Đăng ký Đăng nhập
Trang chủ Tổng hợp và nghiên cứu tính chất vật liệu phát quang NaYF4 Er3, Yb3-...

Tài liệu Tổng hợp và nghiên cứu tính chất vật liệu phát quang NaYF4 Er3, Yb3-

.PDF
52
1042
95

Mô tả:

TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ====== NGUYỄN THỊ THU HƢƠNG TỔNG HỢP VÀ NGHIÊN CỨU TÍNH CHẤT VẬT LIỆU PHÁT QUANG NaYF4:Er3+, Yb3+ KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa Vô Cơ Ngƣời hƣớng dẫn khoa học ThS. HOÀNG QUANG BẮC HÀ NỘI – 2015 LỜI CẢM ƠN Trong nhiều tháng nghiên cứu và học tập, nhờ vào nỗ lực của bản thân cùng với sự giúp đỡ tận tình của thầy giáo, em đã hoàn thành khóa luận của mình đúng với thời gian quy định. Trƣớc tiên, em xin gửi lời cảm ơn chân thành và lòng biết ơn sâu sắc của mình tới ThS. Hoàng Quang Bắc - Khoa Hóa học - Trƣờng ĐHSP Hà Nội 2 đã tận tình hƣớng dẫn, giúp đỡ em trong suốt quá trình nghiên cứu, thực hiện đề tài. Em xin gửi lời cảm ơn tới Ban Lãnh đạo Viện Khoa học Vật liệu (Viện Hàn lâm Khoa học & Công nghệ Việt Nam); TS. Nguyễn Vũ và các cán bộ Phòng Quang hoá điện tử đã tận tình chỉ bảo, tạo điều kiện thuận lợi cho em trong thời gian qua. Nhân dịp này em xin gửi cảm ơn đến các thầy cô giáo là giảng viên khoa Hóa học - Trƣờng Đại học Sƣ phạm Hà Nội 2 đã quan tâm giúp đỡ, trang bị cho em những kiến thức chuyên môn cần thiết trong quá trình học tập tại trƣờng. Xin cảm ơn gia đình, bạn bè đã luôn động viên, giúp đỡ cho em hoàn thành tốt khóa luận tốt nghiệp này. Trong quá trình thực hiện khóa luận tốt nghiệp dù cố gắng nhƣng em không tránh khỏi những sai sót. Vì vậy, em kính mong nhận đƣợc sự chỉ bảo của các thầy cô và ý kiến đóng góp của các bạn sinh viên quan tâm. Em xin chân thành cảm ơn! Hà Nội, tháng 05 năm 2015 Sinh viên Nguyễn Thị Thu Hƣơng DANH MỤC HÌNH Hình 1.1. Sơ đồ của tinh thể hay vật liệu huỳnh quang ...................................................4 Hình 1.2. Sơ đồ mô tả quá trình huỳnh quang .................................................................5 Hình 1.3. Sự truyền năng lƣợng từ tâm S (tăng nhậy) tới A ...........................................5 Hình 1.4. Sự truyền năng lƣợng từ S tới A .......................................................................6 Hình 1.5. Sơ đồ mô tả các cơ chế của các quá trình phát quang chuyển đổi ngƣợc ...14 Hình 1.6. Cơ chế của quá trình chuyển đổi ngƣợc [21] .................................................15 Hình 2.1. Sơ đồ quy trình tổng hợp vật liệu theo phƣơng pháp thuỷ nhiệt ..................26 Hình 2.2. Sơ đồ nhiễu xạ trên mạng tinh thể...................................................................28 Hình 2.3. Sơ đồ khối và ảnh kính hiển vi điện tử quét ...................................................31 Hình 2.4. Sơ đồ hệ đo quang huỳnh quang .....................................................................31 Hình 2.5. Hệ đo quang huỳnh quang IHR550 tại Viện Khoa học Vật liệu. ................32 Hình 3.1. Giản đồ nhiễu xạ tia X của mẫu NaYF4:Er3+,Yb3+ với dung môi là H2O, thủy nhiệt trong 4 giờ ở 200oC với tỉ lệ NaF/M(NO3)3 thay đổi: k = 4 ; k=5; k = 6; k = 8; k=9; k = 10; k = 12....................................................................................................33 Hình 3.2. Giản đồ nhiễu xạ tia X của mẫu NaYF4:Er3+,Yb3+ với dung môi là H2O ở 200oC: trong 1 giờ; trong 4 giờ; trong 8 giờ; trong 24 giờ.............................................35 Hình 3.3. Ảnh SEM của vật liệu NaYF4:Er3+,Yb3+ thủy nhiệt trong ở 200oC với tỷ lệ k= NaF/M(NO3)3 và thời gian khác nhau........................................................................36 Hình 3.4. Giản đồ nhiễu xạ tia X của NaYF4:Er3+,Yb3+ đƣợc tổng hợp bằng phƣơng pháp thủy nhiệt nhiệt trong dung môi DEG ở 200oC trong 4 giờ với tỉ lệ NaF/Y3+ = 5/1 ........................................................................................................................................37 Hình 3.5. Ảnh SEM của vật liệu NaYF4:Er3+,Yb3+ với dung môi DEG ở 200oC trong 4 giờ với tỉ lệ NaF/Y3+ = 5/1 .............................................................................................38 Hình 3.6. Phổ huỳnh quang chuyển đổi ngƣợc của hạt nano NaYF4:Er3+,Yb3+..........39 Hình 3.7. Sơ đồ mô tả các cơ chế của các quá trình phát quang chuyển đổi ngƣợc ...41 DANH MỤC BẢNG Bảng 1.1. Cƣờng độ phát xạ xanh lá cây đã đƣợc chuẩn hóa dƣới kích thích hồng ngoại của các mạng chủ đồng pha tạp Yb3+, Er3+ .............................................................8 Bảng 1.2. Các ion nguyên tố đất hiếm [21].....................................................................10 Bảng 2.1. Danh sách các mẫu NaYF4:Er3+,Yb3+ với dung môi là H2O, (M(NO3)3 là ký hiệu chung cho các muối nitrat kim loại) ........................................................................27 Bảng 2.2. Danh sách các mẫu NaYF4:Er3+,Yb3+ với thời gian thủy nhiệt thay đổi.....28 DANH MỤC KÍ HIỆU, CHỮ VIẾT TẮT Các kí hiệu λ : bƣớc sóng (wavelength) λ Exc : bƣớc sóng kích thích (excitation wavelength) λ Anal : bƣớc sóng phân tích (analysis wavelength) Ta : nhiệt độ nung ta : thời gian nung β : độ bán rộng cực đại θ : góc nhiễu xạ tia X υ : tần số η : hiệu suất lƣợng tử phát quang I : cƣờng độ Các chữ viết tắt EM : phát xạ (emission) ESA : sự hấp thụ của trạng thái kích thích (excited – state absortion) ET : truyền năng lƣợng (energy transfer) ETU : truyền năng lƣợng chuyển đổi ngƣợc (energy transfer upconversion) EXC : kích thích (excitation) SEM : hiển vi điện tử quét (emisstion scanning electron microscope) GSA : hấp thụ của trạng thái cơ bản (ground – state absortion) MBE : epitaxi chùm phân tử (molecular beam epitaxy) RE : đất hiếm (rare earth) TEM : hiển vi điện tử truyền qua (transmission electron microscope) MỤC LỤC MỞ ĐẦU..............................................................................................................................1 CHƢƠNG 1. TỔNG QUAN VỀ VẬT LIỆU PHÁT QUANG PHA TẠP ĐẤT HIẾM VÀ CÁC PHƢƠNG PHÁP TỔNG HỢP VẬT LIỆU.......................................4 1.1. Tổng quan về vật liệu huỳnh quang có cấu trúc nano ..............................................4 1.1.1. Vật liệu huỳnh quang và ứng dụng..........................................................................4 1.1.2. Ảnh hƣởng của mạng chủ ........................................................................................6 1.1.3. Vật liệu phát quang NaYF4 ......................................................................................7 1.1.4. Cấu tạo vỏ điện tử và đặc tính phát quang của ion đất hiếm.................................9 1.1.5. Các chuyển dịch phát xạ và không phát xạ của ion đất hiếm .............................11 1.1.6. Sự phát quang chuyển đổi ngƣợc [17, 21, 22]......................................................13 1.1.7. Huỳnh quang của ion Er3+ và vai trò của ion Yb3+...............................................15 1.2. Một số phƣơng pháp chế tạo vật liệu phát quang cấu trúc nano............................17 1.2.1. Phƣơng pháp đồng kết tủa ......................................................................................17 1.2.2. Phƣơng pháp kết tủa keo trực tiếp trong dung môi nhiệt độ cao ........................18 1.2.3. Phƣơng pháp phân huỷ nhiệt..................................................................................20 1.2.4. Phƣơng pháp thuỷ nhiệt..........................................................................................23 CHƢƠNG 2. THỰC NGHIỆM ......................................................................................25 2.1. Phƣơng pháp tổng hợp vật liệu NaYF4:Er3+,Yb3+ ..................................................25 2.1.1. Thiết bị và hóa chất .................................................................................................25 2.1.2. Phƣơng pháp thuỷ nhiệt tổng hợp vật liệu ............................................................25 2.2. Phƣơng pháp nghiên cứu tính chất và cấu trúc của vật liệu ...................................28 2.2.1. Phƣơng pháp nhiễu xạ tia X ...................................................................................28 2.2.2. Kính hiển vi điện tử quét (SEM)............................................................................29 2.2.3. Phƣơng pháp phổ huỳnh quang .............................................................................31 CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ................................................................33 3.1. Cấu trúc và hình thái học của vật liệu.......................................................................33 3.1.1. Ảnh hƣởng của tỷ lệ NaF/M(NO3)3 đến vật liệu NaYF4:Er3+, Yb3+ trong dung môi nƣớc .............................................................................................................................33 3.1.2. Ảnh hƣởng của thời gian thuỷ nhiệt đến vật liệu NaYF4:Er3+,Yb3+ trong dung môi nƣớc .............................................................................................................................35 3.2. Kết quả phân tích phổ huỳnh quang của vật liệu ....................................................39 KẾT LUẬN........................................................................................................................42 TÀI LIỆU THAM KHẢO ...............................................................................................43 MỞ ĐẦU Sự phát triển nhƣ vũ bão của nền kinh tế luôn đặt ra các yêu cầu bức thiết đối với khoa học công nghệ về các giải pháp năng lƣợng, vật liệu và thiết bị với hiệu quả vƣợt trội và tính năng đột phá. Trong bối cảnh đó, công nghệ nano ra đời đã phần nào giải quyết đƣợc các vấn đề cấp thiết. Việc ứng dụng công nghệ nano vào các ngành khoa học và cuộc sống ngày càng đƣợc quan tâm phát triển. Trong thời gian qua khoa học và công nghệ nano đã đạt đƣợc những thành tựu to lớn đánh dấu bƣớc phát triển lịch sử không chỉ của khoa học công nghệ, mà trong cả lĩnh vực kinh tế và xã hội. Các nhu cầu về điện năng, năng lƣợng mới, sức khoẻ và môi trƣờng tạo tiền đề cho các ứng dụng của khoa học và công nghệ nano. Theo xu thế phát triển chung của công nghệ nano, các vật liệu cấu trúc nano phát quang nhƣ chất màu hữu cơ, các chấm lƣợng tử chế tạo từ vật liệu bán dẫn, các vật liệu nano phát quang chứa đất hiếm đã ngày càng đƣợc ứng dụng nhiều và đa dạng hơn trong các ngành kinh tế kĩ thuật và đời sống xã hội. Gần đây, một loại vật liệu nano phát quang trở thành đối tƣợng khá “hot” của nghiên cứu cơ bản và ứng dụng. Đó là vật liệu nano phát quang chứa ion đất hiếm. Loại vật liệu này thu hút đƣợc sự quan tâm nghiên cứu phát triển nhằm triển khai các ứng dụng trong in bảo mật [1,2], công nghệ lƣợng tử ánh sáng [13], hiển thị hình ảnh [19, 44], đánh dấu sinh y học [8, 23]. Vật liệu nano chứa ion đất hiếm có tính chất đa dạng khác nhau, khi kết hợp với mạng nền khác nhau thì chúng thể hiện những đặc tính phát quang rất lý thú. Một trong số đó là hiệu ứng huỳnh quang chuyển đổi ngƣợc. Vật liệu phát quang chuyển đổi ngƣợc là vật liệu có tính chất đặc biệt khác với những vật liệu phát quang thông thƣờng, bởi vì khi kích thích bằng ánh sáng hồng ngoại sẽ thu đƣợc phát xạ ánh sáng vùng khả kiến. Hay nói khác đi, khi dùng ánh sáng có năng lƣợng thấp để kích thích chúng ta có thể thu đƣợc ánh sáng Khoá luận tốt nghiệp 1 với năng lƣợng cao. Đó chính là cơ sở hứa hẹn cho khả năng ứng dụng đặc sắc của vật liệu khối (micro) và vật liệu nano phát quang chuyển đổi ngƣợc vào các lĩnh vực khoa học, công nghệ và đời sống. Với đối tƣợng ứng dụng là sinh y học, các vật liệu nano phát quang chuyển đổi ngƣợc có hai ƣu thế cơ bản so với vật liệu phát quang thông thƣờng. Trƣớc hết, chúng có khả năng tạo thành hệ keo bền trong các môi trƣờng sinh lý; thứ đến là ánh sáng kích thích lại nằm ở vùng hồng ngoại gần, nơi các vật liệu sống hấp thụ rất thấp. Trong những năm gần đây đã có rất nhiều công trình công bố về các loại vật liệu nano phát quang chuyển đổi ngƣợc khác nhau. Trong đó vật liệu nền oxit, florua... của Ytri và Gadolini pha tạp ion đất hiếm nhƣ Eu3+, Tb3+, Sm3+, Pr3+, Er3+, Yb3+, Tm3+ là nổi bật hơn cả. Trong các mạng nền của flo (F) các nghiên cứu cho thấy rằng mạng nền NaYF4 ở kích thƣớc nanomet sẽ tạo ra hiệu ứng phát quang chuyển đổi ngƣợc với hiệu suất phát quang cao, bền trong các điều kiện ứng dụng khác nhau. Chính vì vậy, đƣợc sự giúp đỡ của phòng Quang hoá điện tử - Viện Khoa học Vật liệu - Viện Hàn Lâm Khoa học & Công nghệ Việt Nam, chúng tôi lựa chọn đề tài: “Tổng hợp và nghiên cứu vật liệu phát quang NaYF4: Yb3+, Er3+” Mục tiêu của luận văn là: Xây dựng đƣợc công nghệ tổng hợp vật liệu nano phát quang chuyển đổi ngƣợc NaYF4: Er3+, Yb3+ ở dạng bột bằng phƣơng pháp thủy nhiệt. Trên cơ sở đó, nghiên cứu một cách có hệ thống những ảnh hƣởng của điều kiện công nghệ nhƣ: nhiệt độ, nồng độ, dung môi... lên sự hình thành và tính chất của vật liệu. Phƣơng pháp nghiên cứu là phƣơng pháp thực nghiệm nhƣ: tổng hợp hóa học vật liệu nano đất hiếm bằng phƣơng pháp thủy nhiệt. Sử dụng các phƣơng pháp phân tích nhƣ: phƣơng pháp nhiễu xạ tia X, phƣơng pháp hiển Khoá luận tốt nghiệp 2 vi điện tử quét (SEM) và phƣơng pháp đo phổ huỳnh quang để nghiên cứu cấu trúc và tính chất quang học của vật liệu. Nội dung khóa luận bao gồm: Chương 1: Tổng quan về vật liệu phát quang pha tạp đất hiếm và các phương pháp tổng hợp vật liệu Chương 2: Thực nghiệm Chương 3: Kết quả và thảo luận Kết luận Tài liệu tham khảo Khoá luận tốt nghiệp 3 CHƢƠNG 1. TỔNG QUAN VỀ VẬT LIỆU PHÁT QUANG PHA TẠP ĐẤT HIẾM VÀ CÁC PHƢƠNG PHÁP TỔNG HỢP VẬT LIỆU 1.1. Tổng quan về vật liệu huỳnh quang có cấu trúc nano 1.1.1. Vật liệu huỳnh quang và ứng dụng Vật liệu huỳnh quang là vật liệu có thể biến đổi một số loại năng lƣợng thành bức xạ điện từ. Bức xạ điện từ đƣợc phát xạ bởi vật liệu huỳnh quang thƣờng nằm trong vùng nhìn thấy, hoặc cũng có thể nằm trong vùng tử ngoại và hồng ngoại. Quá trình huỳnh quang có thể đƣợc kích thích bởi nhiều loại năng lƣợng khác nhau: nếu kích thích bằng bởi bức xạ điện từ ta có quang huỳnh quang, nếu kích thích bằng chùm electron năng lƣợng cao ta có huỳnh quang catot, nếu kích thích bằng hiệu điện thế của dòng điện thì ta có điện huỳnh quang…[8]. Kích thích Phát xạ A HEAT Hình 1.1. Sơ đồ của tinh thể hay vật liệu huỳnh quang (HEAT: sự trở về không bức xạ tới trạng thái cơ bản) Một vật liệu huỳnh quang pha tạp thông thƣờng gồm có một mạng chủ (host) và một tâm huỳnh quang, đƣợc gọi là tâm kích hoạt (activator). Ví dụ, trong tinh thể huỳnh quang ruby (Al2O3 :Cr3+), mạng chủ là Al2O3, tâm kích hoạt là ion Cr3+ ; trong vật liệu NaYF4 :Er3+, mạng chủ là NaYF4, tâm kích hoạt là ion Er3+. Các quá trình huỳnh quang trong hệ đƣợc xảy ra nhƣ sau: Bức xạ kích thích đƣợc hấp thụ bởi tâm kích hoạt, tâm này đƣợc nâng lên từ trạng thái cơ Khoá luận tốt nghiệp 4 bản A lên trạng thái kích thích A* (hình 1.2). Từ trạng thái kích thích hồi phục về trạng thái cơ bản bằng sự phát xạ bức xạ R. Ngoài quá trình bức xạ còn có sự hồi phục không bức xạ NR. Trong quá trình này năng lƣợng của trạng thái kích thích đƣợc dùng để kích thích dao động mạng, có nghĩa là làm nóng mạng chủ [8]. A* NR R Bức xạ kích thích A Hình 1.2. Sơ đồ mô tả quá trình huỳnh quang Bức xạ kích thích có thể không bị hấp thụ bởi các ion kích hoạt mà bởi các ion hoặc nhóm các ion khác. Ion hoặc nhóm ion này có thể hấp thụ bức xạ kích thích rồi truyền năng lƣợng cho tâm kích hoạt. Trong trƣờng hợp này ion hấp thụ đƣợc gọi là ion tăng nhậy (hình 1.3). Kích thích Phát xạ s a et Hình 1.3. Sự truyền năng lƣợng từ tâm S (tăng nhậy) tới A Ngoài ra, thay vì kích thích vào các ion kích hoạt hay các ion tăng nhậy, ngƣời ta có thể thực hiện quá trình kích thích ngay vào mạng chủ. Trong trƣờng hợp này, mạng chủ truyền năng lƣợng kích thích của nó tới tâm kích hoạt, nhƣ vậy mạng chủ có tác động nhƣ chất tăng nhậy. Khoá luận tốt nghiệp 5 S* et A*1 A*2 s a Hình 1.4. Sự truyền năng lƣợng từ S tới A Dịch chuyển S → S* là hấp thụ, dịch chuyển A2* → A là phát xạ. Mức A1* là tích lũy nhờ sự truyền năng lƣợng (ET) sẽ phục hồi không phát xạ tới mức A2* nằm thấp hơn một chút. Các quá trình vật lý cơ bản đóng vai trò quan trọng trong vật liệu huỳnh quang: - Sự hấp thụ (hoặc sự kích thích) có thể thực hiện: ở chính các ion kích hoạt, ở ion tăng nhậy, hoặc mạng chủ. - Phát xạ từ tâm kích hoạt. - Quay trở về không bức xạ với trạng thái cơ bản, quá trình này làm giảm hiệu suất huỳnh quang của vật liệu. - Truyền năng lƣợng giữa các tâm huỳnh quang. Vật liệu huỳnh quang có rất nhiều ứng dụng, chẳng hạn nhƣ chúng đƣợc dùng trong các đèn huỳnh quang, trong các ống tia catot, các vật dụng trong phòng thí nghiệm, các vật dụng ở nhà mà chúng ta thƣờng hay sử dụng: ti vi, màn hình máy vi tính. Chúng ta cũng có thể gặp ứng dụng của vật liệu huỳnh quang khi tới bệnh viện chụp X - quang, hoặc trong laser ở phòng nghiên cứu của bạn, “trái tim” của thiết bị này cũng là vật liệu huỳnh quang…[8]. 1.1.2. Ảnh hưởng của mạng chủ Nếu ta xem xét một tâm huỳnh quang đã cho ở trong các mạng chủ khác nhau, các tính chất quang học của tâm này thƣờng cũng khác nhau. Điều này không có gì là ngạc nhiên cả, bởi vì chúng làm thay đổi môi trƣờng xung quanh trực tiếp của tâm huỳnh quang. Nếu chúng ta hiểu tính chất huỳnh Khoá luận tốt nghiệp 6 quang của một tâm quang học phụ thuộc thế nào vào mạng chủ thì sẽ dễ dàng phán đoán đƣợc mọi vật liệu huỳnh quang. Bây giờ chúng ta sẽ xem xét các yếu tố ảnh hƣởng tới sự khác nhau của phổ cùng một ion đã cho trong các mạng chủ khác nhau. Yếu tố đầu tiên đƣợc đề cập đến là tính đồng hóa trị. Để tăng tính đồng hóa trị, tƣơng tác giữa các electron đƣợc giảm bớt bởi vì chúng tạo ra các quỹ đạo lớn hơn. Bởi vậy, các dịch chuyển điện tử giữa các mức năng lƣợng đƣợc xác định bởi sự dịch chuyển do tƣơng tác electron về phía năng lƣợng thấp hơn khi sự đồng hóa trị tăng lên. Điều này đƣợc biết đến nhƣ hiệu ứng Nephelauxetic (sự giãn nở đám mây điện tử). Sự đồng hóa trị cao hơn cũng có nghĩa là sự chênh lệch về điện tích âm giữa các ion cấu thành trở nên nhỏ hơn, dịch chuyển truyền điện tích giữa các ion này chuyển dịch về phía năng lƣợng thấp hơn. Một yếu tố nữa thể hiện sự ảnh hƣởng của mạng chủ tới tính chất quang của một ion đã cho là trƣờng tinh thể. Trƣờng này là trƣờng điện tử tại vị trí của ion dƣới điều kiện quan sát do môi trƣờng xung quanh. Vị trí phổ của số dịch chuyển quang học đƣợc xác định bởi lực của trƣờng tinh thể, các ion kim loại chuyển tiếp là rõ nhất. 1.1.3. Vật liệu phát quang NaYF4 Trong số các nền tinh thể có khả năng sử dụng, vật liệu fluorua đƣợc xem là ứng cử viên tiêu biểu nhất. Tinh thể nano flourua chứa các nguyên tố thuộc nhóm Lantanit rất thích hợp để pha tạp các ion đất hiếm do chúng có cùng hóa trị, kích thƣớc tƣơng đối gần nhau nên có thể thay thế cho nhau dễ dàng. Sử dụng vật liệu nền fluorua giúp hiện tƣợng dập tắt các trạng thái kích thích của ion giảm mạnh, thời gian sống và hiệu suất phát quang tăng cƣờng. Khảo sát của Grabmaier.B.C và Blasse.G (bảng 2.1) cho thấy vật liệu nền αNaYF4 có hiệu quả phát quang chuyển đổi ngƣợc tốt nhất so với các mạng Khoá luận tốt nghiệp 7 chủ khác khi đồng pha tạp Yb3+, Er3+ [6]. Ngày nay, vật liệu fluorua đƣợc ứng dụng nhiều trong lĩnh vực phát quang, chiếu sáng, công nghệ chế tạo màn hình hoặc kết hợp với nguồn lade hồng ngoại khá phổ biến để thực hiện định vị trong y-sinh. NaYF4 pha tạp các ion Er3+ và Yb3+ (NaYF4:Er3+,Yb3+) là một trong những vật liệu phát quang chuyển đổi ngƣợc có hiệu suất cao nhất. Trong đó, NaYF4 đóng vai trò là mạng chủ; Er3+ đóng vai trò là ion kích hoạt, còn Yb3+ đóng vai trò là ion tăng nhạy. Ở đây, Yb3+ đƣợc chọn là ion tăng nhạy vì Yb3+ có tiết diện hấp thụ ở vùng 980 nm lớn hơn so với Er3+. Vật liệu này có khả năng hấp thụ bức xạ kích thích ở vùng hồng ngoại (~980 nm) cho phát xạ chuyển đổi ngƣợc ở vùng xanh lá cây (520-570 nm) và vùng đỏ (630-680 nm) [1, 16]. Bảng 1.1. Cƣờng độ phát xạ xanh lá cây đã đƣợc chuẩn hóa dƣới kích thích hồng ngoại của các mạng chủ đồng pha tạp Yb3+, Er3+ Mạng chủ Cƣờng độ Mạng chủ Cƣờng độ α-NaYF4 100 La2MoO8 15 YF3 60 LaNbO4 10 BaYF3 50 NaGdO2 5 NaLaF4 40 La2O3 5 LaF3 30 NaYW2O6 5 Trong bảng 1.1 hiệu quả phát xạ màu xanh lá cây của mạng chủ đồng pha tạp Yb3+ và Er3+ dƣới kích thích đƣợc cho. Mật độ kích thích và nồng độ ion kích hoạt giống nhau. Nhƣ đã thấy, hiệu quả phụ thuộc mạnh vào sự lựa chọn mạng chủ. Nhƣ vậy, α-NaYF4 là vật liệu sinh ra để chuyển đổi rất hiệu quả. Khoá luận tốt nghiệp 8 Các oxit ít thích hợp hơn là các florua, vì thời gian sống trong các oxit thì ngắn hơn trong florua do tƣơng tác mạnh giữa các ion huỳnh quang và các ion xung quanh nó. Nếu thời gian sống của mức trung gian 4I11/2 giảm dần, hiệu suất tổng cộng của quá trình chuyển đổi cũng giảm dần. NaYF4 có hai loại cấu trúc tinh thể α (cấu trúc lập phƣơng) và β (cấu trúc lục giác). Trong đó, β-NaYF4 có nhiều ƣu điểm, bền nhiệt hơn và đƣợc sử dụng phổ biến hơn. Các ion Yb3+ do có bán kính nhỏ hơn so với Y3+ nên dễ dàng thay thế vào vị trí Y3+ trong mạng tinh thể, giúp quá trình phân tán tốt hơn, tránh hiện tƣợng kết tụ đám dẫn đến quá trình dập tắt do nồng độ. 1.1.4. Cấu tạo vỏ điện tử và đặc tính phát quang của ion đất hiếm Đất hiếm gồm có 17 nguyên tố, trong đó có 15 nguyên tố thuộc họ Lantan từ La (nguyên tố số 57) đến Lu (nguyên tố số 71) và 2 nguyên tố khác là Sc (nguyên tố số 21) và Y (nguyên tố số 39). Các nguyên tố thuộc họ La (Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) là những kim loại đặc trƣng bởi sự lấp đầy lớp điện tử 4f. Cấu hình điện tử các nguyên tử trung hòa là [Xe] 4fn5d0-16s2. Các ion hóa trị 3 có cấu hình điện tử lớp vỏ là 4fn5s25p6, trong đó n=0-14 đƣợc trình bày cụ thể ở bảng 1.2. Nhƣ đã nêu trên bảng 1.2, Sc3+, Y3+, La3+ có cấu hình điện tử tƣơng ứng với cấu hình các khí trơ Ar, Kr, Xe. Các ion họ lantanit từ Ce3+ đến Lu3+ có thêm từ 1 đến 14 điện tử 4f so với cấu hình điện tử của Xe. Các electron ở lớp 4f đƣợc che chở tránh những tác động của môi trƣờng ngoài bởi electron của lớp 5s, 5p. Kết quả, chúng làm cho các mức năng lƣợng của lớp 4f có những đặc tính sau: - Khá bền và ít chịu ảnh hƣởng của vật liệu nền; - Không bị phân tách bởi vật liệu nền; - Ít bị trộn lẫn với các mức năng lƣợng cao. Khoá luận tốt nghiệp 9 Bảng 1.2. Các ion nguyên tố đất hiếm [21] Số hiệu nguyên Ion Cấu hình electron tử S L J Trạng thái Σs Σl Σ(L + S) cơ bản 21 Sc3+ [Ar] 0 0 0 39 Y3+ [Kr] 0 0 0 57 La3+ [Xe]4f0 0 0 0 58 Ce3+ [Xe]4f1 1/2 3 5/2 2 59 Pr3+ [Xe]4f2 1 5 4 3 60 Nd3+ [Xe]4f3 3/2 6 9/2 4 61 Pm3+ [Xe]4f4 2 6 4 62 Sm3+ [Xe]4f5 5/2 5 5/2 63 Eu3+ [Xe]4f6 3 3 0 64 Gd3+ [Xe]4f7 7/2 0 7/2 65 Tb3+ [Xe]4f8 3 3 6 66 Dy3+ [Xe]4f9 5/2 5 15/2 67 Ho3+ [Xe]4f10 2 6 8 68 Er3+ [Xe]4f11 3/2 6 15/2 69 Tm3+ [Xe]4f12 1 5 6 3 70 Yb3+ [Xe]4f13 1/2 3 7/2 2 71 Lu3+ [Xe]4f14 0 0 0 F5/2 H4 I9/2 5 6 H5/2 7 8 F0 S7/2 7 6 I4 F6 H15/2 5 4 I8 I15/2 H6 F7/2 Vì ít tƣơng tác với vật liệu nền, nên ở cấu hình 4f, tồn tại rất ít hoặc không tồn tại các mức dao động tƣơng ứng với năng lƣợng dịch chuyển của phonon và sự hồi phục không bức xạ từ các mức kích thích rất yếu. Nói cách khác, cấu hình 4f có thể giúp hạn chế hiệu ứng phonon. Do đặc tính quan trọng này, khi sử dụng các ion đất hiếm, dịch chuyển quang học chỉ xảy ra Khoá luận tốt nghiệp 10 trong 1 phạm vi ngắn của bƣớc sóng, bức xạ thu đƣợc đơn sắc hơn và có hiệu suất cao hơn so với trƣờng hợp các ion thông thƣờng. Khi xảy ra sự tƣơng tác giữa momen quĩ đạo và momen từ spin, các mức năng lƣợng đƣợc hình thành theo nguyên tắc Russell-Saunders. Trạng thái năng lƣợng mới sinh ra đƣợc ký hiệu bởi 2S+1LJ. Trong đó L là momen động lƣợng, S tƣơng ứng với số lƣợng tử từ spin và J là momen động lƣợng toàn phần. Mặc dù theo lý thuyết, các ion đất hiếm có cấu hình ít phụ thuộc vào chất nền vật liệu, tuy nhiên khi đặt trong một trƣờng tinh thể nhất định, hiệu ứng tách mức năng lƣợng Stack vẫn xảy ra đối với một số ion. Nghiên cứu cho thấy, hiệu ứng Stark cho các ion đất hiếm trong môi trƣờng thủy tinh xuất phát từ tính đối xứng điểm thấp của những ion này trong nền vô định hình. Các ion đất hiếm họ Lantanit đã đƣợc ứng dụng từ lâu trong quang học và từ tính. Các vật liệu có chứa ion đất hiếm dạng đơn tinh thể, bột và thủy tinh đã đƣợc sử dụng trong vật liệu từ và quang từ hàng chục năm trƣớc đây. Các ion đất hiếm hấp thụ và phát xạ quang trong dải phổ khá hẹp, phát xạ và hấp thụ quang tƣơng đối mạnh và không phụ thuộc vào vật liệu chứa chúng, thời gian sống tại mức kích thích siêu bền khá cao (cỡ mili giây). 1.1.5. Các chuyển dịch phát xạ và không phát xạ của ion đất hiếm 1.1.5.1. Các chuyển dịch phát xạ Với ion đất hiếm, xác suất chuyển dời tăng theo ω3 (ћω là năng lƣợng photon tƣơng ứng với chuyển dời điện tử). Trong chuyển dời giữa một trạng thái kích thích với một trạng thái kích thích thấp hơn, xác suất chuyển dời phụ thuộc vào khoảng cách giữa hai mức trạng thái này. Khi khoảng cách giữa 2 mức khá nhỏ, photon tham gia và quá trình hồi phục mà không phát photon. Khi khoảng cách giữa 2 mức lớn, chuyển dời giữa 2 trạng thái đó thƣờng mang theo bức xạ. Khoá luận tốt nghiệp 11 Các mức năng lƣợng của ion đất hiếm đều do các điện tử 4f tạo nên, vì thế tất cả các trạng thái đó đều có cùng số chẵn lẻ. Nếu một ion tự do hoặc chiếm một vị trí đối xứng tâm đảo trong mạng tihh thể, các dịch chuyển quang học giữa các mức 4fn bị cấm một cách nghiêm ngặt đối với dịch chuyển lƣỡng cực từ theo quy tắc lọc lựa: L= 0; S= 0; J= 0,  1. Tuy nhiên ở vị trí không có đối xứng đảo thì quy tắc lựa chọn ngăn cấm tính chẵn lẻ đƣợc giải phóng ở mức độ khác nhau và có thể xảy ra các dịch chuyển lƣỡng cực điện cho phép nhƣng suy yếu. Số hạng trƣờng tinh thể trong trƣờng hợp không đối xứng chứa một thành phần lẻ. Thành phần lẻ này của trƣờng tinh thể là sự pha trộn của một số trạng thái 4fn-1 5d vào trạng thái 4fn. Các điện tử 4f đƣợc che chắn bởi điện trƣờng của các ion bên cạnh. Sự pha trộn là nhỏ, hoặc các trạng thái nằm thấp hơn chủ yếu là các trạng thái 4fn. Do vậy có cùng tính chẵn lẻ. Do đó, các dịch chuyển phát xạ thƣờng có xác xuất cao hơn, cho phát xạ với cƣờng độ mạnh hơn. 1.1.5.2. Dịch chuyển không phát xạ Quá trình chuyển dời không phát photon, mà là phonon hoặc gây ra các kích thích thứ cấp. Nếu các trạng thái điện tử gần nhau, các chuyển dời giữa các trạng thái này có thể phát xạ hoặc hấp thụ một hoặc hai phonon và chuyển dời xảy ra rất nhanh và điều này dẫn đến sự chiếm giữ các mức năng lƣợng bằng nhiệt. Vì vậy chuyển dời không phát xạ giữa các mức J sẽ phát xạ đa photon để bảo toàn năng lƣợng. Xác suất chuyển dời không bức xạ sẽ giảm khi khoảng cách các khe tăng. Nếu tốc độ hồi phục không phát xạ gần bằng tốc độ chuyển dời phát xạ thì hiệu suất phát huỳnh quang tại mức kích thích sẽ giảm. Độ rộng tới hạn của khe là khi cao hơn đó thì phát photon chiếm ƣu thế, thấp hơn thì sự phát phonon chiếm ƣu thế. Đối với các nguyên tố đất hiếm sự huỳnh quang có thể tìm thấy ở khe nhỏ nhất rất nhỏ cỡ 3 m, có lẽ do Khoá luận tốt nghiệp 12 sự tƣơng tác ion-mạng khá yếu. Nguyên nhân sâu xa của chuyển dời không bức xạ là sự tƣơng tác của ion tạp và mạng dao động. 1.1.6. Sự phát quang chuyển đổi ngược [17, 21, 22] Một số vật liệu phát quang pha tạp ion đất hiếm hóa trị ba phát xạ huỳnh quang mạnh ở vùng khả kiến khi đƣợc kích thích bởi ánh sáng hồng ngoại gần. Quá trình phát quang chuyển đổi ngƣợc này xảy ra theo cách sau: các trạng thái kích thích có năng lƣợng cao hơn đƣợc định xứ bởi hai hoặc ba bƣớc kích thích liên tiếp bằng các lƣợng tử hồng ngoại hoặc bởi sự truyền năng lƣợng. Chuyển rời trở xuống mức kích thích cơ bản hoặc một mức kích thích trung gian mang đến huỳnh quang ở vùng khả kiến. Hiệu suất phát quang chuyển đổi ngƣợc phụ thuộc mạnh vào sự lựa chọn vật liệu mạng chủ, nồng độ chất kích hoạt, nồng độ chất tăng nhạy… Quá trình phát quang chuyển đổi ngƣợc là con đƣờng chuyển đổi bức xạ kích thích bƣớc sóng dài (năng lƣợng bức xạ thấp) thành bức xạ phát xạ có bƣớc sóng ngắn hơn (năng lƣợng bức xạ cao hơn). Sự phát quang chuyển đổi ngƣợc này dựa trên sự tồn tại của ít nhất hai trạng thái phát xạ giả bền thực sự, ký hiệu là |1> và |2> trên hình 1.6 [22]. Trạng thái giả bền năng lƣợng thấp nhất, |1>, thƣờng nằm trong vùng hồng ngoại gần và đóng vai trò nhƣ một nguồn dự trữ năng lƣợng. Mức năng lƣợng cao hơn, |2>, thƣờng nằm trong vùng khả kiến và tƣơng ứng cho phát xạ của năng lƣợng chuyển đổi ngƣợc. Có nhiều cơ chế khác nhau đã đƣợc sử dụng, phần lớn trong số đó bao gồm sự hấp thụ và các bƣớc truyền năng lƣợng không bức xạ. Ở đây chúng tôi đƣa ra hai cơ chế đáng chú ý và cơ bản nhất. Cơ chế đơn giản nhất là cơ chế GSA/ESA, thƣờng đƣợc gọi là sự hấp thụ của trạng thái kích thích (hình 1.5 a): Bƣớc GSA là sự hấp thụ của trạng Khoá luận tốt nghiệp 13
- Xem thêm -

Tài liệu liên quan