Đăng ký Đăng nhập
Trang chủ Tổng hợp và nghiên cứu hoạt tính của xúc tác ba chức năng trên cơ sở hỗn hợp oxi...

Tài liệu Tổng hợp và nghiên cứu hoạt tính của xúc tác ba chức năng trên cơ sở hỗn hợp oxit kim loại để xử lý khí thải động cơ đốt trong (tt)

.PDF
27
400
104

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THẾ TIẾN TỔNG HỢP VÀ NGHIÊN CỨU HOẠT TÍNH CỦA XÚC TÁC BA CHỨC NĂNG TRÊN CƠ SỞ HỖN HỢP OXIT KIM LOẠI ĐỂ XỬ LÝ KHÍ THẢI ĐỘNG CƠ ĐỐT TRONG Chuyên ngành: Kỹ thuật Hóa học Mã số : 62520301 TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA HỌC HÀ NỘI-2014 a Công trình được hoàn thành tại: Trường Đại học Bách Khoa Hà Nội Người hướng dẫn khoa học: PGS.TS Lê Minh Thắng Phản biện 1: Phản biện 2: Phản biện 3: Luận án sẽ được bảo vệ trước Hội đồng chấm luận án Tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi....giờ, ngày....tháng...năm..... Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu- Trường Đại học Bách khoa Hà Nội 2. Thư viện Quốc gia b 1. Giới thiệu luận án 1.1 Tính cấp thiết của luận án Hiện nay vấn đề ô nhiễm môi trường do khí thải động cơ ngày càng nghiêm trọng do số lượng xe cơ giới đang tăng lên đáng kể. Nhiều hệ xúc tác xử lý khí thải khác nhau đã được nghiên cứu, trong đó chủ yếu là các hệ dựa trên kim loại quý (Pt, Pd, Rh). Tuy nhiên, hệ xúc tác này không phù hợp với quốc gia đang phát triển như Việt Nam do giá thành cao cũng như dễ bị ngộ độc bởi các hợp chất chứa lưu huỳnh, hoạt tính giảm nhanh khi hoạt động ở điều kiện khắc nghiệt mặc dù chúng được sử dụng rộng rãi ở các nước phát triển. Hệ xúc tác trên perovskite cũng được ứng dụng khá rộng rãi trong xử lý khí thải nhưng có nhược điểm diện tích bề mặt thấp. Do đó, việc nghiên cứu hệ xúc tác có khả năng xử lý đồng thời các thành phần gây ô nhiễm như hydrocacbon, CO, NOx và muội ở các khoảng nhiệt độ khí thải, đặc biệt khi động cơ ở chế độ nguội lúc mới khởi động, hoạt tính xúc tác ổn định khi có sự dao động về thành phần của các chất gây ô nhiễm, giá thành rẻ, bền nhiệt, bền cơ, có thời gian sống cao là hết sức cần thiết, nhất là đối với nước đang phát triển như Việt Nam. Hệ xúc tác dựa trên cơ sở các oxit kim loại có khả năng đáp ứng được các tiêu chí này. Các oxit kim loại có giá thành rẻ, hoạt tính cao, đặc biệt kim loại nhóm VIII và IB. Các nghiên cứu trên thế giới cho thấy, một số oxit kim loại chuyển tiếp có khả năng xử lý các thành phần khí thải (oxy hóa CO, hydrocacbon và muội động cơ, khử các oxit nitơ) như oxit mangan, coban, ceri, titan… Vì thế xu hướng nghiên cứu hiện nay tập trung trên các hệ xúc tác oxit kim loại chuyển tiếp. Vì trong khí thải có nhiều thành phần khác nhau nên xúc tác cũng cần bao gồm nhiều thành phần. Mỗi thành phần có đặc trưng khác nhau có thể có chức năng xử lý riêng. Ví dụ: CeO2 và MnO2 có khả năng tích trữ oxy tốt, Co3O4 có khả năng giải phóng nhiều oxy linh động nên phù hợp với phản ứng oxy hóa CO và hydrocacbon. Trong khi đó MnO2 và ZrO2 có khả năng xử lý NOx... Do đó, việc nghiên cứu kết hợp các thành phần này theo tỷ lệ thích hợp sẽ có khả năng tạo ra xúc tác có hoạt tính vượt trội, thích hợp để sử dụng làm pha hoạt tính của xúc tác xử lý ba thành phần khí thải. 1.2 Nhiệm vụ nghiên cứu - Một số xúc tác đơn oxit (MnO2, Co3O4, CeO2) và hỗn hợp hai oxit (MnO2-Co3O4, CeO2-Co3O4) được nghiên cứu cho phản ứng oxy hóa hoàn toàn hydrocacbon (C3H6) trong điều kiện thiếu và dư oxy để xác 1 định một vài xúc tác có hoạt tính tốt nhất. Xúc tác có hoạt tính tốt được tiếp tục nghiên cứu cho quá trình xử lý một số hydrocacbon khác (ankan, aromat) ở các điều kiện khác nhau. - Một số xúc tác đơn oxit (Co3O4, MnO2, CeO2, NiO, CuO, SnO2, V2O5, ZnO, ZrO2) và hỗn hợp hai oxit (MnO2-Co3O4, MnO2-SnO2, MnO2-ZnO) cũng được tiến hành nghiên cứu xử lý CO trong điều kiện thiếu, đủ và dư oxy để lựa chọn một vài xúc tác có hoạt tính tốt cho phản ứng oxy hóa CO. Xúc tác có hoạt tính tốt cho phản ứng oxy hóa hydrocacbon và CO còn được lựa chọn nghiên cứu cho quá trình xử lý muội động cơ. - Xúc tác đa oxit lựa chọn được từ quá trình nghiên cứu xử lý hydrocacbon và CO sẽ được nghiên cứu cho quá trình xử lý đồng thời các thành phần khí thải trong các điều kiện khác nhau. Trên cơ sở nghiên cứu này, mẫu xúc tác sẽ được tối ưu hóa cũng như nghiên cứu việc nâng cao hoạt tính với sự có mặt của các nguyên tố thứ tư trong thành phần xúc tác. - Mẫu xúc tác có thành phần tối ưu sẽ được nghiên cứu sâu hơn ảnh hưởng của quá trình già hóa, ảnh hưởng của quá trình hoạt hóa, ảnh hưởng của hệ số λ-đặc trưng cho tỉ số không khí/nhiên liệu, ảnh hưởng của CO2 và hoạt tính xúc tác ở nhiệt độ cao (trên 500oC). - Hệ xúc tác có thành phần tối ưu sẽ được mang trên chất mang γAl2O3 để tối ưu hàm lượng mang và so sánh hoạt tính với hệ xúc tác kim loại quý. 1.3 Đối tƣợng, phạm vi nghiên cứu của luận án - Xúc tác dựa trên cơ sở các oxit kim loại như MnO2, Co3O4, CeO2, NiO, V2O5, CuO, ZnO, SnO2... Xúc tác oxit kim loại trên chất mang γAl2O3. - Các phản ứng oxy hóa hydrocacbon, CO, xử lý muội, xử lý NO trong các điều kiện khác nhau. - Các yếu tố ảnh hưởng đến hoạt tính xúc tác như quá trình già hóa, hoạt hóa xúc tác, thành phần các khí phản ứng. 1.4 Ý nghĩa khoa học và thực tiễn của đề tài Vấn đề ô nhiễm không khí từ khí thải động cơ đang là vấn đề hết sức nghiêm trọng, hết sức cấp bách cần được giải quyết. Do đó cần phải tìm được hệ xúc tác có hoạt tính tốt, giá thành hợp lý, dễ chế tạo. Việc kết hợp các oxit kim loại theo các tỷ lệ thích hợp đã tạo ra hệ xúc tác có giá thành hợp lý, có hoạt tính cao cho phản ứng xử lý các thành 2 phần khí thải. Luận án góp phần vào việc tìm ra các hệ xúc tác mới cho quá trình xử lý khí thải động cơ, có thể áp dụng tại Việt Nam. 1.5 Những điểm mới của luận án - Tìm ra xúc tác trên cơ sở oxit kim loại (oxit của coban, ceri, mangan) rẻ tiền, dễ chế tạo có hoạt tính tốt cho quá trình xử lý CO, hydrocacbon, NO, muội trong khí thải và tối ưu hóa được thành phần xúc tác. - Xúc tác có khả năng oxy hóa hoàn toàn các thành phần khí như C3H6, C3H8, C6H6, CO ở vùng nhiệt độ thấp, 100-200oC. - Xúc tác có khả năng xử lý hoàn toàn muội trong dòng khí thải ở nhiệt độ 500oC. - Sau khi hoạt hóa, xúc tác có khả năng xử lý hoàn toàn các thành phần C3H6 và CO ở nhiệt độ thường. -Xúc tác có hoạt tính cao trong các điều kiện khác nhau khi hàm lượng các khí trong thành phần khí thải thay đổi. - Xúc tác có hoạt tính ổn định ở nhiệt độ cao. Xúc tác sau già hóa có hoạt tính tương đương xúc tác không già hóa từ nhiệt độ 200-250oC. Ảnh hưởng của quá trình già hóa đến các đặc trưng của xúc tác đã được giải thích. - Xác định được hàm lượng xúc tác tối ưu trên chất mang γ-Al2O3. Xúc tác oxit kim loại trên chất mang có hoạt tính tương đương xúc tác kim loại quý Pd/γ-Al2O3, thậm chí có hoạt tính ở nhiệt độ thấp hơn. 1.6 Cấu trúc của luận án Luận án bao gồm 115 trang: lời cảm ơn (1 trang), lời cam kết (1 trang), mục lục (2 trang), danh mục ký hiệu (1 trang), danh sách các bảng (1 trang), danh sách hình vẽ, đồ thị (3 trang); mở đầu (1 trang); nội dung chính (81 trang) gồm 4 chương chính: tổng quan lý thuyết (26 trang), thực nghiệm (11 trang); kết quả và thảo luận (43 trang), kết luận (1 trang); 127 tài liệu tham khảo (8 trang) danh mục các công trình đã công bố liên quan đến luận án (1 trang), phụ lục (15 trang). 1.7 Tổng quan của luận án 1.7.1 Tình hình ô nhiễm tại Việt Nam Theo một nghiên cứu về môi trường do các trường Đại học của Mỹ thực hiện và công bố tại Hội nghị thường niên Diễn đàn kinh tế thế giới (WEF) lần thứ 42 khai mạc tại Davos (Thụy Sỹ) từ 25-1 đến 291-2012, Việt Nam nằm trong số 10 quốc gia có không khí ô nhiễm nhất thế giới. Khí thải từ các phương tiện giao thông, hoạt động sản xuất công nghiệp, bụi từ những công trường đang xây dựng...là các 3 nguyên nhân dẫn đến tình trạng gia tăng ô nhiễm không khí ở Việt Nam, đặc biệt tại các đô thị lớn. Tại các thành phố lớn như Hà Nội và thành phố Hồ Chí Minh, khí thải từ ô tô, xe máy là nguồn chính thải ra các chất độc hại như CO, HC, NOx.Theo số liệu thống kê từ cục đăng kiểm Việt Nam cho thấy, trong vòng 5 năm trở lại đây, xe mô tô, xe gắn máy đã tăng nhanh với tốc độ trên 10%/năm và hiện cả nước có khoảng 35 triệu mô tô xe máy. 1.7.2 Các phƣơng pháp xử lý khí thải Để xử lý khí thải động cơ, phương pháp sử dụng xúc tác ba chức năng tỏ ra hiệu quả hơn cả. Đối với hệ xúc tác xử lý đồng thời ba thành phần, các phản ứng cơ bản để xử lý các thành phần gây ô nhiễm hydrocacbon và CO là phản ứng oxi hóa tạo CO2 trong khi đó, với NOx là phản ứng khử tạo ra N2 và H2O. Xúc tác ba chức năng thương mại được tẩm trên chất nền là lá kim loại hoặc cordierit. Trên chất nền có các lớp phủ, thông thường bao gồm: pha hoạt tính trên cơ sở kim loại quý Pt, Pd, Rh. Oxit nhôm đóng vai trò là chất mang. Hỗn hợp CeO2-ZrO2 đóng vai trò là chất xúc tiến, tăng khả năng tích trữ oxy, các oxit bari, lantan đóng vai trò là chất ổn định cho chất mang nhôm oxit. Các nghiên cứu về xúc tác xử lý khí thải hiện nay khó áp dụng tại Việt Nam do giá thành còn khá cao. 1.7.3 Các hệ xúc tác để xử lý khí thải Các xúc tác được nghiên cứu trên thế giới và Việt Nam thường tập trung trên cơ sở kim loại quý (Pt, Pd, Rh). Tuy nhiên, giá thành của hệ xúc tác này còn cao và dễ bị ngộ độc khi tiếp xúc với các hợp chất lưu huỳnh. Ngoài ra còn có xúc tác trên cơ sở perovskite. Hiện nay, các hệ xúc tác oxit cũng đã được nghiên cứu khá kỹ lưỡng để ứng dụng cho quá trình xử lý các thành phần khí thải. Các oxit được sử dụng rộng rãi hiện nay là các oxit trên cơ sở các kim loại chuyển tiếp của Cu, Co, Mn và Ni... Trong các xúc tác này, đối với phản ứng oxy hóa các hợp chất hữu cơ, Mn và Co được nghiên cứu nhiều hơn cả. Ưu điểm nổi bật của xúc tác này là giá rẻ, thân thiện môi trường và hoạt tính cao. Hoạt tính của hệ xúc tác trên cơ sở MnOx liên quan tới khả năng tạo các oxit với các trạng thái oxi hóa khác nhau và khả năng tích trữ oxy lớn. MnOx tích trữ oxy nhiều hơn và hấp phụ oxy nhanh hơn, tốc độ khử oxit nhanh hơn so với CeO2 thương mại được làm bền hóa. Trong khi đó, Co3O4 lại có lượng oxy linh động trong mạng lưới lớn. CeO2 cũng đóng vai trò xúc tiến và có lượng oxy tích trữ cao. 4 2. Các phƣơng pháp thực nghiệm 2.1 Tổng hợp xúc tác Các xúc tác trên cơ sở oxit kim loại được tổng hợp theo phương pháp sol-gel citric. Xúc tác mang trên chất mang γ-Al2O3 được tổng hợp theo phương pháp tẩm thấm. Xúc tác được sấy ở 120oC đến khô, sau đó đem nung ở nhiệt độ 550oC trong 3h. Ký hiệu các mẫu hỗn hợp oxit tương ứng với tên các nguyên tố và % của các oxit tương ứng. Xúc tác được đem đi già hóa trong các điều kiện khác nhau. Điều kiện già hóa 1 2 3 4 5 Bảng 2.1 Điều kiện già hóa của các mẫu xúc tác Không Hơi nước 800oC/24h khí (10oC/phút) 27%V 57% V (440l/h) x x x x x x x x x x x x x SO2 (0,5%) x x 2.2 Các phƣơng pháp phân tích hóa lý Các mẫu xúc tác được phân tích với các phương pháp: nhiễu xạ tia X (D8 Bruker Advance), hiển vi điện tử quét SEM (Hitachi S4800), hiển vi điện tử truyền qua TEM (JEOL JEM 1010, HRTEM Tecnai G2F20), xác định diện tích bề mặt riêng theo phương pháp BET (Micromeritics Gemini VII 2390t), phương pháp huỳnh quang điện tử tia X (XPS) (S-Probe monochromatized XPS spectrometer), phân tích nhiệt TG-DTA (NETZSCH STA 449F3, Perkin Elmer PYRIS Diamond), TG-DSC (NETZSCH STA 409PC), phổ hồng ngoại (Perkin Elmer RXI), khử hóa theo chu trình nhiệt độ, TPD O2 (AutoChem 2920 II-Micromeritics). 2.3 Xác định hoạt tính xúc tác Họat tính của hệ xúc tác được tiến hành trên sơ đồ phản ứng vi dòng nối trực tiếp với GC 2 sử dụng detector TCD và FID. Bảng 2.5 đưa ra thành phần các khí trong phản ứng oxy hóa C3H6. Phản ứng oxi hóa hoàn toàn C3H8 được thử nghiệm trong dòng khí có tỷ lệ C3H8/O2 từ 2/2 đến 2/12. Các điều kiện cho phản ứng oxy hóa CO được liệt kê trong bảng 2.6. 5 Bảng 2.5 Thành phần hỗn hợp khí trong các điều kiện oxy hóa C 3H6 Thành phần Nồng độ,% Thiếu oxy Đủ oxy Dư oxy C3H6 2,5 0,9 0,9 CO 0 0,3 0,3 O2 2,5 5 5 H 2O 0 0 2 N2 Cân bằng Cân bằng Cân bằng Bảng 2.6 Thành phần hỗn hợp khí trong các điều kiện oxy hóa CO Thành phần Nồng độ,% Thiếu oxy Đủ oxy Dư oxy CO 16 13,33 4,44 O2 4 6,67 7,22 N2 Cân bằng Cân bằng Cân bằng Xúc tác cũng được nghiên cứu cho phản ứng xử lý đồng thời các thành phần khí thải. Thành phần khí phản ứng được liệt kê trong bảng 2.7. Phản ứng xử lý muội được thực hiện trong dòng khí 5% O2/N2 trong 425 phút ở 500oC, muội và xúc tác được trộn với tỷ lệ về khối lượng là 1-1. Ngoài ra, phản ứng còn được thực hiện trong dòng khí có thành phần 1 (bảng 2.7). Xúc tác MnCoCe 1-3-0,75 được hoạt hóa trong điều kiện O2/CO=1,6 để nghiên cứu hoạt tính ở nhiệt độ thường trong dòng khí có thành phần 2 (bảng 2.7). Bảng 2.7 Thành phần các khí trong các điều kiện xử lý đồng thời các thành phần khí thải Nồng độ các khí trong các điều kiện khác nhau,% Thành phần 1 2 3 4 5 6 7 CO 4,35 4,35 4,35 4,35 4,35 4,35 4,35 O2 7,06 7,65 6,95 9,78 9,89 6,52 7,65 C3H6 1,15 1,15 0 1,15 1 1,15 1,15 C6H6 0 0 0,5 0,2 0,2 0 0 NO 1,77 0,59 0,59 0,59 0,59 0,59 0,59 6 CO2 N2 λ 0 0 0 0 0 0 6,2 Cân Cân Cân Cân Cân bằng bằng bằng bằng bằng Cân bằng Cân bằng 1,0034 1,0034 1,0103 1,0201 1,1098 0,86 1,0034 3.Kết quả và thảo luận 3.1Lựa chọn thành phần cho hệ xúc tác ba chức năng 3.1.1 Nghiên cứu quá trình oxy hóa hoàn toàn hydrocacbon trên một vài xúc tác đơn và hỗn hợp oxit 3.1.1.1 Các xúc tác trên cơ sở đơn và hai oxit Trong các xúc tác được nghiên cứu với hàm lượng một thành phần từ 10-90% trong điều kiện thiếu oxy, các hệ MnCo 1-3, CeCo 1-4 thể hiện hoạt tính cao nhất cho phản ứng oxy hóa hoàn toàn C3H6. Hoạt tính của xúc tác hỗn hợp MnCo 1-3 và CeCo 1-4 cho phản ứng oxy hóa hoàn toàn C3H6 được trình bày trong hình 3.2. Hoạt tính của các xúc tác hỗn hợp cao hơn rất nhiều so với các đơn oxit thành phần. Độ chuyển hóa C 3H6, % 100 80 60 CeCo 1-4 M nCo 1-3 40 20 0 200 250 300 350 400 Nhiệt độ phản ứng, oC 450 500 Hình 3.2 Hoạt tính của hệ xúc tác MnCo 1-3 và CeCo 1-4 trong điều kiện dư oxy 3.1.1.2 Xúc tác ba thành phần oxit Hình 3.5 thể hiện độ chuyển hóa các hydrocacbon khác nhau trong điều kiện đủ oxy. Từ hình 3.5 có thể thấy C3H6 bị oxy hóa dễ dàng hơn C3H8 với độ chuyển hóa 96,07% và 98,01 % ở nhiệt độ tương ứng 200oC và 250oC. Ở nhiệt độ cao hơn (300oC), độ chuyển hóa C3H8 và C3H6 là tương đương. Xúc tác MnCoCe 1-3-0,75 có hoạt tính xử lý C6H6 rất cao khi đạt độ chuyển hóa cực đại từ 250oC. 7 Độ chuyển hóa các hydrocacbon, % 100 80 60 C3H6 C3H 6 C3H 8 C3H8 40 C6H 6 C6H6 20 0 200 250 300 350 400 450 500 Nhiệt độ phản ứng, oC Hình 3.5 Độ chuyển hóa C3H6, C3H8 and C6H6 của xúc tác MnCoCe 1-30,75 trong điều kiện đủ oxy 3.1.2 Nghiên cứu khả năng xử lý hoàn toàn CO trên xúc tác oxit hỗn hợp 3.1.2.1 Xúc tác trên cơ sở đơn và hai oxit Một số đơn oxit MnO2, SnO2, ZnO, Co3O4 và hỗn hợp 2 oxit với thành phần của một oxit từ 10-90% mol đã được nghiên cứu cho phản ứng oxy hóa CO trong điều kiện thiếu oxy vì xúc tác có hoạt tính tốt trong điều kiện thiếu oxy thì sẽ có hoạt tính tốt trong điều kiện đủ oxy. Từ kết quả nghiên cứu này, các xúc tác MnCo 1-3, Co3O4, MnZn 9-1, MnSn 4-6, MnO2 được tiếp tục nghiên cứu trong điều kiện đủ oxy. Kết quả trong hình 3.8 cho thấy MnO2 là các xúc tác có hoạt tính cao nhất khi chuyển hóa hoàn toàn CO từ nhiệt độ 100oC. Trong khi đó, các mẫu xúc tác như MnCo 1-3, MnZn 9-1, MnSn 4-6 và Co3O4 chỉ chuyển hóa được hoàn toàn CO từ nhiệt độ 150oC, 200oC và 250oC. 100 Độ chuyển hóa CO, % 80 60 40 20 0 100 150 200 250 300 350 Nh i ệ t độ ph ản ứn g, MnCo 1-3 Co Co3O4 3O4 MnZn 9-1 o 400 450 500 C MnSn 4-6 MnO MnO2 2 Hình 3.8 Độ chuyển hóa CO của các mẫu xúc tác trong điều kiện đủ oxy 8 3.1.2.2 Xúc tác ba thành phần oxit MnCoCe MnO2 và Co3O4 là các đơn oxit có hoạt tính tốt cho quá trình oxy hóa hoàn toàn CO khi chuyển hóa hoàn toàn từ 100oC và 150oC. Trong khi đó, CeO2 chỉ chuyển hóa hoàn toàn từ nhiệt độ cao (trên 350oC). Mẫu MnCoCe 1-3-0,75 điều chế theo phương pháp sol-gel đã làm giảm đáng kể nhiệt độ chuyển hóa hoàn toàn CO xuống còn 60oC. Nhiệt độ này thấp hơn của CeO2 và cả mẫu MnCoCe 1-3-0,75 được điều chế theo phương pháp trộn cơ học. Để giải thích hoạt tính cao của mẫu MnCoCe 1-3-0,75 điều chế bằng phương pháp hóa học cần tiến hành các phương pháp phân tích cấu trúc. Độ chuyển hóa CO, % 100 80 60 40 20 0 25 75 125 175 225 o Nhiệt độ phản ứng, C 275 325 MnO2 MnO 2 Co3O4 Co 3 O4 CeO2 CeO 2 MnCoCe 1-3-0.75(MC) MnCo 1-3 MnCoCe 1-3-0.75(SG) Hình 3.10 Độ chuyển hóa CO của các đơn oxit thành phần MnO 2, Co3O4, CeO2 và các hỗn hợp của chúng trong điều kiện dư oxy (O 2/CO=1,6) Khả năng hấp phụ tốt oxy của mẫu xúc tác MnCoCe 1-3-0,75 điều chế theo phương pháp sol-gel so với các mẫu đơn oxit được chứng minh bằng kết quả TPD O2 trong bảng 3.3. Kết quả cho thấy, trong các đơn oxit thì CeO2 hấp phụ oxy lớn nhất trong khi đó Co3O4 hấp phụ O2 ở nhiệt độ thấp nhất. Tuy nhiên, MnCoCe 1-3-0,75 hấp phụ lượng oxy lớn nhất (5,92669 ml/g). Bảng 3.3 Lượng oxy hấp phụ (ml/g) của các mẫu xúc tác đơn oxit (MnO 2, Co3O4, CeO2) và mẫu sol-gel MnCoCe 1-3-0,75 Nhiệt độ tại MnO2 Co3O4 CeO2 MnCoCe cực đại 1-3-0,75 103,3 143,3 168,9 172,1 257,1 347,3 0,04821 0,70054 1,03968 1,06482 1,87882 0,36254 9 348,4 367,7 380,2 463,1 581,9 644,0 659,3 695,7 696,6 Total 0,30641 1,51032 2,43649 1,16543 0,33244 0,66247 0,42489 0,0672 0,16394 0,57469 1,86332 3,7995 5,92669 Hình 3.12 thể hiện phổ hồng ngoại của các mẫu đơn oxit, MnCo 1-3, mẫu MnCoCe 1-3-0,75 trộn cơ học và mẫu điều chế theo phương pháp sol-gel. Tất cả các mẫu đều có peak hồng ngoại tại các số sóng 3400 cm-1, 2350 cm-1, 1650 cm1. Các peak tại 3400 cm-1 và 1650 cm-1 thể hiện liên kết của nhóm –OH của nước hấp phụ lên các mẫu. Trong khi đó, peak tại số sóng 2350 cm-1 thể hiện CO2 hấp phụ lên bề mặt mẫu. Các mẫu Co3O4, MnCo 1-3 và MnCoCe 1-3-0,75 đều thể hiện các peak của Co3O4 tại 660 và 560 cm-1 do hàm lượng oxit này lớn trong các mẫu hỗn hợp. Các mẫu oxit hỗn hợp không thể hiện các peak của MnO2 tại 534 cm-1 và 481 cm-1 . Qua đây, ta có thể thấy không có sự khác nhau giữa mẫu trộn cơ học và mẫu điều chế theo phương pháp hóa học. Điều đó có nghĩa là phương pháp phổ hồng ngoại không thể phát hiện được sự thay đổi trong cấu trúc của mẫu. (6) (5) (4) (3) (2) (1) 4000 3500 3000 2500 2000 wave number, cm-1 1500 1000 500 Hình 3.12 Phổ hồng ngoại của các mẫu xúc tác (1): CeO 2, (2): Co3O4, (3): MnO2, (4): MnCo 1-3; (5): MnCoCe 1-3-0,75 trộn cơ học; (6):MnCoCe 1-30,75 sol-gel Từ giản đồ nhiễu xạ tia X của các mẫu MnCoCe 1-3-0,75 được điều chế bằng trộn cơ học và hóa học trong hình 3.13, có thể thấy được peak nhiễu xạ của Co3O4 chuyển tới góc 2θ thấp hơn. Nguyên nhân có thể do mangan và ceri thay thế coban trong ô mạng của Co3O4 10 Co3O4 tạo thành dung dịch rắn của ba oxit. Để làm rõ sự thay đổi trong cấu trúc, phổ XPS của các mẫu MnCoCe 1-3-0,75 điều chế theo phương pháp hóa học và cơ học sẽ được nghiên cứu trong hình 3.14. Co3O4 1 12 16 20 24 28 32 36 40 44 48 2 theta (degrees) 2 52 56 60 64 68 Hình 3.13 Giản đồ nhiễu xạ tia X của mẫu MnCoCe 1-3-0,75 sol-gel (1) và trộn cơ học (2) Co3O4 có 2 dạng ion Co2+ ở dạng tứ diện và Co3+ ở dạng bát diện. Năng lượng liên kết 2p3/2 của Co2+ rất gần với năng lượng liên kết của Co3+, vì vậy, hai trạng thái oxi hóa của coban có thể nhận biết rõ ở vùng có năng lượng liên kết 786 eV (hình 3.14 a), được gây ra bởi các electron chưa chia trong orbital hóa trị. Co3+ luôn ở trạng thái spin thấp nên không có hiệu ứng này hoặc hiệu ứng rất yếu. Trong mẫu có chứa oxit ceri nên có sự kết hợp giữa các ion, tạo ra coban ở trạng thái hóa trị cao, nên khả năng tích trữ oxy tăng lên. Hình 3.14a chỉ ra rằng, năng lượng liên kết 2p3/2 trong mẫu hóa học tăng so với mẫu cơ học nên tỷ lệ Co3+/Co2+ tăng lên, góp phần làm tăng hoạt tính oxy hóa CO của xúc tác. Hình 3.14b cho thấy, phổ XPS của tất cả các mẫu hỗn hợp ba oxit không có sự khác biệt rõ ràng và chỉ xuất hiện các peak của Ce4+ ở các giá trị 916, 901, 898, 882 eV. Ở hình 3.14c, năng lượng liên kết Mn2p3/2 của mẫu hỗn hợp hóa học thu được có xu hướng dịch chuyển về giá trị nhỏ hơn so với mẫu trộn cơ học. Điều này có thể do một phần Mn4+ bị khử về Mn3+-ion có năng lượng liên kết nhỏ hơn. Phổ XPS của O1s của xúc tác cơ học và hóa học ở hình 3.14d cho thấy có 1 peak chính ở vùng năng lượng thấp hơn 530-529 eV và vai peak ở vùng năng lượng cao hơn 532eV. Điều này được cho là liên quan tới oxy mạng lưới và tới các phần tử oxy hấp phụ và các phần tử OH bề mặt. Có thể thấy trong hình 3.14d, vai peak tại 532eV của mẫu hỗn hợp hóa học lớn hơn mẫu trước trộn cơ học, cho thấy mẫu hóa học có khả năng hấp phụ nhiều oxy hơn. 11 Co 2000 3+ (Co2p3/2) 4+ Ce 1800 Co (3d5/2) 4+ Ce 1900 3+ (3d3/2) (Co2p3/2) 4+ 1600 1800 (3d5/2) 4+ Ce 2+ (3d3/2) (Co2p3/2) CPS (a.u) Co CPS (a.u) Ce 1400 1700 1600 1200 1 1500 1 1000 1400 2 2 800 1300 800 790 780 Binding energy (eV) 920 770 916 912 908 904 900 896 892 Binding energy (eV) a 888 884 880 876 b O 1s 3+ Mn (2p3/2) 1400 3+ 400 Mn (2p1/2) CPS (a.u) CPS (a.u) 1200 350 1 1000 1 800 300 600 2 2 400 250 660 656 652 648 644 Binding energy (eV) 640 535.0 636 532.5 530.0 527.5 Binding energy (eV) 525.0 c d Hình 3.14 Phổ XPS của Co 2p(a), Ce 3d (b), Mn 2p(c) và O 1s (d) của mẫu trộn cơ học (1) và mẫu hỗn hợp hóa học MnCoCe 1-3-0,75 (2) 3.1.2.3 Ảnh hưởng của hàm lượng các oxit Mn,Co,Ce đến hoạt tính của hệ xúc tác MnCoCe M nO 2-Co3O 4=7-3 160 160 MnO2 - Co3 O4 =1-3 140 156 80 MnO2 -Co3 O4 -CeO2 =1-3-0.38 60 MnO2 -Co3 O4 -CeO2 =1-3-0.75 MnO2 -Co3 O4 -CeO2 =1-3-1.26 40 MnO2 -Co3 O4 -CeO2 =1-3-0.17 20 T 100 (oC) 100 o T100 ( C) 120 5 10 15 20 25 148 M nO 2-Co3O4-CeO 2 =7-3-2.5 M nO 2-Co3O4-CeO2 =7-3-4.29 144 0 0 M nO 2-Co3O 4-CeO 2 =7-3-1.11 152 30 % CeO2 140 0 5 10 15 20 % CeO 2 25 30 a b Hình 3.18 Nhiệt độ đạt độ chuyển hóa 100% CO (T100) của các xúc tác hỗn hợp MnO2-Co3O4-CeO2 với tỷ lệ MnO2-Co3O4=1-3 (a) và MnO2-Co3O4=7-3 (b) hàm lượng CeO2 thay đổi Hoạt tính của họ xúc tác MnCoCe với tỷ lệ MnO2-Co3O4=1/3 và MnO2-Co3O4=7-3 với hàm lượng CeO2 thay đổi được chỉ ra trong hình 3.18. Kết quả cho thấy khi thêm CeO2 vào hệ MnO2-Co3O4=1-3 12 35 sẽ làm giảm nhiệt độ chuyển hóa hoàn toàn CO từ 150oC xuống còn 60oC. Tuy nhiên, khi thêm CeO2 vào hệ MnO2-Co3O4=7/3 ((MnCoCe 7-3-1,11, MnCoCe 7-3-2,5, MnCoCe 7-3-4,29), các xúc tác hỗn hợp không thể hiện hoạt tính cao như vậy. Trong trường hợp này, nhiệt độ chuyển hóa hoàn toàn của các mẫu đều duy trì ở nhiệt độ trên 140oC. 3.1.3 Nghiên cứu quá trình oxy hóa muội Bảng 3.5 Tmax của các hỗn hợp giữa xúc tác đơn oxit-muội trong giản đồ phân tích nhiệt TG-DTA (DSC) Mẫu Tmax, oC Muội 655,6 MnO2 + muội 639,5 Co3O4 + muội 621,4 V2O5+ muội 586,47 Bảng 3.5 thể hiện hoạt tính một số xúc tác đơn oxit trong quá trình xử lý muội. Tmax là nhiệt độ cực đại của peak tỏa nhiệt trong giản đồ phân tích nhiệt TG-DTA (DSC). Từ giản đồ phân tích nhiệt có thể thấy các giá trị nhiệt độ Tmax là 655,6oC, 621,4oC, 639,5oC, 586,47oC tương ứng với các mẫu muội, hỗn hợp muội-Co3O4, muội-MnO2, muội-V2O5. Khi không có mặt của xúc tác, nhiệt độ Tmax của muội rất cao. Tuy nhiên, với sự có mặt của xúc tác, nhiệt độ này đã được làm giảm xuống tương đối nhiều. Ngoài ra, hệ xúc tác MnCoCe 1-3-0,75 được nghiên cứu hoạt tính cho phản ứng xử lý muội trên sơ đồ phản ứng vi dòng trong dòng 5%O2/N2. V2O5 thể hiện hoạt tính cao cho phản ứng xử lý muội cả ở độ chuyển hóa và độ chọn lọc CO2. Trong khi đó, mẫu MnCoCe 1-3-0,75 chỉ cho thấy độ chọn lọc CO2 cao. Tuy nhiên, khi nghiên cứu hệ xúc tác MnCoCe 1-3-0,75 được thêm thành phần V2O5 cho thấy hoạt tính xử lý các thành phần khí thải cũng như xử lý muội không cao. Do đó, hệ xúc tác hỗn hợp của 4 oxit này sẽ không được nghiên cứu sâu thêm. 3.2 Xúc tác trên cơ sở MnO2-Co3O4-CeO2 cho phản ứng xử lý đồng thời các thành phần khí thải 3.2.1 Hệ MnO2-Co3O4-CeO2 với tỷ lệ MnO2/Co3O4=1/3 Hoạt tính của các hệ xúc tác MnCoCe với tỷ lệ MnO2-Co3O4=1-3 được đưa ra trong hình 3.23. Tất cả các mẫu có độ chuyển hóa C3H6 xấp xỉ 97% từ nhiệt độ 100oC, ngoại trừ mẫu có hàm lượng CeO2 là 32% (MnCoCe 1-3-1,88). Trong khi đó, các mẫu xúc tác có hàm lượng CeO2 8-32% lại thể hiện hoạt tính xử lý CO cao. Mẫu chứa 4% 13 CeO2 (MnCoCe 1-3-0,17) chỉ thể hiện khả năng chuyển hóa CO tốt từ nhiệt độ 200oC. a b Hình 3.23 Độ chuyển hóa C3H6 (a) và CO (b) của các xúc tác MnCoCe với MnO2/Co3O4=1-3 trong dòng phản ứng 4,35% CO, 7,65% O2, 1,15% C3H6 và 0,59% NO 3.2.2 Hoạt tính của hệ xúc tác MnO2-Co3O4-CeO2 với tỷ lệ MnO2/Co3O4 khác Hình 3.26 thể hiện hoạt tính của các hệ xúc tác MnCoCe với tỷ lệ MnO2-Co3O4=7-3. Các xúc tác với tỷ lệ (MnO2-Co3O4=7-3) chỉ thể hiện hoạt tính cực đại đối với độ chuyển hóa CO, C3H6 và NO từ các nhiệt độ tương ứng là 200oC, 150oC và 500oC. Hệ xúc tác này có hoạt tính kém hơn so với hệ xúc tác có tỷ lệ MnO2/Co3O4=1/3. 14 Độ chuyển hóa CO, % 100 80 60 40 20 0 150 250 M nCoCe 7-3-1.11 350 Reaction temperature, o C M nCoCe 7-3-2.5 450 M nCoCe 7-3-4.29 Độ chuyển hóa C 3 H 6 , % 100 80 60 40 20 0 150 200 250 300 350 400 Re action te mpe rature , o C M nCoCe 7-3-1.11 M nCoCe 7-3-2.5 450 500 M nCoCe 7-3-4.29 Độ chuyển hóa NO, % 100 80 60 40 20 0 150 200 MnCoCe 7-3-1.11 250 300 350 400 Re action te mpe rature , o C MnCoCe 7-3-2.5 450 500 MnCoCe 7-3-4.29 Hình 3.26 Hoạt tính của hệ xúc tác MnCoCe với tỷ lệ MnO2-Co3O4=7-3 trong dòng khí chứa 4,35% CO, 7,06% O2, 1,15% C3H6 và 1,77% NO 3.2.3 Ảnh hƣởng của các điều kiện phản ứng khác nhau đến hoạt tính của hệ xúc tác 1-3-0,75 Hoạt tính xử lý khí thải của hệ xúc tác MnCoCe 1-3-0,75 ở các điều kiện khí thải khác nhau được thể hiện trong hình 3.27. Kết quả cho thấy, xúc tác có khả năng chuyển hóa hoàn toàn CO từ nhiệt độ 100oC, ngoại trừ trường hợp có mặt của C6H6 trong dòng khí phản 15 ứng với λ=1. Trong điều kiện thiếu oxy (λ=0,86), độ chuyển hóa C3H6 giảm nhưng vẫn duy trì trên 80%. Từ hình 3.27d, NO có khả năng được chuyển hóa gần như hoàn toàn từ nhiệt độ 400oC. Do đó, kết hợp với kết quả hình 3.23 có thể thấy mẫu MnCoCe 1-3-0,75 có hoạt tính cao trong các điều kiện phản ứng khác nhau. 100 Độ chuyển hóa C 3 H 6 , % Độ chuyển hóa CO, % 100 l=1,0034 l=1,0103 l=1,0201 l=1,1098 l=0,86 80 60 40 20 0 100 200 300 400 Nhiệt độ phản ứng, o C 80 l=1, 0034 l=1, 0201 l=1, 1098 l=0, 86 60 40 20 0 100 500 200 300 400 Nhiệt độ phản ứng, o C a b 100 Độ chuyển hóa NO, % Độ chuyển hóa C 6 H 6 , % 100 80 60 l=1, 0103 l=1, 0201 l=1, 1098 40 20 0 100 500 200 300 400 Nhiệt độ phản ứng, o C 500 c 80 60 l=0,86 l=1,0034 40 20 0 100 150 200 250 300 350 Nhiệt độ phản ứng, o C 400 d Hình 3.27 Hoạt tính của hệ xúc tác MnCoCe 1-3-0,75 trong các điều kiện với giá trị λ khác nhau Xúc tác MnCoCe 1-3-0,75 cũng được nghiên cứu hoạt tính ở điều kiện nhiệt độ cao. Hệ xúc tác này duy trì hoạt tính xử lý CO và C3H6 100% trong khoảng nhiệt độ từ 500 đến 800oC trong dòng khí có thành phần (4,35% CO, 7,65% O2, 1,15% C3H6 và 0,59% NO). 3.2.4 Ảnh hƣởng của muội đến hoạt tính hệ MnCoCe 1-3-0,75 Bảng 3.9 thể hiện độ chuyển hóa muội phụ thuộc vào tỷ lệ xúc tác-muội. Nếu tỷ số này là 1-1, muội chuyển hóa được 93,9 %. Trong khi đó, nếu tỷ số này có giá trị từ 2 trở lên thì khả năng xử lý muội đạt 100%. Mẫu không xúc tác có hoạt tính xử lý muội cao (89%). Nguyên nhân do sự có mặt của các thành phần như CO, C3H6 và đặc biệt là NO. O2 và NO kết hợp tạo ra NO2 có hoạt tính xử lý muội rất cao. 16 450 500 Ngoài ra, phản ứng giữa các thành phần trong dòng khí cũng góp phần cung cấp nhiệt cho phản ứng xử lý muội. Bảng 3.9 Độ chuyển hóa muội của các hỗn hợp giữa xúc tác MnCoCe 1-3-0,75 và muội trong dòng khí chứa 4,35% CO, 7,06% O2, 1,15% C3H6 và 1,77% NO tại 500oC Mẫu Độ chuyển hóa muội (%) 100% muội 88,99% Xúc tác-muội =1-1 93,9% Xúc tác-muội =2-1 100% Xúc tác-muội =10-1 100% 3.2.5 Ảnh hƣởng của quá trình già hóa đến hoạt tính hệ MnCoCe 3.2.5.1 Ảnh hưởng của hơi nước ở nhiệt độ cao 100 Độ chuyển hóa CO, % Độ chuyển hóaC 3 H 6 , % 100 80 60 40 MnCoCe 1-3-0,75 20 80 60 40 MnCoCe 1-3-0,75 20 0 100 0 200 300 400 500 Nhiệ t độ phản ứng, o C 100 100 80 80 60 MnCoCe 1-3-1,26 40 MnCoCe 1-3-1,26 già hóa 20 0 100 200 300 400 Độ chuyển hóa CO,% Độ chuyển hóa C 3 H 6 , % 100 40 300 400 Nhiệt độ phản ứng, o C 500 MnCoCe 1-3-1,26 MnCoCe 1-3-1,26 già hóa 20 500 0 100 200 300 400 Nhiệ t độ phản ứng, o C 500 100 Độ chuyển hóa CO, % 100 80 60 40 M nC o C e 1-3-1,88 20 M nC o C e 1-3-1,88 già hó a 0 100 200 60 Nhiệ t độ phản ứng, o C Độ chuyển hóa C 3 H 6 , % MnCoCe 1-3-0,75 già hóa MnCoCe 1-3-0,75 già hóa 200 300 400 Nhiệt độ phản ứng, o C 80 60 40 MnCoCe 1-3-1,88 20 0 100 500 MnCoCe 1-3-1,88 già hóa 200 300 400 Nhiệ t độ phản ứng, o C 500 Hình 3.31Hoạt tính hệ xúc tác MnCoCe (MnO2-Co3O4=1-3) trước và sau khi già hóa ở 800oC trong 24h trong dòng khí chứa 57% hơi nước Hình 3.31 thể hiện hoạt tính của các mẫu xúc tác MnCoCe với tỷ lệ MnO2-Co3O4=1-3 trước và sau khi già hóa ở nhiệt độ 800oC trong 17 dòng khí chứa 57% hơi nước. Hoạt tính của hệ xúc tác già hóa thấp hơn rõ rệt so với hệ xúc tác chưa già hóa ở vùng nhiệt độ thấp, nhất là đối với mẫu chứa 16% CeO2 (MnCoCe 1-3-0,75). Độ chuyển hóa C3H6 của mẫu già hóa chỉ đạt khoảng 70% ở vùng nhiệt độ dưới 250oC. C3H6 chỉ được xử lý hoàn toàn tương ứng từ 250oC và 200oC đối với mẫu xúc tác trên và các hệ có hàm lượng CeO2 lớn hơn. Để làm rõ hơn nguyên nhân mất hoạt tính của xúc tác sau quá trình già hóa, bảng 3.11 đưa ra kết quả TPR H2. Kết quả cho thấy nhiệt độ khử của mẫu già hóa đều cao hơn và lượng H2 tiêu thụ thấp hơn so với mẫu trước già hóa. Do đó, mẫu xúc tác già hóa chỉ thể hiện hoạt tính thấp ở vùng nhiệt độ thấp. Tuy nhiên, hoạt tính xúc tác của 2 mẫu tương đương ở vùng nhiệt độ cao. Bảng 3.11 Lượng H2 tiêu thụ của xúc tác MnCoCe 1-3-0,75 trước và sau già hóa ở nhiệt độ 800oC trong dòng không khí chứa 57% hơi nước Nhiệt độ tại các cực đại Mẫu chưa già hóa Mẫu già hóa 316,7 28,03115 381,6 104,40416 405,7 40,17740 531,0 197,1880 580,4 164,02066 688,9 8,32832 Tổng (ml/g) 296,45597 245,69372 3.2.5.2 Đặc trưng và hoạt tính của hệ xúc tác MnCoCe 1-3-0,75 trong các điều kiện già hóa khác nhau Hình 3.35 thể hiện hoạt tính của mẫu xúc tác MnCoCe 1-3-0,75 trong các điều kiện già hóa khác nhau. Kết quả cho thấy mẫu xúc tác già hóa trong dòng khí chứa 27% hơi nước có khả năng chuyển hóa 85% C3H6 từ 150oC. Từ 200oC, hoạt tính của hệ xúc tác này tương đương với hoạt tính của hệ xúc tác chưa già hóa. Khi lượng hơi nước tăng lên 57% (điều kiện già hóa 3), hoạt tính xúc tác giảm rõ rệt và hoạt tính của hệ xúc tác già hóa trong điều kiện này là thấp nhất, chỉ chuyển hóa được 100% C3H6 và CO từ nhiệt độ tương ứng 250oC và 200oC. Các hệ xúc tác già hóa trong điều kiện có chứa SO2 (điều kiện 4 và 5) đều thể hiện hoạt tính xúc tác thấp như mẫu già hóa trong điều kiện với hơi nước 57% trong dòng khí. Các mẫu này chỉ chuyển hóa hoàn toàn C3H6 từ 200oC. Từ hình 3.35b có thể thấy hoạt tính xúc tác cho quá trình xử lý CO cũng tương tự như xử lý C3H6. 18
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất