ mất cân bằng và có thể thực hiện căn chỉnh trong một mặt phẳng. Những chi tiết nhƣ bánh đà, cánh quạt, đĩa máy mài v.v... Có bề dầy nhỏ so với đƣờng kính ta có thể coi là các chi tiết quay phẳng.Về nguyên tắc, mất cân bằng này có thể khử đƣợc bằng cách cân bằng tĩnh. Cân bằng tĩnh có thể thực hiện đƣợc bằng cách đặt chi tiết quay trên 2 gối, đƣợc tạo lập sao cho ma sát không đáng kể thì bao giờ khối lƣợng mất cân bằng cũng nằm ở vị trí thấp nhất nên có thể lấy bớt khối lƣợng ở phía dƣới hoặc thêm vào khối lƣợng ở phía trên. Tuy nhiên khi máy đã đặt tại vị trí để sản xuất, chi tiết quay bao giờ cũng chịu ma sát không nhỏ, nên việc cân bằng tĩnh thực hiện không chính xác. Vì vậy ngƣời ta phải tiến hành cân bằng động tại chỗ mà không cần tháo rời chi tiết quay ra, không làm ảnh hƣởng nhiều đến thời gian sản xuất. 9 1.1.5. Mất cân bằng của rô to dài Rô to cứng và dài dạng ru-lô (con lăn) khác với dạng đĩa, nhƣng có thể sử dụng khái niệm cơ bản của dạng đĩa. Rô to dạng ru-lô có thể chia ra thành nhiều đĩa mỏng vuông góc với đƣờng trục. Đối với mỗi đĩa mất cân bằng  đƣợc xác định bằng một véc tơ U i nhƣ trong trƣờng hợp 1.4. Các lực ly tâm,  hay nói khác đi là các véc tơ U i , có thể phân tích thành 2 véc tơ trên 2 mặt phẳng tùy ý, I và II, vuông góc với đƣờng trục (các mặt phẳng I và II thƣờng đƣợc chọn là các mặt phẳng ở 2 đầu mút của của rô to dài). Khi các lực ly tâm đã đƣợc phân tích về 2 mặt phẳng I và II thì trên từng mặt phẳng, các thành phần lực này đồng quy và tổng hợp lại ta nhận đƣợc hợp lực trên từng mặt   phẳng, các lực mất cân bằng tƣơng ứng là U I ,U II đƣợc tính nhƣ sau: n  FI   U i g i  2 i 1 b n  U I  ; 2  U i g i i 1 b n   U I FII  UI  U i f i  2 i 1 b n   U II  ; 2  U i 1 i b fi   U II Ui fi gi UII b Hình 1.2. Đƣa mất cân bằng rô to dài về 2 mặt phẳng I và II. Các ký hiệu trong công thức trên đƣợc cho trên hình 1.2, còn các lực F I   và FII là các lực ly tâm ứng với tốc độ góc quay là . Các véc tơ U I ,U II đƣợc gọi là các mất cân bằng quy ƣớc. Nói chung, về lƣợng và góc các véc tơ này phụ thuộc vào vị trí của các mặt phẳng căn chỉnh I và II. Nhƣ vậy, trạng thái mất cân bằng của rô to cứng bất kỳ có thể mô tả đầy đủ bởi hai mất cân bằng quy ƣớc trong hai mặt phẳng chọn tùy ý. Nói chung, cần căn chỉnh trong hai mặt phẳng. 10 1.1.6. Định nghĩa về cân bằng rô to cứng Theo ISO [1]: “Cân bằng rô to là một quy trình mà theo đó sự phân bố khối lượng của rô to được kiểm tra và nếu cần được căn chỉnh để đảm bảo rằng mất cân bằng dư hoặc dao động của cổ trục hoặc lực tác dụng ở tần số tương ứng với tốc độ làm việc nằm trong giới hạn xác định”. Định nghĩa trên của ISO là bao quát về công việc và mục đích của cân bằng rô to. 1.2. Giới thiệu tổng quan các phƣơng pháp cân bằng động đang đựơc sử dụng Trong mục này chỉ giới thiệu mang tính chất liệt kê các phƣơng pháp cân bằng động tại hiện trƣờng mà hiện đang đƣợc dùng trong thực tế và đƣợc công bố trong các sách báo. Việc mô tả đầy đủ, phân tích nội dung và cơ sở khoa học của các phƣơng pháp này sẽ đƣợc trình bầy trong các chƣơng sau. Một điều chung nhất phải kể đến là dù cân bằng rô to phẳng (dạng đĩa) hoặc rô to dài đều xuất phát từ giả thiết về tính chất tuyến tính của cơ hệ. Đối với một hệ tuyến tính, 3 điều kiện cơ bản sẽ đƣợc thỏa mãn [7]: - Nếu kích động dạng đơn (nhƣ do mất cân bằng khối lƣợng) tác dụng vào hệ thì đáp ứng của hệ cũng có dạng đơn (dao động của hệ). Nếu kích động thứ nhất mất đi, kích động thứ 2 tác động vào hệ thì đáp ứng thứ 2 của hệ sẽ xẩy ra. Nếu nhiều kích động tác dụng đồng thời thì sẽ có hiện tƣợng cộng tác dụng, do nguyên lý chồng chất nghiệm đối với hệ tuyến tính. - Hệ số tỷ lệ giữa kích động và đáp ứng sẽ không thay đổi đối với các kích động khác nhau. Tính chất này đƣợc gọi là tính chất đồng đều (homogeneity). 11 - Nếu các kích động là tuần hoàn thì đặc trƣng của đáp ứng cũng là tuần hoàn. Tần số của đáp ứng giống nhƣ tần số kích động. Hệ không sinh ra tần số mới. Giả thiết về tính chất tuyến tính của cơ hệ đã đƣợc ứng dụng có hiệu quả trong thực tế vì dao động của cơ hệ nói chung không thể là dao động lớn. Tuy nhiên trong một số trƣờng hợp tính phi tuyến cũng ảnh hƣởng đến chất lƣợng cân bằng [5]. 1.2.1. Cân bằng rô to phẳng Nhƣ đã trình bầy trong phần trên, về nguyên tắc rô to phẳng có thể tiến hành cân bằng tĩnh. Tuy nhiên, vì nhiều lý do khác nhau, trong thực tế cũng cần phải tiến hành cân bằng động. Trong trƣờng hợp này ta chỉ cần cân bằng trên một mặt phẳng. Khi rô to bị mất cân bằng sẽ gây ra dao động của hệ do tác dụng của lực ly tâm. Vấn đề đặt ra là tìm vị trí và lƣợng mất cân bằng để có thể phân bố lại khối lƣợng của rô to. Phƣơng pháp đầu tiên là phƣơng pháp “tải trọng vòng quanh” [5, 9], ở đây ta đánh dấu trên đƣờng tròn của rô to một số vị trí cách đều nhau, chẳng hạn 8, 10 hoặc 12 vị trí, lấy khối lƣợng thử mt gắn lần lƣợt vào các vị trí ấy và ở mỗi trƣờng hợp ta đo biên độ dao động của hệ theo cùng một hƣớng và cùng một vị trí trên cơ hệ. Vẽ đƣờng cong có trục hoành là độ lớn của góc ở tâm ứng với các vị trí gắn khối lƣợng thử và trục tung là độ lớn của biên độ dao động ta nhận đƣợc đƣờng cong dạng hình sin với giá trị trung bình là biên độ dao động khi không có khối lƣợng thử. Vị trí thấp nhất của đƣờng cong hình sin sẽ chỉ cho ta vị trí và làm cơ sở để tính độ lớn của mất cân bằng. Phƣơng pháp “Ba lần thử” [9]. Để giảm số lần khởi động máy, đầu tiên ngƣời ta cho máy chạy và đo biên độ dao động của hệ tại vị trí nào đó của nó và theo hƣớng dao động lớn nhất, sau đó gắn khối lƣợng thử mt vào một vị trí bất kỳ trên vòng tròn của rô to và đo biên độ dao động tại vị trí đã đo và 12 hƣớng đo nhƣ trên. Tiếp theo, ta gắn khối lƣợng thử mt vào vị trí đối xứng kính với vị trí đã gắn lần trƣớc và đo đƣợc biên độ dao động của lần chạy máy này. Với 3 biên độ dao động đo đƣợc ngƣời ta xác định đƣợc vị trí và độ lớn của mất cân bằng và do đó có thể tiến hành cân bằng rô to. Trong trƣờng hợp này vị trí đƣợc xác định bởi góc tạo với điểm gắn khối lƣợng thử nên có thể ở về hai phía điểm gắn này và ta phải tiến hành thử xem vị trí nào chính xác. Phƣơng pháp “Hai lần thử” [9]. Phƣơng pháp này chỉ khác phƣơng pháp trên ở chỗ hai lần gắn khối lƣợng thử làm thành một góc vuông đối với tâm. Khi đó tìm đƣợc độ lớn của mất cân bằng và vị trí chính xác của nó để tiến hành cân bằng rô to. Vì vậy về nguyên tắc sẽ giảm đi một lần mở máy để chạy thử so với trƣờng hợp trên. Phƣơng pháp “Gắn khối lượng thử cách đều 1200 ” [3]. Trong phƣơng pháp này, ngƣời ta gắn khối lƣợng thử lần lƣợt vào 3 vị trí cách nhau trên vòng tròn của rô to một góc 1200, đo biên độ dao động cho 3 lần gắn này và khi không gắn khối lƣợng thử, ngƣời ta tìm đƣợc vị trí và độ lớn của mất cân bằng và từ đó tiến hành cân bằng rô to. Phƣơng pháp “Sử dụng biên độ và pha dao động” [5, 9]. Nếu thiết bị đo dao động đo đƣợc cả biên độ và pha dao động thì việc cân bằng động đƣợc tiến hành đơn giản hơn. Đầu tiên đo biên độ và pha dao động khi máy chạy không có khối lƣợng thử, sau đó gắn khối lƣợng thử mt vào một vị trí nào đó trên rô to và cũng đo biên độ và pha dao động, từ kết quả này ta tìm đƣợc vị trí và độ lớn của mât cân bằng để tiến hành cân bằng rô to. 1.2.2. Cách chọn khối lượng thử Trong các phƣơng pháp trên lƣu ý rằng cần chọn khối lƣợng thử mt một cách hợp lý, nếu khối lƣợng này quá nhỏ thì sẽ không nhận biết đƣợc sự thay đổi dao động và không xác định đƣợc các tham số cần tìm, còn nếu khối lƣợng thử quá lớn sẽ gây ra dao động quá mạnh có thể làm hƣ hỏng máy. 13 a) Trong [5] ngƣời ta giới thiệu công thức kinh nghiệm sau đây: mt  100 k Mg , n2r (1.6) trong đó g - gia tốc trọng trƣờng (980 cm/s 2) r - Khoảng cách từ tâm trục quay đến trọng tâm khối lƣợng thử (cm). k - Hệ số có giá trị thay đổi trong khoảng từ 0,2 (đối với chi tiết nặng) đến 0,5 (đối với chi tiết nhẹ). n – Tốc độ quay của rô to tính theo vòng/phút. mt - Đƣợc tính bằng kg. b) Trong tiêu chuẩn lƣợng mất cân bằng dƣ TCVN 6373: 1998, tƣơng đƣơng với tiêu chuẩn ISO 1940-1, ta có cách chọn khối lƣợng thử nhƣ sau: + Lƣợng mất cân bằng dƣ cho phép UP [mm. kg] + Lƣợng mất cân bằng riêng còn dƣ cho phép e P= UP/M [mm], M là khối lƣợng của rôto. + Đối chiếu cấp độ mất cân bằng cho phép tƣơng ứng với loại máy cần cân bằng cho trong ISO 1940-1, ta tìm đƣợc giá trị cần đƣa vào tính toán. Ví dụ: Cấp mất cân bằng đối với turbine hơi và khí là G2.5  eP   =2.5[mm/s] , với tốc độ quay 5100 v/ph, do đó  =510 R/s. Theo đồ thị cho trong ISO 19401, ứng với G2.5 ta có eP= 4  m Nhƣ vậy trong trƣờng hợp này với khối lƣợng của rô to là M=11000 kg ta có UP=eP  M = 4* E-03*11*E+03= 44 [mmkg]. Nếu khỏang cách từ tâm để gắn khối lƣợng thử là r = 200 mm thì khối lƣợng dƣ là Mdƣ = UP /r = 0.22 kg . Lấy khối lƣợng thử gấp 5 lần ta sẽ có Mthử = 5* 0.22 = 1.1 kg . 14 Chia ra hai mặt phẳng, ta có ở mỗi mặt phẳng là 0.55 kg Một ví dụ khác cấp độ cân bằng của máy ly tâm là: G6,3  eF *  =6.3 [mm/s]. Với tốc độ quay 300 vòng/phút, do đó  =30 R/s. Ta tìm đƣợc ứng với G6.3 là eP = 200  m. Nhƣ vậy trong trƣờng hợp này với M = 2000 kg UP=eP  M = 200* E-03*2*E+03= 400 [mmkg]. Nếu khoảng cách từ tâm để gắn khối lƣợng thử là r = 1000 mm thì khối lƣợng dƣ là Mdƣ = UP /r = 400/1000 kg = 0.4kg . Lấy khối lƣợng thử gấp 5 lần ta sẽ có Mthử = 5* 0.4 = 2 kg . Các phƣơng pháp đã giới thiệu sơ bộ trên đây sẽ đƣợc trình bầy kỹ hơn và chặt chẽ hơn trong các chƣơng tƣơng ứng. 1.2.3. Cân bằng rô to dài Nhƣ đã trình bầy ở trên, đối với rô to dài và cứng, bao giở cũng có thể đƣa mất cân bằng về hai mặt phẳng tùy ý, để cho thuận lợi, hai mặt phẳng ấy thƣờng lấy ở 2 mút của rô to gần với ổ đỡ, sau này ta sẽ gọi là mặt phẳng I (phía bên trái) và mặt phẳng II (phía bên phải). Do chế tạo, lắp ráp và sử dụng, các thiết bị đã đƣa ra khỏi nhà máy chế tạo vẫn còn bị mất cân bằng. Vấn đề đặt ra là tìm khối lƣợng và vị trí gắn khối lƣợng vào hoặc lấy bớt đi để cho rô to trở thành cân bằng. Một điều cần lƣu ý là đối với rô to dài, ngƣời ta thƣờng phải dùng các thiết bị đo dao động có thể đo đƣợc cả biên độ và pha. Ở đây có thể giới thiệu tóm tắt một số phƣơng pháp đã tiến hành trong thực tế và công bố trong các tài liệu tham khảo. 15 Phương pháp thứ nhất [9]. Khi gắn khối lƣợng thử vào mặt phẳng I, ta xét ảnh hƣởng của khối lƣợng thử này đến dao động của mặt phẳng II ta tìm đƣợc một đại lƣợng gọi là hệ số ảnh hƣởng k12, và ngƣợc lại ta có k21. Nếu K12  K21 thì ta tiến hành cân bằng theo phƣơng pháp nhƣ đối với 1 mặt phẳng cho mặt phẳng I, sau đó sẽ cân bằng cho mặt phẳng II. Cách làm này lặp lại cho đến khi có kết quả mong muốn. Phương pháp thứ hai [4]. Đo dao động và pha lần lƣợt trên các vị trí gần măt phẳng I và II, để phân tích đánh giá đại lƣợng nào do mất cân bằng tĩnh (một phía) gây ra, đại lƣợng nào do mất cân bằng động (dạng mô men) gây ra. Từ đó để khử mất cân bằng tĩnh ngƣời ta gắn khối lƣợng cân bằng có cùng độ lớn và cùng phía trên cả hai mặt phẳng I và II, để khử mất cân bằng động ngƣời ta gắn khối lƣợng cân bằng có cùng độ lớn nhƣng về 2 phía lệch nhau một góc 180o trên hai mặt phẳng I và II. Phương pháp thứ ba [4, 2]. Phƣơng pháp này cũng tìm hệ số ảnh hƣởng của việc gắn khối lƣợng thử lần lƣợt vào từng mặt phẳng với chính nó và với mặt phẳng bên kia, ta đƣợc 4 hệ số; hai hệ số a 11, a12 là do gắn khối lƣợng thử vào mặt phẳng I, còn hai hệ số a21, a22 là do gắn khối lƣợng thử vào mặt phẳng II. Từ đó lập đƣợc phƣơng trình để xác định vị trí và khối lƣợng mất cân bằng ở mỗi mặt phẳng. Phƣơng pháp này tổng quát và thuận tiện hơn khi sử dụng sự hỗ trợ của tin học. Các phƣơng pháp đƣợc giới thiệu trên đây sẽ đƣợc trình bầy chi tiết hơn với ví dụ minh họa trong một chƣơng riêng về cân bằng rô to dài. 1.2.4. Cân bằng rô to mềm Rô to mềm gây nhiều trở ngại do biến dạng dẻo (biến dạng xẩy ra ở vận tốc cao và thậm chí vẫn còn tiếp tục biến dạng khi vận tốc đã giảm xuống) và do biến dạng đàn hồi (biến dạng tăng và giảm cùng với vận tốc). Hơn nữa trong sự liên hệ với cân bằng tính đàn hồi đƣợc chia ra thành đàn hồi của thân 16 rô to và đàn hồi của trục. Trong cả 3 trƣờng hợp, trạng thái mất cân bằng phụ thuộc vào tốc độ, nhƣng các phƣơng pháp căn chỉnh giải quyết bài toán cân bằng lại khác nhau đáng kể. Theo ISO 5406 [5], có 3 phƣơng pháp cân bằng động rô to mềm: Cân bằng theo dạng riêng (modal), cân bằng tổ hợp theo dạng riêng và dạng cứng, cân bằng theo phƣơng pháp hệ số ảnh hƣởng. Theo [3], ngƣời ta đã chứng minh đƣợc bằng thực nghiệm và bằng giải tích rằng: Nếu chỉ dùng 2 mặt phẳng căn chỉnh thì có thể cân bằng rô to mềm ở chỉ một tốc độ quay. Nói một cách lý tưởng, số mặt phẳng cân bằng nên bằng số vận tốc tới hạn uốn ngang và cần phải chọn thận trọng có tính đến dạng riêng phù hợp. Vấn đề này nằm ngoài phạm vi của luận án nên sẽ không đƣợc giới thiệu chi tiết. 1.3. Kết luận chƣơng 1 Trong chƣơng này đã giới thiệu một số khái niệm về cân bằng động của rô to, phân loại rô to và tổng quan về các phƣơng pháp cân bằng động đang đƣợc áp dụng trong cân bằng rô to trên máy chuyên dụng và cân bằng ngoài hiện trƣờng (hay còn gọi là cân bằng tại chỗ). Tất cả các phƣơng pháp nêu lên đều dựa trên giả thiết rô to đƣợc cân bằng động trong hệ tuyến tính. Trong chƣơng này có hai vấn đề cần quan tâm là: Đối với rô to dài và cứng thì có thể đƣa về cân bằng trên 2 mặt phẳng tùy ý, thƣờng chọn là hai mặt phẳng ở hai mút của rô to; vấn đề thứ hai là nêu lên cách chọn khối lƣợng thử mt thích hợp cho việc cân bằng dựa vào phƣơng pháp đo dao động. 17 Chƣơng 2. CÂN BẰNG ĐỘNG RÔ TO PHẲNG Trong chƣơng này, sẽ trình bày các phƣơng pháp cân bằng động rô to phẳng với quy trình thực hiện và cơ sở khoa học chặt chẽ, đồng thời cho nhận xét về những thuận lợi và khó khăn của phƣơng pháp và đề xuất những cải tiến khi có điều kiện, ngay cả khi gặp phải những hệ có tính chất phi tuyến. Đầu tiên phải nhấn mạnh rằng đây là trƣờng hợp cân bằng động đơn giản nhất, chỉ cần một mặt phẳng cân bằng. Tuy nhiên, trong thực tế, ngay cả đối với rô to dài, khi cân bằng tại hiện trƣờng ngƣời ta cũng tìm cách thử nghiệm cân bằng một mặt phẳng [5]. Dƣới đây sẽ trình bầy chi tiết các phƣơng pháp đã giới thiệu trong chƣơng tổng quan ở trên. 2.1. Các phƣơng pháp cân bằng rô to phẳng trong hệ tuyến tính 2.1.1. Mô hình dao động của hệ có rô to mất cân bằng Xét dao động theo một hƣớng (chẳng hạn hƣớng thẳng đứng) của rô to mất cân bằng. Mô hinh dao động theo một hƣớng của hệ chịu kích động của lực quán tính ly tâm đƣợc cho trên hình 2.1. M u ω r k b x Hình 2.1. Mô hình dao động của hệ rô to mất cân bằng. Phƣơng trình dao động biểu diễn dƣới dạng: Mx  bx  kx  ur 2 cos( t   ) . Trong đó: M – Khối lƣợng của rô to, u là khối lƣợng lệch tâm, r – Bán kính tính từ tâm khối u đến tâm trục quay, 18 (2.1) k, b – tƣơng ứng là hệ số đàn hồi và hệ số cản,  – vận tốc góc của rô to, còn  là góc lệch pha ban đầu giữa hƣớng lực ly tâm và hƣớng xét dao động. Ngƣời ta thƣờng gọi U = ur là mất cân bằng của rô to. Chia hai vế cho M, phƣơng trình (2.1) chuyển về dạng: x  2hx  02 x  P 2 cos( t   ) , (2.2) trong đó 2h  b k ur U . , 02  , P  M M M M (2.3) Nghiệm bình ổn của phƣơng trình này có dạng: x( t )  P 2 (    )  4h  2 0 2 2 2 2 cos( t    1 )  A cos( t    1 ) , (2.4) với φ1 là độ lệch pha cho bởi công thức: tg1  2h . 02   2 (2.5) Ở đây ta quan tâm hệ số A, gọi là hệ số động lực, biểu diễn trên mặt phẳng (ω2, A) bởi hình 2.2. h=0.001 h=3.5 h=4 h=4.5 h=4 h=4.5 P Hình 2.2. Đồ thị biên độ A trên mặt phẳng (ω2, A) khi h thay đổi. 19
- Xem thêm -

Tài liệu liên quan