Đăng ký Đăng nhập
Trang chủ Thể loại khác Chưa phân loại Bất đẳng thức biến phân trong không gian hữu hạn chiều và bài toán cực trị lồi...

Tài liệu Bất đẳng thức biến phân trong không gian hữu hạn chiều và bài toán cực trị lồi

.PDF
36
30
89

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NHỮ VĂN HUẤN BẤT ĐẲNG THỨC BIẾN PHÂN TRONG KHÔNG GIAN HỮU HẠN CHIỀU VÀ BÀI TOÁN CỰC TRỊ LỒI LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2015 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NHỮ VĂN HUẤN BẤT ĐẲNG THỨC BIẾN PHÂN TRONG KHÔNG GIAN HỮU HẠN CHIỀU VÀ BÀI TOÁN CỰC TRỊ LỒI Chuyên ngành: Toán ứng dụng Mã số: 60 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. NGUYỄN THỊ THU THỦY Thái Nguyên - 2015 1 Mục lục Mở đầu Bảng ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 1 Bất đẳng thức biến phân trong không gian hữu hạn chiều 6 1.1. Bất đẳng thức biến phân trong không gian Euclid . . . . 1.1.1. Định nghĩa và ví dụ . . . . . . . . . . . . . . . . . 6 6 1.1.2. Tập nghiệm của bất đẳng thức biến phân . . . . . 1.1.3. Bất đẳng thức biến phân đối ngẫu . . . . . . . . 8 8 1.2. Sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân 11 1.2.1. Phép chiếu mêtric . . . . . . . . . . . . . . . . . . 11 1.2.2. Định lý tồn tại duy nhất nghiệm . . . . . . . . . 2 Bất đẳng thức biến phân và bài toán cực trị lồi 2.1. Bất đẳng thức biến phân và bài toán cực trị . . . . . . . 2.1.1. Bài toán cực trị . . . . . . . . . . . . . . . . . . . 12 19 19 19 2.1.2. Mối liên hệ giữa bài toán cực trị và bất đẳng thức biến phân . . . . . . . . . . . . . . . . . . . . . . 2.2. Bất đẳng thức biến phân với hệ phương trình, bài toán 22 bù và bài toán điểm bất động . . . . . . . . . . . . . . . 2.2.1. Hệ phương trình . . . . . . . . . . . . . . . . . . 24 24 2.2.2. Bài toán bù . . . . . . . . . . . . . . . . . . . . . 2.2.3. Bài toán điểm bất động . . . . . . . . . . . . . . 25 26 2.2.4. Bài toán cân bằng kinh tế dưới dạng bất đẳng thức biến phân . . . . . . . . . . . . . . . . . . . 29 2 Kết luận 32 Tài liệu tham khảo 33 3 Mở đầu Bài toán cân bằng cổ điển (hay còn gọi là bài toán cân bằng vô hướng) đóng một vai trò quan trọng trong nhiều lĩnh vực khác nhau của toán học lý thuyết cũng như ứng dụng. Từ bài toán này có thể suy ra được các bài toán khác nhau trong lý thuyết tối ưu: bài toán tối ưu, bài toán cân bằng Nash, bài toán bù, bài toán bất đẳng thức biến phân . . . Bài toán bất đẳng thức biến phân được Stampacchia đề xuất và nghiên cứu đầu tiên từ đầu những năm 60 của thế kỉ trước (xem [11]). Những nghiên cứu của Stampacchia về bất đẳng thức biến phân liên quan đến việc giải bài toán biên của phương trình đạo hàm riêng. Năm 1979, Smith [10] đưa ra bài toán cân bằng mạng giao thông và năm 1980 Dafermos [2] chỉ ra rằng điểm cân bằng của bài toán này là nghiệm của một bất đẳng thức biến phân. Cho tới nay, đã có nhiều bài toán quan trọng trong thực tế được thiết lập và nghiên cứu dưới dạng bất đẳng thức biến phân. Chẳng hạn, bài toán cân bằng mạng giao thông, bài toán cân bằng thị trường độc quyền, bài toán cân bằng tài chính và bài toán cân bằng di cư (xem [7]). Ngoài ra, bất đẳng thức biến phân còn là một công cụ hữu hiệu để nghiên cứu và xây dựng các phương pháp giải số cho nhiều lớp bài toán cân bằng trong kỹ thuật, vận tải, lý thuyết trò chơi . . . Do vậy việc nghiên cứu sự tồn tại và duy nhất nghiệm, cũng như xây dựng các phương pháp giải bất đẳng thức biến phân đã và đang là một đề tài thời sự thu hút được sự quan tâm nghiên cứu của nhiều nhà toán học. Luận văn này nhằm trình bày tổng quan về bất đẳng thức biến phân trong không gian hữu hạn chiều và bài toán cực trị lồi. Nội dung của luận văn được trình bày trong hai chương. Chương 1 giới thiệu về bài 4 toán bất đẳng thức biến phân trong không gian hữu hạn chiều và nghiên cứu điều kiện tồn tại và duy nhất nghiệm của bài toán. Chương 2 trình bày mối quan hệ của bất đẳng thức biến phân hữu hạn chiều với bài toán cực trị lồi. Luận văn được hoàn thành tại Trường Đại học Khoa học – Đại học Thái Nguyên. Tác giả xin cảm ơn sâu sắc tới người hướng dẫn luận văn cao học của mình, TS. Nguyễn Thị Thu Thủy, giảng viên trường Đại học Khoa học – Đại học Thái Nguyên, người đã dành nhiều thời gian và tâm huyết để hướng dẫn và giải quyết những thắc mắc cho tôi trong suốt quá trình tôi làm luận văn. Tôi cũng xin bày tỏ lời cảm ơn chân thành tới các thầy cô trong hội đồng chấm luận văn thạc sĩ, các thầy cô giảng dạy lớp Cao học toán K7D, gia đình, bạn bè, đồng nghiệp đã tạo những điều kiện thuận lợi nhất để tôi có thể hoàn thiện khóa học cũng như luận văn của mình. Thái Nguyên, tháng 12 năm 2015. Học viên Nhữ Văn Huấn 5 Bảng ký hiệu Rn không gian Euclide n chiều D(A) miền xác định của toán tử A R(A) miền giá trị của toán tử A C tập con lồi đóng của Rn I ánh xạ đơn vị PC phép chiếu mêtrix Rn lên tập con lồi đóng C của Rn Fix(T ) tập điểm bất động của ánh xạ T 6 Chương 1 Bất đẳng thức biến phân trong không gian hữu hạn chiều Chương này trình bày một cách sơ lược về bất đẳng thức biến phân trong không gian hữu hạn chiều và một số tính chất về sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân. Mục 1.1 giới thiệu tổng quan về bất đẳng thức biến phân trong không gian Euclid Rn và một số tính chất của tập nghiệm của bài toán. Trong Mục 1.2 trình bày điều kiện tồn tại và duy nhất nghiệm của bất đẳng thức biến phân. Các kiến thức của chương được viết trên cơ sở các tài liệu [1]–[11]. 1.1. 1.1.1. Bất đẳng thức biến phân trong không gian Euclid Định nghĩa và ví dụ Trong mục này ta luôn giả thiết Rn là không gian Euclid với tích vô hướng và chuẩn lần lượt được ký hiệu bởi h., .i và k.k. Định nghĩa 1.1 Cho C là tập con lồi đóng trong Rn và F : C → Rn là một ánh xạ đơn trị. Bài toán bất đẳng thức biến phân hữu hạn chiều với ánh xạ phi tuyến đơn trị F , ký hiệu là VI(F, C) (variational inequality), được phát biểu như sau: Tìm x∗ ∈ C sao cho hF (x∗ ), x − x∗ i ≥ 0 ∀x ∈ C. (1.1) 7 Ví dụ 1.1 Cho hàm một biến thực f khả vi trên [a, b] ⊂ R. Tìm phần tử x0 ∈ [a, b] thỏa mãn f (x0 ) = min f (x). x∈[a,b] Ba tình huống sau đây có thể xảy ra: (i) Nếu x0 ∈ (a, b) thì f 0 (x0 ) = 0; (ii) Nếu x0 = a thì f 0 (x0 ) ≥ 0; (iii) Nếu x0 = b thì f 0 (x0 ) ≤ 0. Những phát biểu trên được tổng hợp thành f 0 (x0 )(x − x0 ) ≥ 0 ∀x ∈ [a, b], đây là một bất đẳng thức biến phân. Ví dụ 1.2 Cho f là một hàm số thực khả vi trên một tập con lồi đóng C của không gian Euclid n chiều Rn . Tìm phần tử x∗ ∈ C thỏa mãn f (x∗ ) = min f (x). x∈C Giả sử x0 là điểm cực tiểu cần tìm và x là phần tử tùy ý thuộc C. Vì C là tập hợp lồi nên (1 − t)x0 + tx = x0 + t(x − x0 ) ∈ C, 0 ≤ t ≤ 1. Hàm Φ(t) = f (x0 + t(x − x0 )), 0≤t≤1 đạt cực tiểu tại t = 0. Do đó, từ Ví dụ 1.1 Φ0 (0) = f (x0 )(x − x0 ) ≥ 0 ∀x ∈ C. Như vậy điểm x0 thỏa mãn bất đẳng thức biến phân x0 ∈ C : f (x0 )(x − x0 ) ≥ 0 ∀x ∈ C. Nếu tập C bị chặn thì điểm x0 tồn tại duy nhất. 8 1.1.2. Tập nghiệm của bất đẳng thức biến phân Cho C 6= ∅ là tập lồi đóng trong Rn và x∗ ∈ C. Nón chuẩn tắc tới C tại x∗ là tập n o n NC (x∗ ) = d ∈ R : hd, x − x∗ i ≤ 0 ∀x ∈ C . Véctơ d ∈ NC (x∗ ) được gọi là véctơ chuẩn tắc tới C tại x∗ . Dễ thấy, (1.1) ⇔ h−F (x∗ ), x − x∗ i ≤ 0 ∀x ∈ C ⇔ −F (x∗ ) là vec tơ chuẩn tắc tới C tại x∗ ⇔ −F (x∗ ) ∈ NC (x∗ ) hay 0 ∈ F (x∗ ) + NC (x∗ ). Định nghĩa 1.2 Tập hợp những điểm x∗ ∈ C thỏa mãn (1.1) được gọi là tập nghiệm của bất đẳng thức biến phân, ký hiệu là S. Các giả thiết thường đặt lên bài toán VI(F, C) là: (A1) Tập C 6= ∅ là tập con lồi và đóng trong Rn ; (A2) Ánh xạ F là ánh xạ liên tục (trên một tập con mở chứa C). Khi C là tập con lồi đóng của Rn và F là ánh xạ liên tục thì tập S là tập hợp đóng trong Rn . 1.1.3. Bất đẳng thức biến phân đối ngẫu Nghiệm của bất đẳng thức biến phân (1.1) có mối liên hệ với bài toán: Tìm điểm x∗ ∈ C thỏa mãn hF (x), x − x∗ i ≥ 0 ∀x ∈ C. (1.2) Bài toán (1.2) được gọi là bất đẳng thức biến phân đối ngẫu của VI(F, C), ký hiệu là DVI(F, C) (dual variational inequality) với tập nghiệm được ký hiệu là S ∗ . Để khảo sát mối liên hệ giữa S và S ∗ ta cần thêm giả thiết về tính đơn điệu cho ánh xạ F . 9 Định nghĩa 1.3 Cho C là một tập con lồi trong không gian Rn và F là một ánh xạ từ C vào Rn . Ánh xạ F là: (i) Ánh xạ η-đơn điệu mạnh trên C nếu tồn tại một hằng số η > 0 sao cho hF (u) − F (v), u − vi ≥ ηku − vk2 ∀u, v ∈ C; (ii) Ánh xạ đơn điệu ngặt trên C nếu hF (u) − F (v), u − vi > 0 ∀u, v ∈ C, u 6= v; (iii) Ánh xạ đơn điệu trên C nếu hF (u) − F (v), u − vi ≥ 0 ∀u, v ∈ C; (iv) Ánh xạ giả đơn điệu trên C nếu hF (v), u − vi ≥ 0 suy ra hF (u), u − vi ≥ 0 ∀u, v ∈ C; (v) Ánh xạ tựa đơn điệu trên C nếu hF (v), u − vi > 0 suy ra hF (u), u − vi ≥ 0 ∀u, v ∈ C. Ví dụ 1.3 Xét các ánh xạ Ti : R → 2R (i = 1, 2) cho bởi các công thức: ( {1} , x ≥ 0 T1 (x) = ∅, x < 0, T2 (x) = {1} ∀x ∈ R. Ta thấy T1 và T2 là các ánh xạ đơn điệu. Tính đơn điệu của ánh xạ có mối liên hệ với tính không giãn của ánh xạ đó. Định nghĩa 1.4 Cho C là một tập con của không gian Rn . Ánh xạ T : C → C được gọi là không giãn nếu với mọi x, y ∈ C ta có kT x − T yk ≤ kx − yk. (1.3)  Ký hiệu Fix(T ) := x ∈ C : x = T (x) là tập điểm bất động của ánh xạ không giãn T . 10 Mệnh đề 1.1 [5] Cho C là một tập con lồi đóng trong Rn . Nếu T : C → C là ánh xạ không giãn thì ánh xạ F xác định bởi F = I − T là đơn điệu với I là ánh xạ đồng nhất của Rn . Chứng minh. Thật vậy, giả sử ánh xạ T : C → C, với C là tập con lồi đóng trong Rn , là ánh xạ không giãn, tức là T thỏa mãn (1.3). Xét ánh xạ F = I − T , ta có: hF (x) − F (y), x − yi = h(I − T )(x) − (I − T )(y), x − yi = h(x − y) − (T (x) − T (y)), x − yi = kx − yk2 − hT (x) − T (y), x − yi ≥ kx − yk2 − kT (x) − T (y)kkx − yk ≥ kx − yk2 − kx − yk2 = 0. Suy ra, ánh xạ F là ánh xạ đơn điệu. 2 Mối quan hệ giữa tập nghiệm S của bài toán VI(F, C) và tập nghiệm S ∗ của bài toán DVI(F, C) được trình bày trong mệnh đề sau đây. Mệnh đề 1.2 [5] (Bổ đề Minty) (i) S ∗ là tập lồi và đóng; (ii) S ∗ ⊆ S; (iii) nếu F là ánh xạ giả đơn điệu thì S ⊆ S ∗ . Sự tồn tại nghiệm của bài toán DVI(F, C) đóng vai trò quan trọng trong việc xây dựng các phương pháp giải cho bài toán VI(F, C). Chú ý rằng khẳng định (iii) trong Mệnh đề 1.2 không còn đúng trong trường hợp F là tựa đơn điệu. Ngoài ra bài toán (1.2) còn có thể vô nghiệm trong trường hợp F là tựa đơn điệu. 11 1.2. Sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân Mục này trình bày một số điều kiện đặt lên ánh xạ F và miền chấp nhận được C cho sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân VI(F, C). 1.2.1. Phép chiếu mêtric Định nghĩa 1.5 Cho C là một tập con lồi đóng của không gian Euclid Rn , phép chiếu mêtric PC từ Rn lên C cho tương ứng mỗi x ∈ Rn với phần tử PC (x) ∈ C thỏa mãn kx − PC (x)k ≤ kx − yk với mọi y ∈ C. Định lý sau đây cho ta một tính chất quan trọng của phép chiếu mêtric PC . Định lý 1.1 [7] Cho C là một tập con lồi đóng của Rn . Khi đó, y = PC x khi và chỉ khi hy − x, z − yi ≥ 0 ∀z ∈ C. (1.4) Chứng minh. Ta biết rằng y = PC x chính là cực tiểu của hàm g(z) = kz − xk2 trên tập C với 5g(z) = 2(z − x). Từ điều kiện tối ưu của bài toán cực trị có ràng buộc ta có điều phải chứng minh. 2 Hệ quả 1.1 [7] Cho C là tập con khác rỗng lồi đóng của Rn . Khi đó phép chiếu mêtric PC là một ánh xạ không giãn, tức là kPC x − PC x0 k ≤ kx − x0 k ∀x, x0 ∈ Rn . (1.5) Chứng minh. Lấy x, x0 ∈ Rn . Giả sử y = PC x và y 0 = PC x0 . Khi đó theo Định lý 1.1 ta có với y ∈ C : hy, z − yi ≥ hx, z − yi ∀z ∈ C, (1.6) 12 và với y 0 ∈ C : hy 0 , z − y 0 i ≥ hx0 , z − y 0 i ∀z ∈ C. (1.7) Lấy z = y 0 trong (1.6) và z = y trong (1.7) và cộng hai vế của hai bất đẳng thức thu được ta có ky − y 0 k2 = hy − y 0 , y − y 0 i ≤ hx − x0 , y − y 0 i ≤ kx − x0 kky − y 0 k (theo bất đẳng thức Cauchy–Schwarz). Khi đó, ta suy ra ky − y 0 k ≤ kx − x0 k. 2 1.2.2. Định lý tồn tại duy nhất nghiệm Định lý 1.2 [3] Giả sử C là tập con lồi và compact của không gian Rn và F : C → Rn là một ánh xạ đơn điệu và liên tục trên C. Khi đó, tồn tại ít nhất một điểm x∗ ∈ C thỏa mãn (1.1). Để chứng minh Định lý 1.2 ta cần một số kết quả sau. Bổ đề 1.1 [7] Cho C là tập con khác rỗng lồi đóng trong Rn . Khi đó với mỗi x ∈ Rn , tồn tại duy nhất một điểm y ∈ C sao cho kx − yk ≤ kx − zk ∀z ∈ C, (1.8) và điểm y được gọi là phép chiếu trực giao của x lên tập C với chuẩn Euclid trong Rn , tức là y = PC x = arg min kx − zk. z∈C Chứng minh. Giả sử x ∈ Rn là điểm cố định và z ∈ C bất kỳ. Xét hàm g xác định bởi g(z) = kx − zk2 . Ta thấy g là hàm liên tục. Khi đó, tồn tại điểm cực tiểu y của hàm g (vì mọi hàm liên tục đều đạt được cực tiểu trên một tập compact), tức là kx − yk2 ≤ kx − zk2 ∀z ∈ C. 13 Mặt khác do chuẩn bình phương là hàm lồi chặt nên điểm y như vậy là duy nhất. Vậy g là hàm lồi chặt và cực tiểu của nó là duy nhất. 2 Định lý 1.3 (Định lý điểm bất động Brouwer) Giả sử T : C → C là ánh xạ liên tục trên tập con C compact và lồi của không gian Euclid Rn . Khi đó, tồn tại ít nhất một điểm x∗ ∈ C sao cho x∗ = T (x∗ ). Chứng minh Định lý 1.2. Vì các ánh xạ PC và I − tF với t > 0 là liên tục nên ánh xạ PC (I − tF ) cũng liên tục. Do đó, theo Định lý điểm bất động của Brouwer, tồn tại điểm x∗ ∈ C sao cho x∗ = (PC (I − tF ))(x∗ ) = PC (x∗ − tF (x∗ )) với t > 0. Suy ra, x∗ = PC (x∗ − tF (x∗ )) là điểm cực tiểu của hàm 1 g(x) = kx − [x∗ − tF (x∗ )]k2 2 với mọi x ∈ C. Mà 5g(x) = x − [x∗ − tF (x∗ )], suy ra từ điều kiện tối ưu cho bài toán cực trị có ràng buộc minx∈C g(x), nên h5g(x∗ ), x − x∗ i ≥ 0 ∀x ∈ C, tức là hx∗ − [x∗ − tF (x∗ )], x − x∗ i ≥ 0 ∀x ∈ C, hay hF (x∗ ), x − x∗ i ≥ 0 ∀x ∈ C. 2 Định lý 1.2 đòi hỏi tập C phải là tập compact. Tuy nhiên khi C không phải là tập compact thì bài toán (1.1) vẫn tồn tại nghiệm nếu điều kiện trong định lý sau được thỏa mãn. Định lý 1.4 [4] Cho C là một tập con khác rỗng lồi đóng trong không gian Euclid Rn và F : C → Rn là ánh xạ liên tục trên C. Giả sử tồn tại 14 tập con compact U khác rỗng của C sao cho: với mọi u ∈ C \ U , tồn tại v ∈ U thỏa mãn hF (u), u − vi > 0. Khi đó, bài toán (1.1) có ít nhất một nghiệm. Khi C là tập không bị chặn thì sự tồn tại nghiệm của bất đẳng thức biến phân VI(F, C) sẽ được đảm bảo nếu thêm điều kiện được chỉ ra sau đây. Cho C là tập con khác rỗng lồi đóng trong Rn . Khi đó, CR = C ∩ B(0, R) là một tập lồi compact, với B(0, R) := {u ∈ Rn : kuk ≤ R} là hình cầu đóng tâm 0, bán kính R trong Rn . Tập CR là bị chặn và theo Định lý 1.2, ta có xR ∈ CR : hF (xR ), x − xR i ≥ 0 ∀x ∈ CR . (1.9) Định lý sau đây cho ta một điều kiện cần và đủ cho sự tồn tại nghiệm của bất đẳng thức biến phân (1.1) liên quan đến nghiệm của bất đẳng thức (1.9). Định lý 1.5 [3] Cho C là một tập con lồi và compact của không gian Euclid Rn và F : C → Rn là một ánh xạ đơn điệu và liên tục trên C. Khi đó, điều kiện cần và đủ để bất đẳng thức biến phân (1.1) có nghiệm là tồn tại một số R > 0 sao cho có ít nhất một nghiệm xR của bất đẳng thức biến phân (1.9) thỏa mãn điều kiện kxR k < R. Chứng minh. Điều kiện cần: Giả sử x∗ ∈ S, tức là x∗ thỏa mãn (1.1) với mọi x ∈ C. Lấy một số R > 0, sao cho kx∗ k < R. Khi đó, hF (x∗ ), x − x∗ i ≥ 0 ∀x ∈ CR , tức là x∗ thỏa mãn (1.9). Điều kiện đủ: Giả sử xR ∈ CR thỏa mãn kxR k < R và (1.9). Ta sẽ chứng minh xR là nghiệm bài toán VI(F, C). Thật vậy, lấy bất kỳ x ∈ C, ta có y = xR + ε(x − xR ) ∈ CR với mọi ε > 0 đủ bé vì kyk ≤ kxR k + εkx − xR k ≤ R do kxR k < R. Khi đó, từ (1.9) suy ra 0 ≤ hF (xR ), [xR + ε(x − xR )] − xR i = ε hF (xR ), x − xR i ∀x ∈ C, 15 tức là hF (xR ), x − xR i ≥ 0 ∀x ∈ C. Vậy xR ∈ S với xR ∈ CR ⊂ C. 2 Chú ý 1.1 Mặc dù, điều kiện kxR k < R là khó kiểm tra nhưng người ta có thể xác định giá trị của R một cách thích hợp trong các bài toán cụ thể. Sự tồn tại nghiệm của bài toán VI(F, C) còn được thiết lập với điều kiện bức đặt lên ánh xạ F như nội dung của hệ quả sau đây. Hệ quả 1.2 [3] Cho C là một tập con lồi và compact của không gian Euclid Rn và F : C → Rn là một ánh xạ đơn điệu và liên tục trên C và thỏa mãn điều kiện hF (x) − F (x), x − xi = +∞ kx − xk kxk→∞ lim ∀x ∈ C, (1.10) với x ∈ C. Khi đó bài toán VI(F, C) luôn có nghiệm. Chứng minh. Theo giả thiết (1.10), ta có thể chọn hằng số c > 0 và R > 0 sao cho 0 < kF (x)k < c và 0 < kxk < R thỏa mãn hF (x) − F (x), x − xi ≥ ckx − xk ∀x ∈ C và kxk ≥ R. (1.11) Khi đó, hF (x), x − xi ≥ ckx − xk + hF (x), x − xi , và theo bất đẳng thức Cauchy–Schwarz ta có hF (x), x − xi ≥ ckx − xk − kF (x)kkx − xk = (c − F (x))kx − xk (1.12) ≥ (c − F (x))(kxk − kxk) > 0 với kxk = R. Do F là ánh xạ liên tục và CR là tập lồi và compact nên theo Định lý 1.2 bất đẳng thức biến phân VI(F, CR ) luôn có ít nhất một nghiệm xR . Ta sẽ chỉ ra rằng kxR k < R, khi đó theo Định lý 1.5 suy ra xR là nghiệm 16 của VI(F, C). Thật vậy, ta có xR thỏa mãn (1.9) với mọi x ∈ CR . Xét trường hợp x = x, ta có hF (xR ), x − xR i ≥ 0 ⇒ hF (xR ), xR − xi ≤ 0. Kết hợp với (1.12), ta suy ra kxR k = 6 R, mà ta biết rằng kxR k ≤ R. Vậy kxR k < R. 2 Nghiệm của bất đẳng thức biến phân nói chung không duy nhất nếu không có thêm các điều kiện đặt lên ánh xạ F . Sau đây ta nghiên cứu tính duy nhất nghiệm của bất đẳng thức biến phân phụ thuộc vào các tính chất kiểu đơn điệu của ánh xạ F . Định lý 1.6 [3] Nghiệm của bất đẳng thức biến phân VI(F, C) là duy nhất nếu F : C → Rn là ánh xạ đơn điệu ngặt. Chứng minh. Thật vậy, giả sử x1 ∈ C và x2 ∈ C là hai nghiệm khác nhau của VI(F, C). Khi đó, hF (x1 ), x − x1 i ≥ 0 ∀x ∈ C (1.13) hF (x2 ), x − x2 i ≥ 0 ∀x ∈ C. (1.14) và Lần lượt thay x = x2 trong (1.13) và x = x1 trong (1.14), sau đó cộng hai vế tương ứng của hai bất đẳng thức thu được ta có: hF (x1 ) − F (x2 ), x1 − x2 i ≤ 0. Điều này vô lý vì giả thiết F là đơn điệu ngặt. Suy ra x1 = x2 . 2 Cho C ⊂ Rn và F : C → Rn . Ma trận Jacobian của hàm F , ký hiệu là 5F (x) xác định bởi   ∂F ∂F1 1 . . . ∂x ∂xn   .. 1 5F (x) =  . . . . ...  . ∂Fn ∂x1 ... ∂Fn ∂xn Tính đơn điệu của ánh xạ F có mối liên hệ chặt chẽ với tính xác định dương của ma trận Jacobian của nó. Ta có định lý sau đây. 17 Định lý 1.7 [8] Giả sử F là hàm khả vi liên tục trên tập C ⊂ Rn . Nếu ma trận Jacobian 5F (x) của F (không nhất thiết là đối xứng) là (i) nửa xác định dương (tương ứng xác định dương), tức là hy, 5F (x)yi ≥ 0 (tương ứng hy, 5F (x)yi > 0), với y ∈ Rn , thì F là ánh xạ đơn điệu (tương ứng đơn điệu ngặt). (ii) xác định dương mạnh, tức là với mọi x ∈ C hy, 5F (x)yi ≥ αkyk2 với α > 0 và y ∈ Rn thì F là ánh xạ đơn điệu mạnh. Ta có hệ quả sau đây về tính đơn điệu của ánh xạ F khi F là ánh xạ affine. Hệ quả 1.3 [8] Cho F là ánh xạ affine, tức là F = q + M x, M ∈ Rn×n và q ∈ Rn . Khi đó, (i) F là đơn điệu khi và chỉ khi M là nửa xác định dương. (ii) F đơn điệu mạnh khi và chỉ khi M là xác định dương. Định lý sau đây cho ta một điều kiện để đảm bảo cho sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân VI(F, C) mà không cần đến tính compact của tập C. Định lý 1.8 [3] Giả sử F là đơn điệu mạnh. Khi đó tồn tại duy nhất nghiệm x∗ thỏa mãn bất đẳng thức biến phân VI(F, C). Chứng minh. Thật vậy, do F đơn điệu mạnh nên F thỏa mãn điều kiện bức và đơn điệu ngặt. Tính bức của ánh xạ F bảo đảm cho cho sự tồn tại nghiệm của VI(F, C) và tính đơn điệu ngặt của F bảo đảm cho tính duy nhất nghiệm của VI(F, C). 2 Nhận xét 1.1 Như vậy, 18 (i) khi C là tập không bị chặn, tính đơn điệu mạnh của F bảo đảm cho sự tồn tại và duy nhất nghiệm của bất đẳng thức biến phân. (ii) khi C là tập compact, sự tồn tại nghiệm của bất đẳng thức biến phân được bảo đảm với điều kiện F là liên tục và tính duy nhất nghiệm được bảo đảm với điều kiện đơn điệu ngặt đặt lên ánh xạ F.
- Xem thêm -

Tài liệu liên quan