Đăng ký Đăng nhập
Trang chủ Bao_cao_anten_8101...

Tài liệu Bao_cao_anten_8101

.PDF
7
117
89

Mô tả:

THIẾT KẾ ANTEN CHO CÁC THIẾT BỊ DI ĐỘNG HOẠT ĐỘNG TRONG DẢI TẦN GSM, UTMS, WLAN 1. Giới thiệu Truyền thông không dây đã phát triển rất nhanh trong những năm gần đây, theo đó các thiết bị di động đang trở nên càng ngày càng nhỏ hơn. Để thỏa mãn nhu cầu thu nhỏ các thiết bị di động, anten gắn trên các thiết bị đầu cuối cũng phải được thu nhỏ kích thước. Các anten phẳng, như anten vi dải (microstrip antenna) và anten mạch in (printed antenna), có các ưu điểm hấp dẫn như kích thước nhỏ và dễ gắn lên các thiết bị đầu cuối, ... chúng sẽ là lựa chọn thỏa mãn yêu cầu thiết kế ở trên. Cũng bởi lí do này, kỹ thuật thiết kế anten phẳng băng rộng đã thu hút rất nhiều sự quan tâm của các nhà nghiên cứu anten. Gần đây, nhiều anten phẳng mới được thiết kế thỏa mãn các yêu cầu về băng thông của hệ thống truyền thông di động tế bào hiện nay, bao gồm GSM (Global System for Mobile communication, 890 – 960 MHz), DCS (Digital Communication System, 1710 – 1880 MHz), PCS (Personal Communication System, 1850 – 1990 MHz) và UMTS (Universal Mobile Telecommunication System, 1920 – 2170 MHz), đã được phát triển và đã xuất bản trong nhiều các tài liệu liên quan. Anten phẳng cũng rất thích hợp đối với ứng dụng trong các thiết bị truyền thông cho hệ thống mạng cục bộ không dây (Wireless Local Area Network, WLAN) trong các dải tần 2.4 GHz (2400 – 2484 MHz) và 5.2 GHz (5150 – 5350 MHz). Trong bài, trình bày thiết kế các một anten vi dải băng rộng đa dải tần, sử dụng cho các thiết bị di động hoạt động trong dải tần GSM, UTMS, WLAN. Anten được chế tạo trên chất nền có hằng số điện môi εr=4.4, độ dày là 0.8 mm và được thiết kế tại tần số 900 MHz và 2000MHz. Đồng thời sử dụng phần mềm Ansoft HFSS để thiết kế và mô phỏng. HFSS sử dụng phương pháp phần tử hữu hạn (Finite Element Method, FEM), kỹ thuật chia lưới thích nghi (adaptive meshing) và giao diện đồ họa đẹp để mang đến sự hiểu biết sâu sắc đối với tất cả các bài toán trường điện từ 3D 1 2. Phân tích và thiết kế anten 2.1. Mô tả mô hình anten Trong bài báo cáo tập trung thiết kế một anten đơn cực phẳng phù hợp cho ứng dụng trong các thiết bị cầm tay di động (mobile hanset). Anten bao gồm một bộ phát xạ hình chữ nhật bị xẻ bởi các rãnh uốn khúc tạo thành 3 nhánh, trong đó 2 nhánh cộng hưởng và 1 nhánh điều chỉnh. Anten được in trên chất nền FR4 và được tiếp điện bởi một đường vi dải 50 Ω. Anten này có thể hoạt động trong các dải tần GSM, UTMS và WLAN với hệ số sóng đứng VSWR nhỏ hơn 2.5. 2.1.1. Giới thiệu Trong bài trình bày, một anten đơn cực phẳng với cấu trúc 2D được thiết kế. Cả cấu trúc và các tham số của cấu trúc đều được điều chỉnh một cách cẩn thận để đạt được yêu cầu cộng hưởng ở nhiều tần số (đa cộng hưởng), băng thông đủ và convenient profile. Anten có 3 nhánh và được in trên một tấm điện môi. Trước tiên, 2 nhánh được thiết kế để cộng hưởng ở 2 tần số nhất định, và sau đó nhánh thứ 3 được thêm vào để điều chỉnh tần số cộng hưởng cho phù hợp với các dải tần mong muốn. Với diện tích nhỏ 36 x 15 mm2, anten đáp ứng yêu cầu của các chuẩn truyền thông sau: GSM (Global System for Mobile communications, 890 MHz – 960 MHz), UTMS (Universal Mobile Telecommunication System, 1920 MHz – 2170 MHz) và WLAN (Wireless Local Area Network, 2400 MHz – 2484 MHz). Hình 2.1: Hình dạng của anten được thiết kế trong khóa luận 2 2.1.2. Thiết kế thành phần bức xạ Hình dạng tổng thể của anten mà khoá luận thiết kế được thể hiện trong hình 2.1 và thành phần bức xạ được thể hiện trong hình 2.2 dưới đây. Hình 2.2: Thành phần bức xạ của anten Thành phần bức xạ đơn cực phẳng chiếm diện tích là 36 x 15 mm2, và được in trên chất nền FR4 dày 0.8 mm (hằng số điện môi tương đối là 4.4). Tấm điện môi này được dùng phổ biến để làm các mạch PCB cho điện thoại di động. Chất nền (lớp điện môi) rộng 36 mm và dài 75 mm. Ở mặt sau của tấm điện môi, mặt phẳng đất được in có chiều rộng 36 mm và chiều dài 60 mm. Thành phần bức xạ đơn cực được tiếp điện bởi một đường vi dải 50 Ω như được chỉ ra trong hình 2.1. Thành phần bức xạ chính (patch) ban đầu có dạng hình chữ nhật. Bằng cách xẻ một rãnh uốn khúc trên thành phần bức xạ ban đầu tạo ra 3 nhánh, trong đó nhánh cộng hưởng thứ nhất là nhánh dài hơn, nhánh cộng hưởng thứ hai là nhánh ngắn hơn và nhánh điều chỉnh (nhánh thứ ba) với các kích thước chi tiết được chỉ ra trong hình 2.3. Hình 2.3: Kích thước chi tiết thành phần bức xạ của anten Ta mong muốn anten hoạt động tại 2 dải tần (dải thứ nhất cho GSM và dải thứ hai gồm 4 dải gần nhau là DCS, PCS, UTMS và WLAN), do đó thiết kế ban đầu chỉ có 2 nhánh cộng hưởng (không có nhánh thứ ba). Chiều dài của nhánh dài hơn tính từ điểm tiếp điện tới đầu cuối của nhánh cộng hưởng thứ nhất là khoảng 75 mm. Giá 3 trị này rất gần với ¼ bước sóng tại tần số 900MHz trong không gian tự do. Cũng nên chú ý rằng, tần số cộng hưởng phụ thuộc cả vào chiều dài của nhánh và chiều rộng của đầu cuối. Theo cách tương tự, chiều dài của nhánh cộng hưởng thứ hai tính từ điểm tiếp điện tới đầu cuối của nó là khoảng 35 mm, xấp xỉ ¼ bước sóng tại tần số 2 GHz. Độ dài 2 nhánh cộng hưởng được chọn ngắn hơn so với ¼ bước sóng cộng hưởng được chọn. Lý do chính là một số tồn tại trong thực tế của chất nền sẽ thu ngắn bước sóng cộng hưởng. Anten với chỉ 2 nhánh cộng hưởng 1 và 2 có khả năng hoạt động ở 2 dải tần. Tuy nhiên, băng thông lại chưa đủ để bao phủ tất cả 5 dải tần được liệt kê ở trên, đặc biệt là dải WLAN (kết quả mô phỏng được thể hiện trong phần sau). Do đó, nhánh điều chỉnh (nhánh thứ ba) được thêm vào tại một vị trí thích hợp trên nhánh cộng hưởng thứ nhất. Các kết quả mô phỏng chỉ ra rằng, bằng cách điều chỉnh cẩn thận các kích thước của nhánh thứ ba, các mode cộng hưởng cơ bản và bậc cao hơn của nhánh cộng hưởng thứ nhất có thể được điều chỉnh tới tần số mong muốn. Theo dữ liệu mô phỏng, tần số cộng hưởng của mode cơ bản được giảm từ 900 MHz xuống 870 MHz. Đối với mode bậc cao hơn, tần số cộng hưởng thay đổi từ lớn hơn 3 GHz xuống khoảng 2.3 GHz. Do đó, anten khi có đủ 3 nhánh có thể hoạt động ở cả 3 dải tần GSM/UTMS/WLAN. 2.1.3. Thiết kế thành phần phối hợp trở kháng dải rộng Trong thiết kế này lựa chọn bộ phối hợp trở kháng dạng tam giác. Do hình dạng của nó dễ dàng thực hiện được bằng phương pháp thủ công. Sự biến đổi của trở kháng Z(z) theo z của phối hợp trở kháng dạng tam giác là: Hình 2.4: Bộ phối hợp trở kháng dạng tam giác 4 Với Z0 = 100 Ω và ZL = 50 Ω. Đáp ứng biên độ của hệ số phản xạ được: Hình 2.5: Bộ phối hợp trở kháng liên tục dạng tam giác [4] (a). Sự biến đổi của trở kháng theo z (b). Đáp ứng biên độ của hệ số phản xạ Γ(θ) 2.1.4. Thiết kế đường truyền vi dải 50 Ω Thiết kế với Ansoft Designer 2.0, xác định độ rộng (W) của một đường truyền vi dải có trở kháng đặc trưng Z0 = 50 Ω, hằng số điện môi chất nền εr = 4.4 (FR4epoxy), chiều cao chất nền h= 0.8 mm, độ dày lớp đồng là t = 0.034 mm. Các bước thiết kế lần lượt như sau: 1. Khởi động Ansoft Designer 2.0 2. Từ menu Project, chọn Insert Planar EM Design… Sau đó cửa sổ Choose Layout Technology xuất hiện cho phép bạn chọn Layout. 3. Ta chọn MS-FR4(Er=4.4) 0.060 inch, 0.5 oz copper. Sau đó nhấn Open. 4. Cửa sổ thiết kế xuất hiện, cho phép bạn thực hiện các thao tác thiết kế. Từ menu Layout, ta chọn Layers, chọn tab Stackup để sửa đổi các thông số của đường truyền như hình 2.6: 5 Từ các giản đồ bức xạ trên ta thấy, khi tần số tăng lên thì giản đồ bức xạ của anten bị bóp méo dần, do ảnh hưởng của bức xạ của mặt phẳng đất, cũng như bức xạ do đường tiếp điện vi dải, cũng như sự lệch phối hợp trở kháng tăng lên. 4. Kết luận Khóa luận là bước mở đầu trong nghiên cứu, thiết kế và chế tạo anten mạch dải băng rộng có khả năng hoạt động tại nhiều băng tần. Tuy nhiên trong điều kiện cơ sở vật chất còn khó khăn, em đã thực sự cố gắng để đạt được một số kết quả thiết thực nhất định. Hướng phát triển tiếp theo của khóa luận gồm những vấn đề sau:  Tối ưu hóa các thiết đặt tham số trong phần mềm mô phỏng Ansoft HFSS 13.0 để thu được kết quả chính xác hơn nữa (Chi tiết trình bày trong phần phụ lục B). Một số tham số quan trọng trong đó là: o Mesh Operations o Chia dải tần cần quan sát thành các dải nhỏ hơn, thực hiện phân tích từng dải với tham số Solution frequency được chọn phù hợp cho từng dải.  Làm tăng băng thông thêm nữa. Tập trung vào việc điều chỉnh kích thước của nhánh cộng hưởng thứ 1, vị trí của điểm tiếp điện, và nghiên cứu chi tiết các ảnh hưởng của nhánh điều chỉnh (nhánh thứ 3).  Lựa chọn bộ phối hợp trở kháng dải rộng khác có đặc tính tốt hơn. Cụ thể là bộ phối hợp trở kháng liên tục Klopfenstein (như chương 2 đã phân tích).  Sử dụng các thiết bị chuyên dùng để chế tạo anten nhằm thực hiện chính xác các kích thước như thiết kế. 18 TÀI LIỆU THAM KHẢO 1. Constantine A. Balanis, Antenna Theory – Analysis and Design, John Willey & Son, INC, Second Editon 2. David M. Pozar, Microwave Engineering, John Willey & Son, INC, Second Editon 3. Y. J. Wang, C. K. Lee, Design of Dual-Frequency Microstip Patch Antennas and Application for IMT-2000 Mobile Handsets, Nanyang Technological University, Nanyang Avenue, Singapore 4. Xu Jing, Zhengwei Du and Ke Gong, Compact Planar Monopole Antenna for Multi-band Mobile Phones, Tsinghua University, Beijing, People’s Republic of China 5. Ramesh Garg, Prakash Bhartia, Inder Bahl, Apisak Ittipiboon, Microstrip Antenna Design Hanbook, Artech House 6. U.S. Marine Corps, Field Antenna Handbook 7. Chin Liong Yeo, Active Microstrip Array Antennas, Submitted for the degree of Bachelor of Engineering, University of Queensland 19
- Xem thêm -

Tài liệu liên quan