Tài liệu bồi dưỡng học sinh giỏi toán lớp 7

  • Số trang: 31 |
  • Loại file: DOC |
  • Lượt xem: 17 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 PHẦN ĐẠI SỐ Chuyền đề 1: Các bài toán thực hiện phép tính: 1. Các kiến thức vận dụng: - Tính chất của phép cộng , phép nhân - Các phép toán về lũy thừa: 3a ; an = a1.a2.... n am.an = am+n ; (am)n = am.n ; ( a.b)n = an .bn ; ( ) n  am : an = am –n ( a �0, m �n) a b an (b �0) bn 2 . Một số bài toán : Bài 1: a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1) b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2) Với n là số tự nhiên khác không. HD : a) 1+2 + 3 + .. ..+ n = n(n+1) 1+ 3+ 5+ …+ (2n-1) = n2 b) 1.2+2.3+3.4+ …+ n(n+1) = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3 = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3 = n(n+ 1)(n+2) :3 1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2) = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4 = n(n+1)(n+2)(n+3) : 4 Tổng quát: Bài 2: a) Tính tổng : S = 1+ a + a2 +…..+ an c c c b) Tính tổng : A = a .a  a .a  ......  a .a với a2 – a1 = a3 – a2 = … = an – an-1 = k 1 2 2 3 n 1 n 2 n � HD: a) S = 1+ a + a +…..+ a aS = a + a2 +…..+ an + an+1 Ta có : aS – S = an+1 – 1 � ( a – 1) S = an+1 – 1 Nếu a = 1 � S = n Nếu a khác 1 , suy ra S = a n 1  1 a 1 c c 1 1  (  ) với b – a = k a.b k a b c 1 1 c 1 1 c 1 1 Ta có : A = k ( a  a )  k ( a  a )  .....  k ( a  a ) 1 2 2 3 n 1 n b) Áp dụng c 1 1 c 1 1 1 1 1 1 = k ( a  a  a  a  ......  a  a ) 1 2 2 3 n 1 n = k (a  a ) 1 n 2 Bài 3 : a) Tính tổng : 1 + 22 + 32 + …. + n2 b) Tính tổng : 13 + 23 + 33 + …..+ n3 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 HD : a) 12 + 22 + 32 + ….+ n2 = n(n+1)(2n+1): 6 b) 13 + 23 + 33 + …..+ n3 = ( n(n+1):2)2 Bài 3: Thùc hiÖn phÐp tÝnh: a) A = ( b) B  HD : A = Bài 4: 1 1 1 1 1  3  5  7  ...  49    ...  ) 4.9 9.14 14.19 44.49 89 212.35  46.92  2 .3  8 .3 2 6 4 5  510.73  255.492  125.7  3  59.143 9 7 ;B= 28 2 1, Tính: 1 1 1   2003 2004 2005 P= 5 5 5   2003 2004 2005  2 2 2   2002 2003 2004 3 3 3   2002 2003 2004 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 3 3   0,375  0,3    1,5  1  0,75  1890 11 12  :   115 Bài 5: a) TÝnh A   2,5  5  1,25  0,625  0,5  5  5  2005   3 11 12   1 1 1 1 1 1 b) Cho B   2  3  4  ...  2004  2005 3 3 3 3 3 3 1 . 2 5 5 1 3  1  10  . 230  46 13  2 27 6 25 4  4 3 10 1 2      1   : 12  14  7  10 3   3 Chøng minh r»ng Bài 6: a) Tính : B 1 1 1 1    ...  3 4 2012 b) TÝnh P  2011 2 2010 2009 1    ...  1 2 3 2011 HD: Nhận thấy 2011 + 1 = 2010+2 = …. 2012 2010 1 1  ....  1   2011 1 2 2011 2012 2012 1 1 1 1  2012   ....   2011 = 2012(    ......  ) 2 2011 2 3 4 2012 � MS  1  c) 1 1 1 1 (1  2  3  ...  99  100)    (63.1,2  21.3,6)  2 3 7 9 A 1  2  3  4  ...  99  100 Bài 7: a) TÝnh gi¸ trÞ cña biÓu thøc: Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7  11 3  1 31 . 4 7  15   A  5 1   4  12   6 6  1 b) Chøng tá r»ng: B 1  2 2  1 2 6 .  3 19   14   31 .  1  . 1  93   50 5   3  1 1 1 1  2  2  ...   2 3 3 2004 2004 Bài 8: a) TÝnh gi¸ trÞ cña biÓu thøc: 2 4 3    81,624 : 4  4,505   125 3 4   A 2 2    13   11  2    : 0,88  3,53  (2,75)  :    25   25 b) Chøng minh r»ng tæng: S 1 1 1 1 1 1 1  4  6  ...  4 n  2  4 n  ....  2002  2004  0,2 2 2 2 2 2 2 2 2 Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau: 1. Kiến thức vận dụng : a c  � a.d  b.c b d a c e a c e a �b �e -Nếu b  d  f thì b  d  f  b �d �f với gt các tỉ số dều có nghĩa a c e - Có b  d  f = k Thì a = bk, c = d k, e = fk - 2. Bài tập vận dụng Dạng 1 Vận dụng tính chất dãy tỉ số bằng nhau để chứng minh đẳng thức a c a2  c2 a  Bài 1: Cho . Chứng minh rằng: 2 2  c b b c b a c HD: Từ  suy ra c 2  a.b c b a 2  c 2 a 2  a.b khi đó 2 2  2 b c b  a.b a ( a  b) a = b( a  b )  b Bài 2: Cho a,b,c  R và a,b,c  0 thoả mãn b2 = ac. Chứng minh rằng: a c = (a  2012b) 2 (b  2012c ) 2 HD: Ta có (a + 2012b)2 = a2 + 2.2012.ab + 20122.b2 = a2 + 2.2012.ab + 20122.ac = a( a + 2.2012.b + 20122.c) (b + 2012c)2 = b2 + 2.2012.bc + 20122.c2 = ac+ 2.2012.bc + 20122.c2 = c( a + 2.2012.b + 20122.c) Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Suy ra : a c = (a  2012b) 2 (b  2012c ) 2 Bài 3: Chøng minh r»ng nÕu a c  b d 5a  3b 5c  3d  5a  3b 5c  3d th× a c   k � a = kb, c = kd . b d 5a  3b b (5k  3) 5k  3 5c  3d d (5k  3) 5k  3     Suy ra : và 5a  3b b(5k  3) 5k  3 5c  3d d (5k  3) 5k  3 HD : Đặt Vậy 5a  3b 5c  3d  5a  3b 5c  3d a 2  b 2 ab  với a,b,c, d �0 Chứng minh rằng : c 2  d 2 cd a c a d  hoặc  b d b c 2 ab 2 a 2  b 2 ab 2ab a 2  2ab  b 2 ( a  b) ( ) (1)  2  HD : Ta có 2 2  = 2 2 (c  d ) cd c d cd 2cd c  2cd  d Bài 4: BiÕt 2 a b 2 a 2  b 2 ab 2ab a 2  2ab  b 2 ( a  b) = ( ) (2)   2  2 2 2 2 (c  d ) cd c d cd 2cd c  2cd  d a b a b �  � ab 2 ab 2 cd cd ) ( ) �� Từ (1) và (2) suy ra : ( ab ba cd cd �  � cd d c � Xét 2 TH đi đến đpcm Bài 5 : Cho tØ lÖ thøc a c  b d ab a 2  b 2  cd c 2  d 2 HD : Xuất phát từ a c  b d . Chøng minh r»ng: vµ 2 a 2  b2  a b    2 c  d2 cd  biến đổi theo các ab a 2  b 2 a 2 c 2 a 2  b 2 a b 2  2  2  2  2 ( ) hướng làm xuất hiện 2 2 cd c  d b d c d cd Bài 6 : Cho d·y tØ sè b»ng nhau: HD : 2a  b  c  d a  2b  c  d a  b  2c  d a  b  c  2d    a b c d a b bc c d d a TÝnh M     c d d a a b bc 2a  b  c  d a  2b  c  d a  b  2c  d a  b  c  2d    Từ a b c d 2a  b  c  d a  2b  c  d a  b  2c  d a  b  c  2d 1  1  1  1 a b c d a b c d a b c  d a b c d a b c  d �    a b c d � Nếu a + b + c + d = 0 a + b = -( c+d) ; ( b + c) = -( a + d) Suy ra : Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 � M a b bc c d d a    c d d a a b bc = -4 Nếu a + b + c + d �0 � a = b = c = d � M Bài 7 : a) Chøng minh r»ng: x y NÕu  a  2b  c Th× b) Cho:  a b bc c d d a    c d d a a b bc =4 z 4a  4b  c a b c   x  2y  z 2x  y  z 4x  4 y  z a b c   b c d Chøng minh: HD : a) Từ 2a  b  c  . 3 a  a b c     b  c  d d   a  2b  c 2a  b  c 4a  4b  c x y z   �   a  2b  c 2a  b  c 4a  4b  c x y z a  2b  c 2(2a  b  c) 4a  4b  c a    (1) x 2y z x  2y  z 2( a  2b  c) (2a  b  c) 4a  4b  c b    (2) 2x y z 2x  y  z 4( a  2b  c) 4(2a  b  c ) 4a  4b  c c    (3) 4x 4y z 4x  4 y  z � a b c   x  2y  z 2x  y  z 4x  4 y  z x y z t    y  z t z t  x t  x  y x  y  z Từ (1) ;(2) và (3) suy ra : Bài 8: Cho chøng minh r»ng biÓu thøc sau cã gi¸ trÞ nguyªn. P HD Từ x  y y  z z t tx    z t tx xy yz y zt zt  x t  x y x y z    x y z t y  z t z t  x tx y x yz 1  1  1  1 � x y z t x y zt z t  x y t  x y z x y z t    � x y z t x y z t    y  z t z t  x t  x  y x  y  z � Nếu x + y + z + t = 0 thì P = - 4 Nếu x + y + z + t � 0 thì x = y = z = t � P = 4 yzx zx y x yz   x y z � x� � y� � z� 1 � 1 � 1 � Hãy tính giá trị của biểu thức : B = � � � � z� � x� � y� Bài 9 : Cho 3 số x , y , z khác 0 thỏa mãn điều kiện : Bài 10 : a) Cho các số a,b,c,d khác 0 . Tính T =x2011 + y2011 + z2011 + t2011 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Biết x,y,z,t thỏa mãn: x  y 2010  z 2010  t 2010 x 2010 y 2010 z 2010 t 2010  2  2  2  2 a 2  b2  c2  d 2 a b c d 2010 b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện: M = a + b = c +d = e + f a 14 c 11 e 13  ;  ;  b 22 d 13 f 17 a b c   c) Cho 3 số a, b, c thỏa mãn : . 2009 2010 2011 Biết a,b,c,d,e,f thuộc tập N* và Tính giá trị của biểu thức : M = 4( a - b)( b – c) – ( c – a )2 Một số bài tương tự Bài 11: Cho d·y tØ sè b»ng nhau: 2012a  b  c  d a  2012b  c  d a  b  2012c  d a  b  c  2012d    a b c d TÝnh M  a b bc c d d a    c d d a a b bc Bài 12: Cho 3 số x , y , z, t khác 0 thỏa mãn điều kiện : y  z  t  nx z  t  x  ny t  x  y  nz x  y  z  nt    ( n là số tự nhiên) x y z t và x + y + z + t = 2012 . Tính giá trị của biểu thức P = x + 2y – 3z + t Dạng 2 : Vận dụng tính chất dãy tỉ số bằng nhau để tìm x,y,z,… 1+3y 1+5y 1+7y   Bài 1: Tìm cặp số (x;y) biết : 12 5x 4x HD : Áp dông tÝnh chÊt d·y tØ sè b»ng nhau ta cã: 1+3y 1+5y 1+7y 1  7y  1  5y 2y 1  5y  1  3y 2y       12 5x 4x 4x  5x x 5x  12 5x  12 2y 2y => với y = 0 thay vào không thỏa mãn  x 5 x  12 Nếu y khác 0 => -x = 5x -12 => x = 2. Thay x = 2 vµo trªn ta ®îc: 1 3y 2 y 1    y =>1+ 3y = -12y => 1 = -15y => y = 12 2 15 1 VËy x = 2, y = tho¶ m·n ®Ò bµi 15 Bài 3 : Cho a b c   và a + b + c ≠ 0; a = 2012. b c a Tính b, c. HD : từ a b c abc     1 � a = b = c = 2012 b c a abc Bài 4 : Tìm các số x,y,z biết : Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 y  x 1 x  z  2 x  y  3 1    x y z x yz HD: Áp dụng t/c dãy tỉ số bằng nhau: y  x  1 x  z  2 x  y  3 2( x  y  z ) 1    2 (vì x+y+z �0) x y z (x  y  z) xyz Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z 1 2 y 1 4 y 1 6 y   18 24 6x 1  2 y 1  4 y 1  6 y 2(1  2 y )  (1  4 y ) 1  2 y  1  4 y  (1  6 y )     HD : Từ 18 24 6x 2.18  24 18  24  6 x 1 1 Suy ra :  � x  1 6 6x Bài 5 : Tìm x, biết rằng: x y z   x  y  z z  y 1 x  z 1 x  y  2 Bài 6: T×m x, y, z biÕt: x y x yz z (x, y, z  0 ) 1 HD : Từ z  y  1  x  z  1  x  y  2  x  y  z  2( x  y  z )  2 Từ x + y + z = 1 1 1 1 � x + y = - z , y +z = - x , z + x = - y thay vào đẳng thức 2 2 2 2 ban đầu để tìm x. Bài 7 : T×m x, y, z biÕt Bài 8 : Tìm x , y biết : 3x 3 y 3z   8 64 216 vµ 2 x 2  2 y 2  z 2 1 2x 1 4 y  5 2x  4 y  4   5 9 7x Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 1. Kiến thức vận dụng : - Tính chất phép toán cộng, nhân số thực - Quy tắc mở dấu ngoặc, quy tắc chuyển vế A, A �0 � - Tính chất về giá trị tuyệt đối : A �0 với mọi A ; A  �  A, A  0 � - Bất đẳng thức về giá trị tuyệt đối : A  B �A  B dấu ‘=’ xẩy ra khi AB �0; A  B �A  B dấu ‘= ‘ xẩy ra A,B >0 A �m � �A �m A �m � � (m  0) ; A �m � � (hay  m �A �m) với m > 0 A �m � �A �m - Tính chất lũy thừa của 1 số thực : A2n �0 với mọi A ; - A2n �0 với mọi A Am = An � m = n; An = Bn � A = B (nếu n lẻ ) hoặc A = � B ( nếu n chẵn) 0< A < B � An < Bn ; Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 2. Bài tập vận dụng Dạng 1: Các bài toán cơ bản Bài 1: Tìm x biết a) x + 2x + 3x + 4x + …..+ 2011x = 2012.2013 b) x 1 x  2 x  3 x  4    2011 2010 2009 2008 HD : a) x + 2x + 3x + 4x + …..+ 2011x = 2012.2013 � x( 1 + 2 + 3 + ….+ 2011) = 2012.2013 � x. 2011.2012 2.2013  2012.2013 � x  2 2011 b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4 Từ � x 1 x  2 x  3 x  4    2011 2010 2009 2008 ( x  2012)  2011 ( x  2012)  2010 ( x  2012)  2009 ( x  2012)  2008    2011 2010 2009 2008 x  2012 x  2012 x  2012 x  2012     2 2011 2010 2009 2008 1 1 1 1 � ( x  2012)(    )  2 2011 2010 2009 2008 1 1 1 1 � x  2 : (    )  2012 2011 2010 2009 2008 � Bài 2 Tìm x nguyên biết 1 1 1 1 49 a) 1.3  3.5  5.7  ....  (2 x  1)(2 x  1)  99 b) 1- 3 + 32 – 33 + ….+ (-3)x = 91006  1 4 Dạng 2 : Tìm x có chứa giá trị tuyệt đối  Dạng : x  a  x  b và x  a �x  b  x  c Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b) Bài 1 : Tìm x biết : a) x  2011  x  2012 b) x  2010  x  2011  2012 HD : a) x  2011  x  2012 (1) do VT = x  2011 �0, x Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 0 nên VP = x – 2012 � x  2011  x  2012 � x 2012 (*) 2011  2012(vôly ) � � Từ (1) � � x  2011  2012  x � x  (2011  2012) : 2 � � Kết hợp (*) � x = 4023:2 b) x  2010  x  2011  2012 (1) Nếu x �2010 từ (1) suy ra : 2010 – x + 2011 – x = 2012 � x = 2009 :2 (lấy) Nếu 2010 < x < 2011 từ (1) suy ra : x – 2010 + 2011 – x = 2012 hay 1 = 2012 (loại) Nếu x �2011 từ (1) suy ra : x – 2010 + x – 2011 = 2012 � x = 6033:2(lấy) Vậy giá trị x là : 2009 :2 hoặc 6033:2 Một số bài tương tự: Bài 2 : a) T×m x biÕt x  1  x  3 4 b) T×m x biÕt: x  6 x  2  x  4 c) T×m x biÕt: 2 x  3  2 4  x 5 Bài 3 : a)T×m c¸c gi¸ trÞ cña x ®Ó: x  3  x  1 3 x b) Tìm x biết: 2 x  3  x  2  x Bài 4 : tìm x biết : a) x  1 �4 b) x  2011 �2012 2 2 Dạng : Sử dụng BĐT giá trị tuyệt đối Bài 1 : a) Tìm x ngyên biết : x  1  x  3  x  5  x  7  8 b) Tìm x biết : x  2010  x  2012  x  2014  2 HD : a) ta có x  1  x  3  x  5  x  7 �x  1  7  x  x  3  5  x  8 (1) Mà x  1  x  3  x  5  x  7  8 suy ra ( 1) xẩy ra dấu “=” 1 �x �7 � �3 x 5 do x nguyên nên x �{3;4;5} 3 �x �5 � Hay � b) ta có x  2010  x  2012  x  2014 �x  2010  2014  x  x  2012 �2 (*) Mà x  2010  x  2012  x  2014  2 nên (*) xẩy ra dấu “=” �x  2012  0 � x  2012 2010 �x �2014 � Suy ra: � Các bài tương tự Bài 2 : Tìm x nguyên biết : x  1  x  2  .....  x  100  2500 Bài 3 : Tìm x biết x  1  x  2  .....  x  100  605 x Bài 4 : T×m x, y tho¶ m·n: x  1  x  2  y  3  x  4 = 3 Bài 5 : Tìm x, y biết : x  2006 y  x  2012 �0 HD : ta có x  2006 y �0 với mọi x,y và x  2012 �0 với mọi x Suy ra : x  2006 y  x  2012 �0 với mọi x,y mà x  2006 y  x  2012 �0 �x  y  0 � x  2006 y  x  2012  0 � � � x  2012, y  2 �x  2012  0 Bài 6 : T×m c¸c sè nguyªn x tho¶ m·n. Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 2004  x  4  x  10  x  101  x  990  x  1000 Dạng chứa lũy thừa của một số hữu tỉ Bài 1: Tìm số tự nhiên x, biết : a) 5x + 5x+2 = 650 b) 3x-1 + 5.3x-1 = 162 HD : a) 5x + 5x+2 = 650 � 5x ( 1+ 52) = 650 � 5x = 25 � x = 2 b) 3x-1 + 5.3x-1 = 162 � 3x -1(1 + 5) = 162 � 3x – 1 = 27 � x = 4 Bài 2 : Tìm các số tự nhiên x, y , biết: a) 2x + 1 . 3y = 12x b) 10x : 5y = 20y 22 x 3 y HD : a) 2x + 1 . 3y = 12x � x 1  x � 2 x 1  3 y  x 2 3 Nhận thấy : ( 2, 3) = 1 � x – 1 = y-x = 0 � x = y = 1 b) 10x : 5y = 20y � 10x = 102y � x = 2y Bài 3 : Tìm m , n nguyên dương thỏa mãn : a) 2m + 2n = 2m +n b) 2m – 2n = 256 HD: a) 2m + 2n = 2m +n � 2m + n – 2m – 2n = 0 � 2m ( 2n – 1) –( 2n – 1) = 1 � 2n  1  1 � � (2 -1)(2 – 1) = 1 � �m � m  n 1 2 1  1 � b) 2m – 2n = 256 � 2n ( 2m – n - 1) = 28 Dễ thấy m �n, ta xét 2 trường hợp : + Nếu m – n = 1 � n = 8 , m = 9 + Nếu m – n �2 thì 2m – n – 1 là 1 số lẻ lớn hơn 1, khi đó VT chứa TSNT khác 2, mà m n VT chỉ chứa TSNT 2 suy ra TH này không xẩy ra : vậy n = 8 , m = 9 Bài 4 : Tìm x , biết :  x  7  HD :  x  7 x 1 �  x  7 �  x  7   x  7 x 1  x 1 x 11 x 1   x  7 x 11 0 0 10 � 1   x  7  � 0 � � 10 � 1  x  7  � 0 �  � x1 � � � �x 7 � 0 � � �� � 1( x7)10 0 � � � � �x7010�x 7�x 8 ( x7) 1�� � x 6 � � 2012 Bài 5 : Tìm x, y biết : x  2011y  ( y  1)  0 HD : ta có x  2011y �0 với mọi x,y và (y – 1)2012 �0 với mọi y 2012 2012 Suy ra : x  2011y  ( y  1) �0 với mọi x,y . Mà x  2011y  ( y  1)  0 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 �x  2011y  0 � � � x  2011, y  1 �y  1  0 Các bài tập tương tự : Bài 6 : Tìm x, y biết : 2012 a) x  5  (3 y  4)  0 2 2 b) (2 x  1)  2 y  x  8  12  5.2 Chuyên đề 4: Giá trị nguyên của biến , giá trị của biểu thức : 1 . Các kiến thức vận dụng: - Dấu hiệu chia hết cho 2, 3, 5, 9 - Phân tích ra TSNT, tính chất của số nguyên tố, hợp số , số chính phương - Tính chất chia hết của một tổng , một tích - ƯCLN, BCNN của các số 2. Bài tập vận dụng : * Tìm x,y dưới dạng tìm nghiệm của đa thức Bài 1: a) T×m c¸c sè nguyªn tè x, y sao cho: 51x + 26y = 2000 b) T×m sè tù nhiªn x, y biÕt: 7( x  2004) 2 23  y 2 c) T×m x, y nguyªn biÕt: xy + 3x - y = 6 d) T×m mäi sè nguyªn tè tho¶ m·n : x2-2y2=1 HD: a) Từ 51x + 26y = 2000 � 17.3.x = 2.( 1000 – 13 y) do 3,17 là số NT nên x M2 mà x NT � x = 2. Lại có 1000 – 13y M51 , 1000 – 13y > 0 và y NT � y = b) Từ 7( x  2004) 2 23  y 2 (1) do 7(x–2004)2 �0 ��� 23�y2 0 y 2 23 y {0, 2,3, 4} Mặt khác 7 là số NT � 13  y 2 M7 vậy y = 3 hoặc y = 4 thay vào (1) suy ra : x= 2005 ,y =4 hoặc x = 2003, y = 4 �x  1  1 �x  1  1 hoặc � �y  3  3 �y  3  3 c) Ta có xy + 3x - y = 6 � ( x – 1)( y + 3) = 3 � � �x  1  3 �x  1  3 hoặc � �y  3  1 �y  1  1 d) x2-2y2=1 � x 2  1  2 y 2 � ( x  1)( x  1)  2 y 2 hoặc � �x  1  2 y �x  3 �� �x  1  y �y  2 do VP = 2y2 chia hết cho 2 suy ra x > 2 , mặt khác y nguyên tố � � Bài 2 a) Tìm các số nguyên thỏa mãn : x – y + 2xy = 7 b) Tìm x, y ��biết: 25  y 2  8( x  2012)2 HD : a) Từ x – y + 2xy = 7 � 2x – 2y + 2xy = 7 � (2x - 1)( 2y + 1) = 13 b) Từ 25  y 2  8( x  2012)2 � y2 �25 và 25 – y2 chia hết cho 8 , suy ra y = 1 hoặc y = 3 hoặc y = 5 , từ đó tìm x Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Bài 3 a) T×m gi¸ trÞ nguyªn d¬ng cña x vµ y, sao cho: 1 1 1   x y 5 b) T×m c¸c sè a, b, c nguyªn d¬ng tho¶ m·n : a 3  3a 2  5 5b vµ a  3 5c x M5 1 1 1 � HD : a) Từ   � 5 ( x + y) = xy (*) � xy M5 � � y M5 x y 5 � + Với x chia hết cho 5 , đặt x = 5 q ( q là số tự nhiên khác 0) thay vào (*) suy ra: 5q + y = qy � 5q = ( q – 1 ) y . Do q = 1 không thỏa mãn , nên với q khác 1 ta có 5q 5  5 �Z � q  1 �Ư(5) , từ đó tìm được y, x q 1 q 1 b) a 3  3a 2  5 5b � a2 ( a +3) = 5b – 5 , mà a  3 5c � a2. 5c = 5( 5b – 1 – 1) 5b 1  1 � a 2  c 1 Do a, b, c nguyên dương nên c = 1( vì nếu c >1 thì 5 b – 1 - 1 không chia 5 hết cho 5 do đó a không là số nguyên.) . Với c = 1 � a = 2 và b = 2 y Bài 4: T×m c¸c cÆp sè nguyªn tè p, q tho¶ m·n: 2 52 p  2013  52 p  q 2 HD : 52 p  2013  52 p  q 2 � 2013  q 2  25 p  25 p � 2013  q 2  25 p (25 p  1) Do p nguyên tố nên 2013  q 2 M252 và 2013 – q2 > 0 từ đó tìm được q Bài 5 : T×m tÊt c¶ c¸c sè nguyªn d¬ng n sao cho: 2n  1 chia hÕt cho 7 HD : Với n < 3 thì 2n không chia hết cho 7 Với n �3 khi đó n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 ( k �N * ) Xét n = 3k , khi đó 2n -1 = 23k – 1 = 8k – 1 = ( 7 + 1)k -1 = 7.A + 1 -1 = 7.A M7 Xét n = 3k +1 khi đó 2 n – 1 = 23k+1 – 1 = 2.83k – 1 = 2.(7A+1) -1 = 7A + 1 không chia hết cho 7 Xét n = 3k+2 khi đó 2n – 1 = 23k +2 -1 = 4.83k – 1 = 4( 7A + 1) – 1 = 7 A + 3 không chia hết cho 7 . Vậy n = 3k với k �N * * Tìm x , y để biểu thức có giá trị nguyên, hay chia hết: Bài 1 T×m sè nguyªn m ®Ó: a) Gi¸ trÞ cña biÓu thøc m -1 chia hÕt cho gi¸ trÞ cña biÓu thøc 2m + 1. b) 3m  1  3 HD : a) Cách 1 : Nếu m >1 thì m -1 < 2m +1 , suy ra m -1 không chia hết cho 2m +1 Nếu m < -2 thì m  1  2m  1 , suy ra m -1 không chia hết cho 2m +1 Vậy m �{ -2; -1; 0; 1} Cách 2 : Để m  1M2m  1 � 2(m  1)M2m  1 � (2m  1)  3M2m  1 � 3M2m  1 2 b) Bài 2 3m  1  3 2 � - 3 < 3m – 1 < 3 � m0 2 4 � m �� vì m nguyên m 1 3 3 � a) T×m x nguyªn ®Ó 6 x  1 chia hÕt cho 2 b) T×m x  Z ®Ó A Z vµ t×m gi¸ trÞ ®ã. A= 1  2x x 3 . HD: A = 1  2x x 3 = x 3 1  2( x  3)  6 7  2 x3 x3 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Bài 3: Tìm x nguyên để HD : 2012 x  5 1006 x  1 2012 x  5 2(1006 x  1)  2009 2009  2 = 1006 x  1 1006 x  1 1006 x  1 2012 x  5 � 2009M 1006 x  1 � x là số CP. 1006 x  1 Với x >1 và x là số CP thì 1006 x  1  2012  2009 suy ra 2009 không chia hết cho 1006 x  1 để Với x = 1 thay vào không thỏa mãn Với x = 0 thì 2009 :1006 x  1  2009 Chuyên đề 5 : Giá trị lớn nhất , giá trị nhỏ nhất của biểu thức: 1.Các kiến thức vận dụng : * a2 + 2.ab + b2 = ( a + b)2 �0 với mọi a,b * a2 – 2 .ab + b2 = ( a – b)2 �0 với mọi a,b *A2n �0 với mọi A, - A2n �0 với mọi A * A �0, A ,  A �0, A * A  B �A  B , A, B dấu “ = ” xẩy ra khi A.B �0 * A  B �A  B , A, B dấu “ = ” xẩy ra khi A,B �0 2. Bài tập vận dụng: * Dạng vận dụng đẳng thức : a2 + 2.ab + b2 = ( a + b)2 �0 với mọi a,b Và a2 – 2 .ab + b2 = ( a – b)2 �0 với mọi a,b Bài 1: Tìm giá trị nhỏ nhất của các đa thức sau: a) P(x) = 2x2 – 4x + 2012 b) Q(x) = x2 + 100x – 1000 HD : a) P(x) = 2x2 – 4x + 2012 = 2(x2 – 2.x. + 12 ) + 2010 = 2( x – 1)2 + 2010 Do ( x - 1)2 �0 với mọi x , nên P(x) �2010 . Vậy Min P(x) = 2010 khi ( x - 1)2 = 0 hay x = 1 b) Q(x) = x2 + 100x – 1000 = ( x + 50)2 – 3500 �- 3500 với mọi x Vậy Min Q(x) = -3500 Từ đây ta có bài toán tổng quát : Tìm GTNN của đa thức P(x) = a x2 + bx +c ( a > 0) b b b2 + ( )2 ) + ( c ) 2a 2a 4a b b 4ac  b 2 4ac  b 2 4ac  b 2 )� , x Vậy Min P(x) = = a( x  )2  ( khi x =  2a 2a 4a 4a 4a HD: P(x) = a x2 + bx +c = a( x2 + 2.x. Bài 2 : Tìm giá trị nhỏ nhất của các biểu thức sau: a) A = - a2 + 3a + 4 b) B = 2 x – x2 3 2 3 2 9 4 3 2 HD : a) A = - a2 + 3a + 4 = (a 2  2.a.  ( ) 2 )  (4  )  (a  ) 2  25 4 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 3 25 25 3 khi a = 2 4 4 2 2 2 2 2  ( x � 1)  0, x c) B = 2 x  x  ( x  2.x.1  1 )  1  ( x  1)  1 . Do Do (a  ) �0, a nên A � , a . Vậy Max A = B 1, x Vậy Max B = 1 khi x = 1 Bài 3 : Tìm giá trị lớn nhất của các biểu thức sau: a) P = 2012 2 x  4 x  2013 b) Q = a 2012  2013 a 2012  2011 * Dạng vận dụng A2n �0 với mọi A, - A2n �0 với mọi A Bài 1 : Tìm GTNN của biểu thức : a) P = ( x – 2y)2 + ( y – 2012)2012 b) Q = ( x + y – 3)4 + ( x – 2y)2 + 2012 HD : a) do ( x  2 y ) 2 �0, x, y và ( y  2012)2012 �0, y suy ra : P �0 với mọi x,y �x  2 y  0 �x  4024 � Min P = 0 khi � �� �y  2012  0 �y  2012 b) Ta có ( x  y  3) 4 �0.x, y và ( x  2 y ) 2 �0.x, y suy ra : Q �2012 với mọi x,y � ( x  y  3) 2  0 �x  2 � � Min Q = 2012 khi � � � ( x  2 y)2  0 � �y  1 2013 Bài 3 : Tìm GTLN của R = Bài 4 : Cho ph©n sè: C  4 ( x  2) 2  ( x  y )  3 3x 2 (x  Z) 4x  5 a) T×m x  Z ®Ó C ®¹t gi¸ trÞ lín nhÊt, t×m gi¸ trÞ lín nhÊt ®ã. b) T×m x  Z ®Ó C lµ sè tù nhiªn. 3 x 2 3 4.(3 x  2) 3 12 x  8 3 23 HD : C  4 x  5  4 . 3.(4 x  5)  4 .12 x  15  4 .(1  12 x  15 ) 23 C lớn nhất khi 12 x  15 lớn nhất � 12 x  15 nhỏ nhất và 12 x  15  0 � x  2 Vậy Max C = 3 23 8 (1  )  khi x = 2 4 9 3 Bài 5 : T×m sè tù nhiªn n ®Ó ph©n sè 7n  8 7 2(7n  8) 7n  8 2n  3 7 14n  16 cã gi¸ trÞ lín nhÊt 7 5 HD : Ta có 2n  3  2 . 7(2n  3)  2 . 14n  21  2 (1  14n  21) Để 7n  8 2n  3 lớn nhất thì 5 lớn nhất � 14n  21  0 và 14n – 21 có giá trị nhỏ 14n  21 21 3  và n nhỏ nhất � n = 2 14 2 * Dạng vận dụng A �0, A ,  A �0, A nhất � n  A  B �A  B , A, B dấu “ = ” xẩy ra khi A.B �0 A  B �A  B , A, B dấu “ = ” xẩy ra khi A,B �0 Bài 1: Tìm giá trị nhỏ nhất của biểu thức Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 a) A = ( x – 2)2 + y  x + 3 2011 b) B = 2012  x  2010 HD: a) ta có ( x  2)2 �0 với mọi x và y  x �0 với mọi x,y � A �3 với mọi x,y � ( x  2) 2  0 �x  2 � �� Suy ra A nhỏ nhất = 3 khi � �y  2 �y  x  0 b) Ta có  x  2010 �0 với mọi x � 2012  x  2010 �2012 với mọi x �B  B 2011 với mọi x, suy ra Min B = 2011 khi x = 2010 2012 2012 Bài 2 : Tìm giá trị nhỏ nhất của các biểu thức a) A  x  2011  x  2012 b) B  x  2010  x  2011  x  2012 c) C = x  1  x  2  .....  x  100 HD : a) Ta có A  x  2011  x  2012 = x  2011  2012  x �x  2011  2012  x  1  2011)(2012 x) 0 2011 x 2012 � với mọi x  A 1 với x . Vậy Min A = 1 Khi ( x � b) ta có B  x  2010  x  2011  x  2012  ( x  2010  2012  x )  x  2011 Do x  2010  2012  x �x  2010  2012  x  2 với mọi x (1) Và x  2011 �0 với mọi x (2) Suy ra B  ( x  2010  2012  x )  x  2011 �2 . Vậy Min B = 2 khi BĐT (1) và (2) ( x  2010)(2012  x) �0 � � x  2011 �x  2011  0 xẩy ra dấu “=” hay � c) Ta có x  1  x  2  .....  x  100 = ( x  1  100  x )  ( x  2  99  x )  .....  ( x  50  56  x ) �x  1  100  x  x  2  99  x  ....  x  50  56  x = 99 + 97 + ....+ 1 = 2500 Suy ra C �2050 với mọi x . Vậy Min C = 2500 khi ( x  1)(100  x ) �0 1 �x �100 � � � � ( x  2)(99  x) �0 2 �x �99 � � � ۣۣ �50 � � ............................ ................ � � � � ( x  50)(56  x ) � 0 50 �x �56 � � x 56 Chuyên đề 6 : Dạng toán chứng minh chia hết 1.Kiến thức vận dụng * Dấu hiệu chia hết cho 2, 3, 5, 9 * Chữ số tận cùng của 2n, 3n ,4n, 5n ,6n, 7n, 8n, 9n * Tính chất chia hết của một tổng 2. Bài tập vận dụng: Bài 1 : Chứng minh rằng : Với mọi số nguyên dương n thì : 3n  2  2n 2  3n  2n chia hết cho 10 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 HD: ta có 3n  2  2n 2  3n  2n = 3n  2  3n  2n 2  2n = 3n (32  1)  2n (22  1) = 3n � 10  2n � 5  3n � 10  2 n1 � 10 n n = 10( 3 -2 ) n2 n 2 n n Vậy 3  2  3  2 M10 với mọi n là số nguyên dương. Bài 2 : Chứng tỏ rằng: 2004 A = 75. (4 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100 HD: A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 = 75.( 42005 – 1) : 3 + 25 = 25( 42005 – 1 + 1) = 25. 42005 chia hết cho 100 Bài 3 : Cho m, n  N* và p là số nguyên tố thoả mãn: p m 1 = mn p (1) Chứng minh rằng : p2 = n + 2 HD : + Nếu m + n chia hết cho p � p M(m  1) do p là số nguyên tố và m, n  N* � m = 2 hoặc m = p +1 khi đó từ (1) ta có p2 = n + 2 + Nếu m + n không chia hết cho p , từ ( 1) � (m + n)(m – 1) = p2 Do p là số nguyên tố và m, n  N* � m – 1 = p2 và m + n =1 � m = p2 +1 và n = - p2 < 0 (loại) Vậy p2 = n + 2 Bài 4: a) Sè A 101998  4 cã chia hÕt cho 3 kh«ng ? Cã chia hÕt cho 9 kh«ng ? b) Chøng minh r»ng: A 3638  4133 chia hÕt cho 7 HD: a) Ta có 101998 = ( 9 + 1)1998 = 9.k + 1 ( k là số tự nhiên khác không) 4 = 3.1 + 1 Suy ra : A 101998  4 = ( 9.k + 1) – ( 3.1+1) = 9k -3 chia hết cho 3 , không chia hết cho 9 b) Ta có 3638 = (362)19 = 129619 = ( 7.185 + 1) 19 = 7.k + 1 ( k � N*) 4133 = ( 7.6 – 1)33 = 7.q – 1 ( q � N*) Suy ra : A 3638  4133 = 7k + 1 + 7q – 1 = 7( k + q) M7 Bài 5 : a) Chøng minh r»ng: 3n  2  2n  4  3n  2n chia hÕt cho 30 víi mäi n nguyªn d¬ng b) Chøng minh r»ng: 2a - 5b + 6c  17 nÕu a - 11b + 3c  17 (a, b, c  Z) Bài 6 : a) Chøng minh r»ng: 3a  2b 17  10a  b 17 (a, b  Z ) b) Cho ®a thøc f ( x)  ax 2  bx  c (a, b, c nguyªn). CMR nÕu f(x) chia hÕt cho 3 víi mäi gi¸ trÞ cña x th× a, b, c ®Òu chia hÕt cho 3 HD a) ta có 17a – 34 b M17 và 3a + 2b M17 � 17 a  34b  3a  2bM17 � 2(10a  16b) M17 � 10a  16b M 17 vì (2, 7) = 1 � 10a  17b  16b M 17 � 10a  bM 17 b) Ta có f(0) = c do f(0) M3 � c M3 f(1) - f(-1) = (a + b + c) - ( a – b + c) = 2b , do f(1) và f(-1) chia hết cho 3 � 2bM3 � bM3 vì ( 2, 3) = 1 f(1) M3 � a  b  c M3 do b và c chia hết cho 3 � a M3 Vậy a, b, c đều chia hết cho 3 Bài 7 : a) Chøng minh r»ng 102006  53 lµ mét sè tù nhiên 9 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 b) Cho 2n  1 lµ sè nguyªn tè (n > 2). Chøng minh 2n  1 lµ hîp sè HD : b) ta có (2n +1)( 2n – 1) = 22n -1 = 4n -1 (1) .Do 4n- 1 chia hêt cho 3 và 2n  1 lµ sè nguyªn tè (n > 2) suy ra 2n -1 chia hết cho 3 hay 2n -1 là hợp số Chuyên đề 7 : Bất đẳng thức 1.Kiến thức vận dụng * Kỹ thuật làm trội : Nếu a1 < a2 < a3 <…. < an thì n a1 < a1 + a2 + … + an < nan 1 1 1 1 1    .....   nan a1 a2 an na1 1 1 1 * a(a – 1) < a2 < a( a+1) � a(a  1)  a 2  a(a  1) * a2 + 2.ab + b2 = ( a + b)2 �0 , * a2 – 2 .ab + b2 = ( a – b)2 �0 với mọi a,b � 2.Bài tập vận dụng Bài 1: Cho a, b, c > 0 . Chøng tá r»ng: HD : Ta có M  M  a b c   a b b c c a kh«ng lµ sè nguyªn. a b c a b c a b c       1 a b b c c a a bc c  a b abc a bc � M 1 Mặt khác M  3( a b c (a  b)  b (b  c)  c (c  a )  a      a b bc c a a b bc ca b c a   ) = 3 – N Do N >1 nên M < 2 ab bc ca Vậy 1 < M < 2 nên M không là số nguyên Bài 2 Chứng minh rằng : a  b �2 ab (1) , a  b  c �3 3 abc (2) với a, b, c �0 HD : a  b �2 ab � (a  b)2 �4ab � a 2  2ab  b 2 �4ab � a 2  2ab  b2 �0 � (a  b)2 �0 (*) Do (*) đúng với mọi a,b nên (1) đúng Bài 3 : Với a, b, c là các số dương . Chứng minh rằng 1 a 1 b 1 a a) (a  b)(  ) �4 (1) 1 a 1 b 1 c b) (a  b  c)(   ) �9 (2) 1 b HD : a) Cách 1 : Từ (a  b)(  ) �4 � (a  b) 2 �4ab � ( a  b) 2 �0 (*) Do (*) đúng suy ra (1) đúng Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 1 1 2 1 1 2 � (a  b)(  ) �2 ab . 4 Cách 2: Ta có a  b �2 ab và a  b � a b ab ab Dấu “ =” xẩy ra khi a = b 1 a 1 b 1 c b) Ta có : (a  b  c)(   )  3  Lại có bc ac ab a b b c a c    3 (  )  (  )  (  ) a b c b a c b c a a b b c a c  �2;  �2;  �2 b a c b c a 1 a 1 b 1 c Suy ra (a  b  c)(   ) �3  2  2  2  9 Dấu “ = ” xẩy ra khi a = b = c Bài 4 : a) Cho z, y, z lµ c¸c sè d¬ng. x y z 3 Chøng minh r»ng: 2 x  y  z  2 y  z  x  2 z  x  y  4 b) Cho a, b, c tho¶ m·n: a + b + c = 0. Chøng minh r»ng: ab  bc  ca 0 . HD : b) Tính ( a + b + c)2 từ cm được ab  bc  ca 0 Chuyên đề 8 : Các bài toán về đa thức một ẩn Bài 1 : Cho đa thức P(x) = a x3 + bx2 + cx + d ( a khác 0) Biết P(1) = 100 , P( -1) = 50 , P(0) = 1 , P( 2) = 120 . Tính P(3) HD : ta có P(1) = 100 � a + b + c + d = 100 P(-1) = 50 � - a + b – c + d = 50 P( 0) = 1 � d = 1 P(2) = 8a + 4b + c + d = 120 Từ đó tìm được c, d, và a và XĐ được P(x) Bài 2 : Cho f ( x)  ax 2  bx  c víi a, b, c lµ c¸c sè h÷u tØ. Chøng tá r»ng: f ( 2). f (3) 0 . BiÕt r»ng 13a  b  2c 0 HD : f( -2) = 4a – 2b + c và f(3) = 9a + 3b + c � f(-2).f(3) =(4a – 2b + c)( 9a + 3b + c) Nhận thấy ( 4a – 2b + c) + ( 9a + 3b + c) = 13a + b + 2c = 0 � ( 4a – 2b + c ) = - ( 9a + 3b + c) Vậy f(-2).f(3) = - ( 4a – 2b + c).( 4a – 2b + c) = - ( 4a -2b + c)2 �0 Bài 3 Cho ®a thøc f ( x)  ax 2  bx  c víi a, b, c lµ c¸c sè thùc. BiÕt r»ng f(0); f(1); f(2) cã gi¸ trÞ nguyªn. Chøng minh r»ng 2a, 2b cã gi¸ trÞ nguyªn. HD : f(0) = c , f(1) = a + b + c , f(2) = 4a + 2b + c Do f(0) ,f(1), f(2) nguyên � c , a + b + c và 4a + 2b + c nguên � a + b và 4a + 2b = 2 (a + b) + 2a = 4( a + b) -2b ngyên � 2a , 2b nguyên Bài 4 Chøng minh r»ng: f(x)  ax 3  bx 2  cx  d cã gi¸ trÞ nguyªn víi mäi x nguyªn khi vµ chØ khi 6a, 2b, a + b + c vµ d lµ sè nguyªn HD : f(0) = d , f(1) = a + b + c + d , f(2) = 8a +4 b + c + d Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Nếu f(x) có giá trị nguyên với mọi x � d , a + b + c + d, 8a +4b + c + d là các số nguyên . Do d nguyên � a + b + c nguyên và (a + b + c + d) + (a + b +c +) +2b nguyên � 2b nguyên � 6a nguyên . Chiều ngược lại cm tương tự. Bài 5 : T×m tæng c¸c hÖ sè cña ®a thøc nhËn ®îc sau khi bá dÊu ngoÆc trong biÓu thøc: A(x) = (3  4 x  x 2 ) 2004. (3  4 x  x 2 ) 2005 HD : Giả sử A( x) = ao + a1x + a2x2 + …..+ a4018x4018 Khi đó A(1) = ao + a1 +a2 + …….+ a4018 do A(1) = 0 nên ao + a1 +a2 + …….+ a4018 = 0 Bài 6 : Cho x = 2011. TÝnh gi¸ trÞ cña biÓu thøc: x 2011  2012 x 2010  2012 x 2009  2012 x 2008  ....  2012 x 2  2012 x  1 HD : Đặt A = x 2011  2012 x 2010  2012 x 2009  2012 x 2008  ....  2012 x 2  2012 x  1 x 2010 ( x  2011)  x 2009 ( x  2011)  x 2008 ( x  2011)  ....  x( x  2011)  x  1 � tại x = 2012 thì A = 2011 Chuyên đề 9 Các bài toán thực tế 1. Kiến thức vận dụng - Tính chất đại lượng tỉ lệ thuận : Đại lượng y tỉ lệ thuận với đại lượng x khi và chỉ khi : y y y y 3 n 1 2 y = k.x � x  x  x  .....  x  k ( k là hệ số tỉ lệ ) 1 2 3 n - Tính chất đại lượng tỉ lệ nghịch : Đại lượng y và đại lượng x được gọi là hai đại lượng tỉ lệ nghịch khi : x.y = a � x1. y1  x2 . y2  x3 . y3  ......  xn . yn  a ( a là hệ số tỉ lệ ) - Tính chất dãy tỉ số bằng nhau. 2. Bài tập vận dụng *Phương pháp giải : - Đọc kỹ đề bài , từ đó xác định các đại lượng trong bài toán - Chỉ ra các đại lượng đã biết , đại lượng cần tìm - Chỉ rõ mối quan hệ giữa các đại lượng ( tỉ lệ thuận hay tỉ lệ nghịch) - Áp dụng tính chất về đại lượng tỉ lệ và tính chất dãy tỉ số bằng nhau để giải Bài 1 : Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI TOÁN 7 Bài 2 : Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®îc 3 c©y, Mçi häc sinh líp 7B trång ®îc 4 c©y, Mçi häc sinh líp 7C trång ®îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®îc ®Òu nh nhau. Bài 3 : Mét « t« ph¶i ®i tõ A ®Õn B trong thêi gian dù ®Þnh. Sau khi ®i ®îc nöa qu·ng ®êng « t« t¨ng vËn tèc lªn 20 % do ®ã ®Õn B sím h¬n dù ®Þnh 10 phót. TÝnh thêi gian « t« ®i tõ A ®Õn B. Bài 4 : Trªn qu·ng ®êng AB dµi 31,5 km. An ®i tõ A ®Õn B, B×nh ®i tõ B ®Õn A. VËn tèc An so víi B×nh lµ 2: 3. §Õn lóc gÆp nhau, thêi gian An ®i so víi B×nh ®i lµ 3: 4. TÝnh qu·ng ®êng mçi ngêi ®i tíi lóc gÆp nhau ? Bài 5 : Ba đội công nhân làm 3 công việc có khối lượng như nhau. Thời gian hoàn thành công việc của đội І, ІІ, ІІІ lần lượt là 3, 5, 6 ngày. Biêt đội ІІ nhiều hơn đội ІІІ là 2 người và năng suất của mỗi công nhân là bằng nhau. Hỏi mỗi đội có bao nhiêu công nhân ? Bài 6 : Ba ô tô cùng khởi hành đi từ A về phía B . Vận tốc ô tô thứ nhất kém ô tô thứ hai là 3 Km/h . Biết thơi gian ô tô thứ nhất, thứ hai và thứ ba đi hết quãng đường AB lần lượt là : 40 phút, 5 5 giờ , giờ . Tính vận tốc mỗi ô tô ? 8 9 PHẦN HÌNH HỌC I. Một số phương pháp chứng minh hình hoc 1.Chứng minh hai đoạn thẳng bằng nhau: P2 : - Chứng minh hai tam giác bằng nhau chứa hai đoạn thẳng đó - Chứng minh hai đoạn thẳng đó là hai cạnh bên của một tam giác cân - Dựa vào tính chất đường trung tuyến, đường trung trực của đoạn thẳng - Dựa vào định lí Py-ta- go để tính độ dài đoạn thẳng 2.Chứng minh hai góc bằng nhau: P2 : - Chứng minh hai tam giác bằng nhau chứa hai góc đó - Chứng minh hai góc đó là hai góc ở đáy của một tam giác cân - Chứng minh hai đường thẳng song song mà hai góc đó là cặp góc so le trong ,đồng vị - Dựa vào tính chất đường phân giác của tam giác 3. Chứng minh ba điểm thẳng hàng: P2 : - Dựa vào số đo của góc bẹt ( Hai tia đối nhau) - Hai đường thẳng cùng vuông góc với đường thẳng thứ 3 tại một điểm - Hai đường thẳng đi qua một điểm và song song với đường thẳng thứ 3 - Dựa vào tính chất 3 đường trung tuyến, phân giác, trung trực, đường cao 4. Chứng minh hai đường thẳng vuông góc Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an
- Xem thêm -