Đăng ký Đăng nhập
Trang chủ Thiết kế hệ thống cô đặc 2 nồi xuôi chiều không lấy hơi phụ có phòng đốt ngoài t...

Tài liệu Thiết kế hệ thống cô đặc 2 nồi xuôi chiều không lấy hơi phụ có phòng đốt ngoài thẳng đứng, cô đặc dung dịch nano3 với năng suất 3,4 kgs

.PDF
73
1
65

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN KỸ THUẬT HÓA HỌC BỘ MÔN QT - TB CÔNG NGHỆ HÓA HỌC VÀ THỰC PHẨM ------------------------------ ĐỒ ÁN MÔN HỌC Đề tài: Thiết kế hệ thống cô đặc 2 nồi xuôi chiều không lấy hơi phụ có phòng đốt ngoài thẳng đứng, cô đặc dung dịch NaNO3 với năng suất 3,4 kg/s. GVHD: TS. Cao Thị Mai Duyên SVTH: Nguyễn Thắng MSSV: 20175158 HÀ NỘI - 2021 CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT VIỆN KỸ THUẬT HOÁ HỌC BỘ MÔN QUÁ TRÌNH –THIẾT BỊ CÔNG NGHỆ HOÁ VÀ THỰC PHẨM ______________________ NAM Độc lập – Tự do – Hạnh phúc NHIỆM VỤ THIẾT KẾ ĐỒ ÁN MÔN HỌC Họ và tên: Nguyễn Thắng Lớp: KTHH 03 MSSV: 20175158 Khóa: 62 I. Đầu đề thiết kế: Tính toán, thiết kế hệ thống cô đặc hai nồi xuôi chiều làm việc liên tục, dùng để cô đặc dung dịch NaN𝑂3, năng suất F= 3,4 kg/s, chiều cao ống truyền nhiệt: H = 6 m II. Các số liệu ban đầu: Nồng độ đầu của dung dịch: Nồng độ cuối của dung dịch: Áp suất hơi đốt nồi 1: Áp suất hơi ngưng tụ: 10 % khối lượng; 25 % khối lượng; 5 at; 0,2 at. III. Nội dung các phần thuyết minh và tính toán: 1. Phần mở đầu 2. Vẽ và thuyết minh sơ đồ công nghệ (bản vẽ A4) 3. Tính toán kỹ thuật thiết bị chính 4. Tính và chọn thiết bị phụ 5. Kết luận 6. Tài liệu tham khảo. IV. Các bản vẽ - Bản vẽ dây chuyền công nghệ: - Bản vẽ lắp thiết bị chính: V. Cán bộ hướng dẫn: VI. Ngày giao nhiệm vụ: VII. Ngày phải hoàn thành: Phê duyệt của Bộ môn khổ A4; khổ A1. TS. Cao Thị Mai Duyên ngày 10 tháng 10 năm 2021 Ngày 10 tháng 10 năm 2021 Người hướng dẫn Mục Lục LỜI MỞ ĐẦU ............................................................................................................ 1 PHẦN 1: TỔNG QUAN ............................................................................................ 2 1.1. Giới thiệu về sản phẩm NaNO3 ................................................... 2 1.2. Sơ lược về quá trình cô đặc ......................................................... 2 1.3. Sơ đồ - Mô tả dây chuyền sản xuất ............................................. 4 1.3.1. Bản vẽ sơ đồ dây chuyền sản xuất .......................................... 4 1.3.2. Nguyên lý làm việc của hệ thống ............................................ 5 PHẦN 2: TÍNH TOÁN THIẾT BỊ CHÍNH ................................................................ 7 2.1. Tính toán lượng hơi thứ bốc ra khỏi hệ thống (W) ..................... 7 2.2. Tính toán lượng hơi thứ bốc ra ở mỗi nồi ................................... 7 2.3. Tính nồng độ cuối của dung dịch trong mỗi nồi ......................... 8 2.4. Tính chênh lệch áp suất chung của hệ thống (∆P) ...................... 8 2.5. Xác định áp suất, nhiệt độ hơi đốt cho mỗi nồi ........................... 8 2.6. Tính nhiệt độ ti’ (oC), áp suất hơi thứ p’i (at) ra khỏi từng nồi ..... 9 2.7. Tính tổn thất nhiệt độ cho từng nồi ........................................... 10 2.7.1. Tính tổn thất nhiệt độ do áp suất thủy tĩnh tăng cao ∆i’’ ..... 10 2.7.2. Tính tổn thất nhiệt độ do nồng độ ∆i’ ................................... 11 2.7.3. Tổn thất nhiệt độ do trở lực đường ống ∆i’’’ ........................ 12 2.7.4. Tính tổng tổn thất nhiệt độ của hệ thống .............................. 12 2.8. Tính hiệu số nhiệt độ hữu ích của hệ thống .............................. 12 2.9. Thiết lập phương trình cân bằng nhiệt để tính lượng hơi đốt D và lượng hơi thứ Wi ở từng nồi ............................................................................. 14 2.9.1. Sơ đồ cân bằng nhiệt lượng .................................................. 14 2.9.2. Tính nhiệt dung riêng của dung dịch NaNO3........................ 14 2.9.3. Các thông số của nước ngưng .............................................. 15 2.9.4. Lập phương trình cân bằng nhiệt lượng ............................... 15 2.10. Tính hệ số cấp nhiệt, nhiệt lượng trung bình từng nồi .............. 17 2.10.1. Tính hệ số cấp nhiệt α1 khi ngưng tụ hơi .............................. 17 2.10.2. Tính nhiệt tải riêng về phía hơi ngưng tụ ............................. 19 2.10.3. Tính hệ số cấp nhiệt α2 từ bề mặt đốt đến chất lỏng sôi ....... 19 2.10.4. Tính nhiệt tải riêng về phía dung dịch .................................. 24 2.10.5. So sánh q1i và q2i ................................................................... 24 2.11. Xác định hệ số truyền nhiệt của từng nồi .................................. 25 2.12. Tính hiệu số nhiệt độ hữu ích từng nồi ..................................... 25 2.13. So sánh ∆Ti* và ∆Ti ................................................................... 26 2.14. Tính bề mặt truyền nhiệt F ........................................................ 26 PHẦN 3: TÍNH TOÁN CƠ KHÍ ............................................................................ 27 3.1. Buồng đốt nồi cô đặc ................................................................. 27 3.1.1. Xác định số ống trong buồng đốt .......................................... 27 3.1.2. Xác định đường kính trong của buồng đốt ........................... 28 3.1.3. Xác định chiều dày phòng đốt ............................................... 28 3.1.4. Tính chiều dày lưới đỡ ống ................................................... 30 3.1.5. Tính chiều dày đáy phòng đốt ............................................... 32 3.1.6. Tra bích lắp đáy và thân, số bulông cần thiết để lắp ghép ... 34 3.2. Buồng bốc hơi ........................................................................... 34 3.2.1. Thể tích phòng bốc hơi.......................................................... 34 3.2.2. Chiều cao phòng bốc hơi: ..................................................... 35 3.2.3. Chiều dày phòng bốc hơi ...................................................... 35 3.2.4. Chiều dày nắp buồng bốc ..................................................... 36 3.2.5. Tra bích để lắp nắp vào thân buồng bốc .............................. 37 3.3. Tính một số chi tiết khác ........................................................... 37 3.3.1. Tính đường kính các ống nối dẫn hơi, dung dịch vào và ra . 37 3.3.2. Tính tai treo và chân đỡ ........................................................ 43 3.3.3. Chọn kính quan sát ............................................................... 49 3.3.4. Tính bề dày lớp cách nhiệt .................................................... 49 PHẦN 4: TÍNH TOÁN THIẾT BỊ PHỤ ............................................................... 53 4.1. Tính thiết bị ngưng tụ Baromet ................................................. 53 4.1.1. Tính lượng nước lạnh Gn cần thiết để ngưng tụ ................... 53 4.1.2. Tính đường kính trong Dtr của thiết bị ngưng tụ .................. 54 4.1.3. Tính kích thước tấm ngăn ..................................................... 54 4.1.4. Tính chiều cao thiết bị ngưng tụ ........................................... 55 4.1.5. Tính kích thước ống Baromet................................................ 56 4.1.6. Tính lượng hơi và khí không ngưng ...................................... 58 4.2. Tính toán bơm chân không ........................................................ 58 4.3. Thiết bị gia nhiệt hỗn hợp đầu ................................................... 60 4.3.1. Nhiệt lượng trao đổi (Q) ....................................................... 60 4.3.2. Hiệu số nhiệt độ hữu ích ....................................................... 61 4.3.3. Bề mặt truyền nhiệt ............................................................... 65 4.3.4. Số ống truyền nhiệt ............................................................... 65 4.3.5. Đường kính trong của thiết bị đun nóng ............................... 66 4.3.6. Tính vận tốc và chia ngăn ..................................................... 66 TÀI LIỆU THAM KHẢO....................................................................................... 68 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN LỜI MỞ ĐẦU Để trở thành một kỹ sư kỹ thuật hóa học, học phần “Đồ án Quá trình và thiết bị Công nghiệp hóa học – thực phẩm” đã giúp em bước đầu làm quen với công việc của một kỹ sư kỹ thuật hóa học là thiết kế, sản xuất thiết bị phục vụ nhiệm vụ sản xuất. Bộ môn “Quá trình và thiết bị công nghệ hóa học” cung cấp những kiến thức cần thiết cho sinh viên đặc biệt là kỹ sư máy hóa chất, giúp sinh viên hiểu và có khả năng vận hành các thiết bị máy móc trong công nghiệp sản xuất có liên quan. Đây là nền tảng căn bản, là cơ sở để các kỹ sư hiểu sâu hơn và nghiên cứu sản xuất các máy móc hiện đại hơn trên thế giới nhất là trong thời đại mà máy móc phát triển như vũ bão hiện nay. Trong phạm vi “Đồ án môn học – Nhiệm vụ thiết kế hệ thống cô đặc hai nồi xôi chiều thiết bị có phòng đốt ngoài thẳng dùng để cô đặc dung dịch NaNO3” đề cập đến việc tính toán và thiết kế những thiết bị chính, phụ và tính cơ khí của hệ thống. Để hoàn thành đồ án này em đã nhận được sự giúp đỡ rất lớn từ phía thầy cô, gia đình và bạn bè. Đặc biệt em xin được gửi lời cảm ơn chân thành đến giảng viên hướng dẫn TS. Cao Thị Mai Duyên đã giúp đỡ em tận tình để hoàn thành đồ án này. Do thời gian và kiến thức còn hạn chế nên đồ án không tránh khỏi thiếu sót, em rất mong nhận được ý kiến và sự góp ý của các thầy cô để đồ án được hoàn thiện hơn. Em xin chân thành cảm ơn! SVTH: NGUYỄN THẮNG 1 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN PHẦN 1: TỔNG QUAN 1.1. Giới thiệu về sản phẩm NaNO3 a, Tính chất vật lý - Natri Nitrat thường ở dạng tinh thể không màu, khối lượng riêng 2,265 g/𝑐𝑚3 , có nhiệt độ nóng chảy là 𝑡𝑛𝑐 = 312℃. - Natri Nitrat tan trong nước, là chất điện li mạnh - Để ngoài không khí chúng bị chảy do hấp thụ hơi nước trong không khí - NaN𝑂3 kha bền với nhiệt (chúng có thể thăng hoa trong chân không ở 380-500 ℃ ). b, Tính chất hóa học - Ở nhiệt độ cao NaN𝑂3 là chất oxi hóa mạnh - Khi bị đun nóng NaN𝑂3 bị phân hủy tạo thành muối Nitrit và oxi 𝑡° 2NaN𝑂3 → 2NaN𝑂2 + 𝑂2 - Phản ứng với Cu trong môi trương Axit: 2N𝑂3 − + 3𝐶𝑢 + 8𝐻 + → 3𝐶𝑢2+ + 2NO + 4𝐻2 𝑂 c, Ứng dụng - Trong thiên nhiên, chủ yếu được khai thác ở ChiLe nên được gọi là sanpet Chi Lê - Dùng để điều chế axit nitric, phân đạm, dùng trong công nghiệp thủy tinh, luyện kim, độ tinh khiết 99,3 %, dùng trong thí nghiệm công nghiệp, dân dụng - Dùng làm thuốc nổ đen 1.2. Sơ lược về quá trình cô đặc a, Quá trình cô đặc Quá trình cô đặc là quá trình làm đậm đặc dung dịch bằng việc đun sôi. Đặc điểm của quá trình này là dung môi được tách ra khỏi dung dịch ở dạng hơi, chất hoà tan được giữ lại trong dung dịch, do đó, nồng độ của dung dịch sẽ tăng lên. Khi bay hơi, nhiệt độ của dung dịch sẽ thấp hơn nhiệt độ sôi, áp suất hơi của dung môi trên mặt dung dịch lớn hơn áp suất riêng phần của nó ở khoảng trống trên mặt thoáng dung dịch nhưng nhỏ hơn áp suất chung.Trạng thái bay hơi có thể xảy ra ở các nhiệt độ khác nhau và nhiệt độ càng tăng thì tốc độ bay hơi càng lớn, còn sự bốc hơi (ở trạng thái sôi) diễn ra ngay cả trong lòng dung dịch( tạo thành bọt) khi áp suất hơi của dung môi SVTH: NGUYỄN THẮNG 2 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN bằng áp suất chung trên mặt thoáng , trạng thái sôi chỉ có ở nhiệt độ xác định ứng với áp suất chung và nồng độ của dung dịch đã cho. Trong quá trình cô đặc, nồng độ của dung dịch tăng lên, do đó mà một số tính chất của dung dịch cũng sẽ thay đổi. Điều này có ảnh hưởng đến quá trình tính toán, cấu tạo vá vận hành của thiết bị cô đặc. Khi nồng độ tăng, hệ số dẫn nhiệt 𝜆, nhiệt dung riêng C, hệ số cấp nhiệt 𝛼 của dung dịch sẽ giảm. Ngược lại, khối lượng riêng 𝜌, độ nhớt 𝜈, tổn thất do nồng độ Δ’ sẽ tăng. Đồng thời khi tăng nồng độ sẽ tăng điều kiện tạo thành cặn bám trên bề mặt truyền nhiệt, những tính chất đó sẽ làm giảm bề mặt truyền nhiệt của thiết bị. Hơi của dung môi được tách ra trong quá trình cô đặc gọi là hơi thứ, hơi thứ ở nhiệt độ cao có thể dùng để đun nóng một thiết bị khác, nếu dùng hơi thứ để đun nóng cho một thiết bị ngoài hệ thống thì ta gọi đó là hơi phụ. Quá trình cô đặc có thể tiến hành trong thiết bị cô đặc một nồi hoặc nhiều nồi, làm việc liên tục hoặc gián đoạn. Quá trình cô đặc có thể được thực hiện ở các áp suất khác nhau tuỳ theo yêu cầu kĩ thuật, khi làm việc ở áp suất thường thì có thể dùng thiết bị hở, khi làm việc ở áp suất thấp thì dùng thiết bị kín cô đặc trong chân không vì có ưu điểm là có thể giảm được bề mặt truyền nhiệt (khi áp suất giảm thì nhiệt độ sôi của dung dịch giảm dẩn đến hiệu số nhiệt độ giữa hơi đốt và dung dịch tăng). b, Cô đặc nhiều nồi Cô đặc nhiều nồi là quá trình sử dụng hơi thứ thay cho hơi đốt, do đó nó có ý nghĩa kinh tế cao về sử dụng nhiệt. Nguyên tắc của quá trình cô đặc nhiều nồi có thể tóm tắt như sau: Ở nồi thứ nhất, dung dịch được đun nóng bằng hơi đốt, hơi thứ của nồi này đưa vào đun nồi thứ hai, hơi thứ nồi hai đưa vào đun nồi ba...hơi thứ nồi cuối cùng đi vào thiết bị ngưng tụ. Dung dịch đi vào lần lượt từ nồi nọ sang nồi kia, qua mỗi nồi đều bốc hơi môt phần, nồng độ dần tăng lên. Điều kiện cần thiết để truyền nhiệt trong các nồi là phải có chênh lệch nhiệt độ giữa hơi đốt và dung dịch sôi, hay nói cách khác là chênh lệch áp suất giữa hơi đốt và hơi thứ trong các nồi, nghĩa là áp suất làm việc trong các nồi phải giảm dần vì hơi thứ của nồi trước là hơi đốt của nồi sau.Thông thường nồi đầu làm việc ở áp suất dư, còn nồi cuối làm việc ở áp suất thấp hơn áp suất khí quyển. Trong các loại hệ thống cô đặc nhiều nồi thì hệ thống cô đặc nhiều nồi xuôi chiều được sử dụng nhiều hơn cả. SVTH: NGUYỄN THẮNG 3 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN Ưu điểm của loại này là dung dịch tự di chuyển từ nồi trước sang nồi sau nhờ sự chênh lệch áp suất giữa các nồi, nhiệt độ sôi của nồi trước lớn hơn nồi sau, do đó dung dịch đi vào mỗi nồi (trừ nồi đầu) đều có nhiệt độ cao hơn nhiệt độ sôi, kết quả là dung dịch được làm lạnh đi, lượng nhiệt này sẽ làm bốc hơi thêm một phần nước làm quá trình tự bốc hơi. Nhược điểm: nhiệt độ dung dịch ở các nồi sau thấp dần nhưng nồng độ của dung dịch lại tăng dần làm cho độ nhớt của dung dịch tăng nhanh, kết quả hệ số truyền nhiệt sẽ giảm đi từ nồi đầu đến nồi cuối. Hơn nữa, dung dịch đi vào nồi đầu có nhiệt độ thấp hơn nhiệt độ sôi nên cần phải tốn thêm một lượng hơi đốt để đun nóng dung dịch. Trong công nghệ hoá chất và thực phẩm, Cô đặc là quá trình làm bay hơi một phần dung môi của dung dịch chứa chất tan không bay hơi. ở nhiệt độ sôi; với mục đích: + Làm tăng nồng độ của chất hoà tan trong dung dịch + Tách các chất hoà tan ở dạng rắn (kết tinh) + Tách dung môi ở dạng nguyên chất.v.v. 1.3. Sơ đồ - Mô tả dây chuyền sản xuất 1.3.1. Bản vẽ sơ đồ dây chuyền sản xuất (Bản vẽ tay A4 đính kèm) Chú thích: 1. Thùng chứa dung dịch đầu 2, 2’. Bơm 3. Thùng cao vị 4. Lưu lượng kế 5. Thiết bị gia nhiệt hỗn hợp đầu 6, 6’. Buồng đốt của nồi cô đặc 7, 7’. Buồng bốc hơi của nồi cô đặc 8. Thiết bị ngưng tụ baromet 9. Thiết bị thu hồi bọt 10. Thùng chứa nước 11. Thùng chứa sản phẩm 12. Bơm chân không SVTH: NGUYỄN THẮNG 4 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN 1.3.2. Nguyên lý làm việc của hệ thống - Dung dịch chứa trong thùng chứa được bơm (2) đưa lên thùng cao vị có chảy tràn để ổn định lưu lượng. Lưu lượng kế (4) điều chỉnh lưu lượng cần thiết của dung dịch vào thiết bị gia nhiệt (5), đun nóng tới nhiệt độ sôi dung dịch, sau đó đưa vào nồi cô đặc 1 (6). Dung dịch sau nồi 1 đạt nồng độ 𝑥1 sẽ sang nồi 2 nhờ chênh lệch áp suất. Sau nồi 2 dung dịch đạt nồng độ cuối và sẽ làm lạnh bằng thiết bị làm lạnh (16) sau đó đẩy vào thùng chứa sản phẩm (15) - Hơi thứ ở nồi 1 (6) được làm hơi đốt cho nồi 2 (7) vì nhiệt độ lớn hơn nhiệt độ sôi dung dịch nồi 2 (7). Hơi thứ nồi 2 (7) đi vào thiết bị ngưng tụ Baromet. Hơi được ngưng tụ thành lỏng và tự chảy xuống thùng chứa khí không ngưng có lẫn bọt qua cơ cấu tách bọt, bọt sẽ được đi xuống thùng chứa, khí không ngưng đi ra ngoài nhờ bơm (11). Hệ thống cô đặc xuôi chiều (hơi đốt và dung dịch đi cùng chiều với nhau từ nồi nọ sang nồi kia) được dùng khá phổ biến trong công nghiệp hóa chất. Nhiệt độ sôi của nồi trước lớn hơn nồi sau, do đó, dung dịch đi vào mỗi nồi (trừ nồi đầu) đều có nhiệt độ cao hơn nhiệt độ sôi, kết quả là dung dịch sẽ được làm lạnh đi và lượng nhiệt này sẽ làm bốc hơi thêm một lượng nước gọi là quá trình tự bốc hơi. Nhưng khi dung dịch vào nồi đầu có nhiệt độ thấp hơn nhiệt độ sôi của dung dịch, thì cần phải đun nóng dung dịch do đó tiêu tốn thêm một lượng hơi đốt. Vì vậy, khi cô đặc xuôi chiều, dung dịch trước khi vào nồi nấu đầu cần được đun nóng sơ bộ bằng hơi phụ hoặc nước ngưng tụ. Nhược điểm của cô đặc xuôi chiều là nhiệt độ của dung dịch ở các nồi sau thấp dần, nhưng nồng độ của dung dịch tăng dần làm cho độ nhớt của dung dịch tăng nhanh, kết quả là hệ số truyền nhiệt sẽ giảm từ nồi đầu đến nồi cuối. SVTH: NGUYỄN THẮNG 5 Đồ án QT & TB CN Hóa học và Thực phẩm SVTH: NGUYỄN THẮNG GVHD: TS. CAO THỊ MAI DUYÊN 6 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN PHẦN 2: TÍNH TOÁN THIẾT BỊ CHÍNH Yêu cầu: Thiết kế hệ thống cô đặc 2 nồi xuôi chiều không lấy hơi phụ có phòng đốt ngoài thẳng đứng, cô đặc dung dịch NaNO3 với năng suất 12240 kg/h. Các số liệu ban đầu: 2.1. - Nồng độ đầu vào của dung dịch: 10 % kh.lg - Nồng độ cuối của dung dịch: 25 % kh.lg - Áp suất hơi đốt nồi đầu: 5,0 at - Áp suất hơi ngưng tụ: 0,2 at Tính toán lượng hơi thứ bốc ra khỏi hệ thống (W) Áp dụng công thức: Trong đó: W = Gd . (1 − xd xc ) VI.1, [2 - 55] W – Tổng lượng hơi thứ bốc ra khỏi hệ thống (kg/h) xd – Nồng độ đầu vào của dung dịch: xd = 10% xc – Nồng độ cuối của dung dịch: xc = 25% Gd – Lượng dung dịch đầu: Gd = 12240 [kg/h] Thay số, ta có: W = 12240. (1 − 2.2. 10 25 ) = 7344,00 [kg/h] Tính toán lượng hơi thứ bốc ra ở mỗi nồi Gọi: W1 – Lượng hơi thứ bốc ra khỏi nồi 1: W1 [kg/h] W2 – Lượng hơi thứ bốc ra khỏi nồi 2: W2 [kg/h] Lượng hơi thứ bốc ra ở nồi sau lớn hơn nồi trước. Để đảm bảo việc dùng toàn bộ lượng hơi thứ nồi trước làm hơi đốt cho nồi sau ta chọn: Giả thiết mức phân phối lượng hơi thứ bốc ra ở hai nồi là: Mặt khác: W2:W1 = 1,06 (1) W= W1 + W2= 7344 (2) Từ (1) và (2) ta tính được: W1 = 3565,05[kg/h] W2 = 3778,95 [kg/h] SVTH: NGUYỄN THẮNG 7 Đồ án QT & TB CN Hóa học và Thực phẩm 2.3. GVHD: TS. CAO THỊ MAI DUYÊN Tính nồng độ cuối của dung dịch trong mỗi nồi 𝑥𝑖 = Gd . Áp dụng công thức: xd [%] 𝐺d −∑𝑖𝑗=1 𝑊𝑗 VI.2c, [2 – 57] Nồng độ cuối ra khỏi nồi 1 là: 𝑥1 = Gd . xd 10 = 12240. 𝐺d − 𝑊1 12240−3617,73 = 14,11 % Nồng độ cuối ra khỏi nồi 2 là: 𝑥2 = Gd . 2.4. xd 𝐺d − (𝑊1 +𝑊2 = 12240. ) 10 12240−(3617,73+3726,27) = 25 % Tính chênh lệch áp suất chung của hệ thống (∆P) Chênh lệnh áp suất chung của hệ thống (∆P) là hiệu số giữa áp suất hơi đốt sơ cấp p1 ở nồi 1 và áp suất hơi thứ trong thiết bị ngưng tụ png. ∆P = p1 – png, at Thay số, ta có: 2.5. ∆P = 5 – 0,2 = 4,8 [at] Xác định áp suất, nhiệt độ hơi đốt cho mỗi nồi a. Áp suất Hiệu số áp suất nồi trước lớn hơn nồi sau. Giả thiết phân bố hiệu số áp suất hơi đốt giữa các nồi: ∆p1: ∆p2 = a1: a2 = 2,3: 1 ∆p .ai ∆p𝑖 = ∑𝑛 𝑖 [at] 𝑗=1 𝑎𝑗 Thay số, ta có: ∆p1 = ∆p. ∆p2 = ∆p. 𝑎1 𝑎1+𝑎2 = 4,8. 𝑎2 𝑎1+𝑎2 2,3 2,3+1 = 4,8. 1 = 3,35 at = 1,45 at 2,3+1 Áp suất hơi đốt từng nồi được tính: pi = pi-1 - ∆pi-1 [at] Thay số, ta có: p1 = 5 at p2 = p1 - ∆p1 = 5 – 3,35 = 1,65 at SVTH: NGUYỄN THẮNG 8 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN b. Nhiệt độ hơi đốt T (oC), nhiệt lượng riêng I (J/kg), nhiệt hóa hơi r (J/kg) Tra bảng I.251 trong [1 – 314] và nội suy ta có: + Nồi 1: với p1 = 5 at, ta có: - Nhiệt độ hơi đốt: T1 = 151,1 [oC] - Nhiệt lượng riêng: i1 = 2754.103 [J/kg] - Nhiệt hóa hơi: r1 = 2117.103 [J/kg] + Nồi 2: với p2 = 1,65 at, ta có: - Nhiệt độ hơi đốt: T2 = 113,60 - Nhiệt lượng riêng: i2 = 2704,9.103 [J/kg] - Nhiệt hóa hơi: r2 = 2224,5.103 [J/kg] [oC] + Với png = 0,2 at, ta có: Tng = 59,7 oC ing = 2607.103 (J/kg) rng = 2358.103 (J/kg) 2.6. Tính nhiệt độ ti’ (oC), áp suất hơi thứ p’i (at) ra khỏi từng nồi Áp dụng công thức: ti’ = Ti+1 + ∆i’’’ Trong đó: [oC] ti’: nhiệt độ hơi thứ ra khỏi nồi i (i = 1,2) ∆i’’’: tổn thất nhiệt độ do trở lực đường ống (chọn ∆1’’’ = 1oC; ∆2’’’ = 1 oC) t1’ = T2 + ∆1’’’ = 113,6 + 1 = 114,6 oC Thay số, ta có: t2’ = Tng + ∆2’’’ = 59,7 + 1 = 60,7 oC Tra bảng I.251 trong [1 – 314] và nội suy, ta có: + Nồi 1: với t1’ = 114,6 oC, ta có: - Áp suất hơi thứ: p1’ = 1,7 [at] - Nhiệt lượng riêng: i1’ = 2703,4.103 [J/kg] - Nhiệt hóa hơi: r1’ = 2222,04.103 [J/kg] + Nồi 2: với t2’ = 60,7 oC, ta có: - Áp suất hơi thứ: p2’ = 0,21 [at] - Nhiệt lượng riêng: i2’ = 2609,61.103 [J/kg] - Nhiệt hóa hơi: r2’ = 2355,29.103 [J/kg] SVTH: NGUYỄN THẮNG 9 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN Bảng tổng hợp số liệu 1: Hơi đốt Nồi p, at T, oC 1 5 151,1 2 1,65 113,6 2.7. Hơi thứ i.103, r.103, J/kg J/kg 2754 2117 i’.103, r’.103, J/kg J/kg x% p’, at t’, oC 1,7016 114,6 2703.4 2222,04 14,11 2704,9 2224,5 0,2097 60,7 2609,6 2355,29 25 Tính tổn thất nhiệt độ cho từng nồi Trong thiết bị cô đặc xuất hiện sự tổn thất nhiệt độ. Tổng tổn thất nhiệt độ này là do nồng độ tăng cao (∆’), do áp suất thủy tĩnh tăng cao (∆’’), do trở lực đường ống (∆’’’) 2.7.1. Tính tổn thất nhiệt độ do áp suất thủy tĩnh tăng cao ∆i’’ Tổn thất này do nhiệt độ sôi ở đáy thiết bị cô đặc luôn lớn hơn nhiệt độ sôi của dung dịch ở trên mặt thoáng. Thường tính toán ở khoảng giữa của ống truyền nhiêt. Công thức tính: ∆i’’ = ttbi – ti’ [oC] ttbi : nhiệt độ sôi ứng với ptbi [oC] ti’: nhiệt độ sôi ứng với pi’ [oC] [2-60] Trong đó: ptbi là áp suất thủy tĩnh ở lớp giữa của khối (lỏng – hơi) trong ống tuần hoàn, tính theo công thức VI.12 [4 – 60]: 𝐻 .𝜌𝑑𝑑𝑖 2 2 𝑝𝑡𝑏𝑖 = 𝑝𝑖′ + [(ℎ1 + ) . . 𝑔 9.81.104 ] [N/m2] Trong đó: 𝜌𝑑𝑑𝑖 : khối lượng riêng của dung dịch tương ứng với 20℃, nồi thứ i [kg/𝑚3 ] pi’: áp suất hơi thứ trên mặt thoáng dung dịch [at] h1: chiều cao lớp dung dịch từ miệng ống truyền nhiệt đến mặt thoáng, chọn h1 = 0,8 [m] H: chiều cao ống truyền nhiệt, chọn H = 6 [m] SVTH: NGUYỄN THẮNG 10 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN g: gia tốc trọng trường g = 9,81 [m/s2] + Nồi 1: với p1’ = 1,7016 [at] Tra bảng I.59 trong [1 – 46] và nội suy với t = 114,6 oC, x1 = 14,11%, ta có: [kg/m3] 𝜌𝑑𝑑1 = 1097,52 Thay vào phương trình, ta có: 6 1097,52 2 2 ptb1 = 1,7016 + [(0,8 + ) . . 9,81] : (9,81. 104 ) = 1,91 (at) Tra bảng I.251 trong [1– 314] và nội suy với ptb1 = 1,91 [at], ta có: ttb1 = 118,15 oC  ∆1’’ = ttb1 – t1’ = 118,15– 114,6 = 3,55 [oC] + Nồi 2: với p2’ = 0,21 [at] Tra bảng I.59 trong [1 – 46] và nội suy với t = 60,7 oC, x2 = 25%, ta có: [kg/m3] 𝜌𝑑𝑑2 = 1183,42 Thay vào phương trình, ta có: 6 1183,42 2 2 ptb2 = 0,21 + [(0,8 + ) . . 9,81] : (9,81. 104 ) = 0,43 (at) Tra bảng I.251 trong [1 – 314] và nội suy với ptb2 = 0,43 [at], ta có: ttb2 = 77,42 oC  ∆2’’ = ttb2 – t2’ = 77,42 – 60,7 = 16,72 [oC] Vậy tổng tổn thất nhiệt độ do áp suất thủy tĩnh tăng cao: ∑ ∆′′ = ∆1 ′′ + ∆2 ′′ = 3,55 + 16,72 = 20,27 (oC) 2.7.2. Tính tổn thất nhiệt độ do nồng độ ∆i’ Phụ thuộc vào tính chất tự nhiên của chất hòa tan và dung môi vào nồng độ và áp suất của chúng. ∆i’ ở áp suất bất kì được xác định theo phương pháp Tysenco: ∆i’ = f. ∆0’ = 16,2. ′ (𝑡𝑠𝑖 ) 𝑟 2 . ∆0i’ [oC] [2 – 58, 59] Trong đó: tsi’: nhiệt độ sôi của dung môi nguyên chất (hơi thứ) ở áp suất đã cho [oK] SVTH: NGUYỄN THẮNG 11 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN r: ẩn nhiệt hóa hơi của dung môi nguyên chất (hơi thứ) ở áp suất làm việc [J/kg] ∆0i’: tổn thất nhiệt độ do nhiệt độ sôi của dung dịch lớn hơn nhiệt độ sôi của dung môi ở nhiệt độ nhất định và áp suất khí quyển (tsdd > tsdm) + Nồi 1: Ta có: ts1’ =ttb1 + 273= 118,15 + 273 = 391,15 [K] Tra bảng cuối bản hướng dẫn và nội suy với nồng độ dung dịch NaNO3 là x1 = 14,11% ta được ∆01’ = 1,72 oC  ∆1’ = 16,2. 391,152 2117.103 [oC] .1,72 = 1,97 + Nồi 2: Ta có: ts2’ = ttb2 + 273= 77,42 + 273 = 350,42 [oK] Tra bảng VI.2 [2-64] và nội suy với nồng độ dung dịch NaNO3 là x2 = 25% ta được ∆02’ = 3,45 oC  ∆2’ = 16,2. 350,422 2224,45.103 [oC] .3,45 = 2,8 Tổng tổn thất nhiệt độ do nồng độ tăng cao là: ∑ ∆′ = ∆1 ′ + ∆2 ′ = 1,97 + 2,8 = 4,77 (oC) 2.7.3. Tổn thất nhiệt độ do trở lực đường ống ∆i’’’ Trở lực ở đây chủ yếu là các đoạn ống nối giữa các thiết bị. Đó là đoạn nối giữa nồi 1 với nồi 2, nồi 2 với thiết bị ngưng tụ. Trong giả thiết mục 2.6 khi tính nhiệt độ và áp suất hơi thứ ra khỏi từng nồi ta đã chọn ∆1’’’= 1 (oC); ∆2’’’ = 1 (oC) Vậy tổn thất nhiệt độ do trở lực đường ống bằng: ∑ ∆′′′ = ∆1 ′′′ + ∆2 ′′′ = 1 + 1 = 2 (oC) 2.7.4. Tính tổng tổn thất nhiệt độ của hệ thống 𝟐 ∑∆ = 𝒊=𝟏 2 ∑ ∆′𝑖 𝑖=1 2 + ∑ ∆′′𝑖 𝑖=1 2 + ∑ ∆′′′ 𝑖 𝑖=1 = 4,77 + 20,27 + 2 = 27,04 [oC] 2.8. Tính hiệu số nhiệt độ hữu ích của hệ thống 2.8.1. Hiệu số nhiệt độ hữu ích của hệ thống: ∑𝟐𝒊=𝟏 ∆𝑇𝑖 = 𝑇1 − 𝑇𝑛𝑔 − ∑2𝑖=1 ∆ SVTH: NGUYỄN THẮNG (VI.17 và VI.18 [2 – 67]) 12 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN = 151,1 − 59,7 − 27,04 = 64,36 [oC] Trong đó: T1: nhiệt độ hơi đốt ở nồi 1 Tng: nhiệt độ hơi thứ ở thiết bị ngưng tụ ∑2𝑖=1 ∆: tổng tổn thất nhiệt độ của 2 nồi 2.8.2. Hiệu số nhiệt độ hữu ích trong mỗi nồi: Là hệ số nhiệt độ hơi đốt Ti và nhiệt độ sôi trung bình của dung dịch cô đặc. ∆Ti = Ti – tsi [oC] Tính nhiệt độ sôi của dung dịch trong từng nồi theo công thức: tsi = ti’ + ∆i’ + ∆i’’ [oC]  ts1 = t1’ + ∆1’ + ∆1’’ = 114,6 + 1,97 + 3,55 = 120,12 [oC]  ts2 = t2’ + ∆2’ + ∆2’’ = 60,70 + 2,8 + 16,72 = 80,22 [oC] Thay số, ta được: ∆T1 = T1 – ts1 = 151,1 – 120,12 = 30,98 [oC] ∆T2 = T2 – ts2 = 112,88 – 80,22 = 33,38 [oC] Bảng tổng hợp số liệu 2: Nồi ∆’, [oC] ∆’’, [oC] ∆’’’, [oC] ∆T, [oC] tsi, [oC] 1 1,97 3,55 1 30,98 120,12 2 2,8 16,72 1 33,38 80,22 SVTH: NGUYỄN THẮNG 13 Đồ án QT & TB CN Hóa học và Thực phẩm 2.9. GVHD: TS. CAO THỊ MAI DUYÊN Thiết lập phương trình cân bằng nhiệt để tính lượng hơi đốt D và lượng hơi thứ Wi ở từng nồi 2.9.1. Sơ đồ cân bằng nhiệt lượng Trong đó: Gd: lượng hỗn hợp đầu đi vào thiết bị D: lượng hơi đốt vào nồi thứ nhất W1, W2: lượng hơi thứ đi ra khỏi nồi 1, nồi 2 i1, i2: nhiệt lượng riêng của hơi đốt vào nồi 1, nồi 2 i1’, i2’: nhiệt lượng riêng của hơi thứ ra khỏi nồi 1, nồi 2 C0, C1, C2: nhiệt dung riêng của dung dịch ban đầu, dung dịch ra khỏi nồi 1, nồi 2 Cnc1, Cnc2: nhiệt dung riêng của nước ngưng ra khỏi nồi 1, nồi 2 ts0, ts1, ts2: nhiệt độ sôi của dung dịch đầu, dung dịch ra khỏi nồi 1, nồi 2 θ1, θ2 : nhiệt độ nước ngưng nồi 1, nồi 2 Qm1, Qm2: nhiệt lượng mất mát ở nồi 1, nồi 2 (bằng 5% nhiệt lượng tiêu tốn để bốc hơi ở từng nồi) 2.9.2. Tính nhiệt dung riêng của dung dịch NaNO3 Với dung dịch loãng (x < 20%) nhiệt dung riêng tính theo công thức: C = 4186. (1 – x) [J/kg.độ] I.43, [1 – 152] + Dung dịch ban đầu có xd = 10% nên ta có: C0 = 4186. (1 – 0,1) = 3767,4 [J/kg.độ] + Dung dịch ra khỏi nồi 1 có x1 = 14,11% nên ta có: C1 = 4186. (1 – 0,1411) = 3595,36 [J/kg.độ] Với dung dịch đặc (x > 20%) nhiệt dung riêng tính theo công thức: C = Cht. x + 4186. (1 – x) SVTH: NGUYỄN THẮNG I.44, [1 – 152] 14 Đồ án QT & TB CN Hóa học và Thực phẩm GVHD: TS. CAO THỊ MAI DUYÊN Trong đó: Cht: nhiệt dung riêng của chất hòa tan khan (không chứa nước), J/kg.độ x: nồng độ chất hòa tan, phần khối lượng Cht tính theo công thức: MCht = n1c1 + n2c2 + n3c3 [1 – 152] Với NaNO3 ta có M = 85; n1 = 1; n2 = 1; n3 = 3 Tra bảng I.141 trong [1 – 152] ta có nhiệt dung nguyên tử của các nguyên tố: Na: c1 = 26000 [J/kg nguyên tử.độ] N: c2 = 26000 [J/kg nguyên tử.độ] O: c3 = 16800 [J/kg nguyên tử.độ] Từ đó ta có: Cht = 1.26000+1.26000+3.16800 85 = 1204,71 [J/kg.độ] + Dung dịch ra khỏi nồi 2 có x2 = 25% nên ta có: C2 = Cht.x2 + 4186. (1 – x2) = 1204,71.0,25 + 4186. (1 – 0,25) = 3440,68 [J/kg.độ] 2.9.3. Các thông số của nước ngưng Nhiệt độ của nước ngưng lấy bằng nhiệt độ hơi đốt: θ1 = T1 = 151,1 oC; θ2 = T2 = 112,88 oC Để giảm lượng hơi đốt tiêu tốn, người ta gia nhiệt hỗn hợp đầu đến nhiệt độ càng cao càng tốt vì quá trình này có thể tận dụng nhiệt lượng thừa của các quá trình sản xuất khác. Do đó có thể chọn: ts0 = ts1 = 120,12 oC Nhiệt dung riêng của nước ngưng: Tra bảng I.249 [3 – 311] và nội suy với: θ1 = 151,1 oC ➔ Cnc1 = 4314,74 [J/kg.độ] θ2 = 113,6 oC ➔ Cnc2 = 4238,95 [J/kg.độ] 2.9.4. Lập phương trình cân bằng nhiệt lượng + Nồi 1: Lượng nhiệt mang vào: • Do dung dịch đầu: GdC0ts0 • Do hơi đốt: Di1 Lượng nhiệt mang ra: SVTH: NGUYỄN THẮNG 15
- Xem thêm -

Tài liệu liên quan