Đăng ký Đăng nhập
Trang chủ Nghiên cứu ảnh hưởng của ti và nguyên tố đất hiếm đến tính chất mài mòn, độ dai ...

Tài liệu Nghiên cứu ảnh hưởng của ti và nguyên tố đất hiếm đến tính chất mài mòn, độ dai va đập của gang trắng 13% crôm

.PDF
115
149
59

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG THỊ NGỌC QUYÊN NGHIÊN CỨU ẢNH HƯỞNG CỦA TITAN VÀ NGUYÊN TỐ ĐẤT HIẾM ĐẾN TÍNH CHẤT MÀI MÒN, ĐỘ DAI VA ĐẬP CỦA GANG TRẮNG 13% CRÔM LUẬN ÁN TIẾN SĨ KỸ THUẬT VẬT LIỆU Hà Nội – 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG THỊ NGỌC QUYÊN NGHIÊN CỨU ẢNH HƯỞNG CỦA TITAN VÀ NGUYÊN TỐ ĐẤT HIẾM ĐẾN TÍNH CHẤT MÀI MÒN, ĐỘ DAI VA ĐẬP CỦA GANG TRẮNG 13% CRÔM Chuyên ngành: Mã số: Kỹ thuật Vật liệu 62520309 LUẬN ÁN TIẾN SĨ KỸ THUẬT VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS. Lê Thị Chiều 2. PGS. TS. Đinh Quảng Năng LỜI CÁM ƠN Tôi xin chân thành cám ơn PGS. TS. Lê Thị Chiều và GS.TS Đinh Quảng Năng, những người Thày đã tận tình hướng dẫn, giúp đỡ, chỉ bảo và động viên tôi trong suốt quá trình thực hiện luận án. Tôi xin chân thành cám ơn Bộ môn Vật liệu và Công nghệ Đúc, Phòng thí nghiệm Vật liệu Kim loại, các Bộ môn khác thuộc Viện Khoa học và Kỹ thuật Vật liệu, Viện Đào tạo sau đại học đã tạo điều kiện để tôi có thể hoàn thành luận án. Tôi xin chân thành cám ơn Ban lãnh đạo Viện Khoa học và Kỹ thuật Vật liệu đã tạo điều kiện để tôi hoàn thành luận án. Xin cảm ơn các Anh, Chị, Các bạn đồng nghiệp tại Viện Khoa học và Kỹ thuật Vật liệu đặc biệt là Phòng thí nghiệm Công nghệ Vật liệu Kim loại và Phòng Thí nghiệm Kim Tương của Bộ môn Vật liệu học- Xử lý nhiệt và Bề mặt, đã giúp đỡ tôi rất nhiều trong việc hoàn thành phần thực nghiệm của luận án này. Tôi gửi lời biết ơn sâu sắc tới Công ty Đúc Thắng Lợi – Thành phố Nam Định đã tận tình tài trợ và giúp đỡ tôi rất nhiều trong việc hoàn thành phần thực nghiệm của luận án. Cuối cùng tôi xin gửi lời cảm ơn chân thành tới bạn bè, gia đình và người thân đã luôn ở bên, động viên và khích lệ tôi để tôi sớm hoàn thành luận án. LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả trong luận án là trung thực và chưa từng được ai công bố trong bất cứ một công trình nào khác. TÁC GIẢ Hoàng Thị Ngọc Quyên i MỤC LỤC Trang Trang phụ bìa Lời cảm ơn Lời cam đoan Mục lục Danh mục các bảng biểu và hình vẽ Danh mục các ký hiệu và chữ viết tắt Mở đầu Chương 1: Cơ sở lý thuyết và tổng quan về gang trắng crôm 1. 1. Lịch sử phát triển của hệ vật liệu chịu mài mòn gang trắng crôm 1. 2. Tổ chức đúc của gang trắng crôm 1.2.1. Giản đồ pha hệ Fe-Cr-C 1.2.2. Các loại cácbit trong gang trắng Crôm hợp kim với một số nguyên tố khác. 1.2.2.1. Phân loại cácbit 1.2.2.2. Tính chất cácbit trong hệ gang trắng crôm 1.2.2.3. Sự kết tinh của cácbit M7C3 1.2.3 Austenit trong gang trắng Crôm 1.2.3.1. Hình thái Austenit i V X 1 3 3 4 4 5 6 8 9 10 10 1.2.3.2. Các yếu tố ảnh hưởng đến hình thái của austenite sơ cấp 11 1.2.3.3. Ảnh hưởng của hình thái Austenit sơ cấp đến các khuyết tật của gang trắng 11 12 1.3 Sự đông đặc và kết tinh cùng tinh của gang trắng crôm cao 1.3.1. Nhiệt động học và động học của sự kết tinh của cùng tinh trong gang trắng 12 1.3.2. Phân tích sự đông đặc của hệ hợp kim Fe-Cr-C 12 1.3.3. Sự tiết ra cácbit cùng tinh 13 1.3.4. Sự tạo thành hạt cùng tinh 17 1.3.5. Sự biến đổi tổ chức cùng tinh của gang trắng crôm. 20 1.3.5.1. Điều chỉnh thành phần hóa học 21 1.3.5.2. Tăng tốc độ nguội 21 1.3.5.3. Sự tạo mầm kết tinh 21 21 1.3.5.4. Sự biến tính 1.4. Các yếu tố ảnh hưởng đến tổ chức và tính chất của gang trắng Crôm. 22 1.4.1. Ảnh hưởng của sự phân bố các nguyên tố trong gang trắng crôm cao. 22 1.4.2. Ảnh hưởng của quá trình chế tạo 23 ii 1.4.3. Ảnh hưởng của quá trình nhiệt luyện gang crôm. 24 1.4.3.1. Ảnh hưởng của nhiệt luyện đến tổ chức pha nền 24 1.4.3.2. Ảnh hưởng của nhiệt luyện đến hình thái cácbit: 24 24 1.4.3.3. Ảnh hưởng của nhiệt luyện đến độ cứng của hợp kim 1.5. Các yếu tố ảnh hưởng đến cơ tính của gang trắng crôm 25 1.5.1. Ảnh hưởng của hình thái, sự phân bố, kích thước các hạt cácbit đến quá trình 25 mòn trong điều kiện trượt có tải trọng của gang trắng crôm. 1.5.2. Ảnh hưởng của tổ chức pha nền tới sự hình thành vết nứt của gang trắng 26 crôm khi chịu tác động mài mòn và va đập đồng thời. 27 1.6. Ảnh hưởng của Titan đến gang trắng crôm. 1.7. Ảnh hưởng của các nguyên tố đất hiếm đến gang trắng crôm 29 1.8. Các vấn đề cần hoàn thiện, phát triển và định hướng nghiên cứu của đề tài 33 Chương 2: Chế tạo mẫu và phương pháp nghiên cứu gang trắng 13% crôm 34 2.1. Chế tạo mẫu nghiên cứu 34 2.2. Nhiệt luyện mẫu nghiên cứu 36 2.3. Phương pháp nghiên cứu 37 2.3.1. Xác định thành phần hóa học 37 2.3.2. Xác định thành phần pha 37 2.3.3 Xác định sự phân bố không gian của các nguyên tố hóa học (phương pháp 38 mapping) 2.3.4. Xác định độ cứng 39 2.3.4.1. Xác định độ cứng thô đại Rockwell 39 2.3.4.2. Xác định độ cứng tế vi 39 2.3.5. Nghiên cứu độ cùng tinh các mẫu nghiên cứu 40 2.3.6. Nghiên cứu tổ chức 40 41 2.3.7. Nghiên cứu, đánh giá quá trình mài mòn 2.3.8. Nghiên cứu quá trình phá hủy mẫu do va đập 41 2.3.9. Xác định tổng hàm lượng cácbit cùng tinh 42 Chương 3: Nghiên cứu quá trình phá hủy của gang trắng 13% crôm khi làm việc 43 trong môi trường trượt và va đập tải trọng cao 43 3.1. Đặc điểm của hệ gang trắng 13% crôm 3.2 Quá trình mòn của gang trắng 13% crôm khi làm việc trong môi trường trượt có tải 45 iii 3.3. Quá trình phá hủy của GT 13% crôm khi làm việc trong môi trường va đập cao 3.3.1. Mô phỏng quá trình chịu lực của bi chế tạo từ gang trắng crôm 48 48 3.3.1.1. Bài toán mô phỏng 48 3.3.1.2 Kết quả của quá trình mô phỏng sự va đập của bi 50 3.3.2. Sự phát triển vết nứt và sự gãy vỡ, bong tróc của gang trắng 13% crôm 52 Chương 4: Nghiên cứu ảnh hưởng của titan, các nguyên tố đất hiếm đến hệ gang 58 13% Cr 58 4.1. Ảnh hưởng Ti 4.1.1. Sự tạo thành TiC từ gang lỏng và fero tiatan 58 4.1.2. Ảnh hưởng của titan đến tổ chức cácbit cùng tinh của gang trắng 13% crôm 60 4.1.3. Ảnh hưởng của Ti đến thể tích cacsbit cùng tinh của gang trắng 13% Cr 4.1.4. Ảnh hưởng của Titan đến độ cứng gang crôm 4.1.5. Ảnh hưởng của titan đến độ chịu mòn 62 63 64 4.1.6. Ảnh hưởng của Titan đến độ dai va đập của gang crôm 13% 66 4.2. Ảnh hưởng của các nguyên tố đất hiếm đến tổ chức cùng tinh, cơ tính của gang 67 trắng crôm 13% 4.2.1. Sự kết tinh cùng tinh và sự phân bố của các nguyên tố đất hiếm trong hệ 67 gang 13% crôm 67 4.2.1.1 Sự kết tinh cùng tinh của gang trắng 13% crôm 4.2.1.2 Sự phân bố của các nguyên tố đất hiếm trong gang trắng crôm 68 4.2.2. Ảnh hưởng của các nguyên tố đất hiếm đến tổ chức cùng tinh, đến thành 71 phần cùng tinh và cơ tính của gang trắng 13% crôm 4.2.2.1 Ảnh hưởng của các nguyên tố đất hiếm tới tổ chức cùng tinh của 71 gang trắng 13% crôm 74 4.2.2.2 Ảnh hưởng của RE đến độ chịu mòn của gang trắng 13% crôm 4.2.2.3. Ảnh hưởng của RE đến độ dai va đập 75 4.3. Ảnh hưởng đồng thời của Ti và RE đến sự phân bố, hình thái, kích thước cácbit 76 của gang trắng 13% crôm 76 4.3.1. Sự có mặt của Ti và RE trong các hợp kim nhóm 3 4.3.2. Ảnh hưởng đồng thời của Ti và RE đến tổ chức gang crôm nhóm 3 79 4.3.3. Ảnh hưởng đồng thời của titan và đất hiếm đến thể tích cácbit cùng tinh 82 4.3.4. Ảnh hưởng đồng thời của Ti và RE đến độ cứng của các hợp kim nhóm 3 82 iv 4.3.5. Ảnh hưởng đồng thời của Ti và RE đến độ mài mòn 83 4.3.6. Ảnh hưởng đồng thời của Ti và RE đến độ dai va đập 84 Chương 5: Ảnh hưởng của quá trình nhiệt luyện đến tổ chức, cơ tính của hệ gang 87 13% crôm 5.1. Ảnh hưởng của quá trình nhiệt luyện tới tổ chức pha nền trong gang crôm nghiên 87 cứu 5.2 Ảnh hưởng của quá trình nhiệt luyện đến thể tích cácbit trong hệ hợp kim nghiên 89 cứu 90 5.3 Ảnh hưởng của quá trình nhiệt luyện đến độ cứng hệ hợp kim nghiên cứu 5.4 Ảnh hưởng của quá trình nhiệt luyện đến khả năng chịu mòn của hệ gang 13% 91 crôm nghiên cứu 92 5.5 Ảnh hưởng của quá trình nhiệt luyện đến độ dai va đập của gang crôm 13% Kết luận chung 95 Danh mục các công trình khoa học liên quan đến luận án đã công bố 96 Tài liệu tham khảo 97 v DANH MỤC CÁC BẢNG, HÌNH VẼ, ĐỒ THỊ 1. Danh mục các bảng Bảng 1.1 : Bảng 1.2 Bảng 1.3: Bảng 1.4: Bảng 1.5: Bảng 1.6: Bảng 1.7: Bảng 2.1: Bảng 2.2: Bảng 4.1: Bảng 5.1: Bảng 5.2: Bảng 5.3: Bảng 5.4 2. Các hằng số thông số mạng của cácbit Cr7C3 Các thông số đặc trưng của cácbit So sánh các thông số bề mặt lỏng của hai hệ Fe-Cr-C giả ổn định Nhiệt độ nóng chảy của các nguyên tố RE và REO Năng lượng tự do của các phản ứng hóa học giữa các nguyên tố đất hiếm với Oxy và lưu huỳnh Mối quan hệ giữa các thông số mạng của Ce2O2S với ɣ -Fe Hệ số lệch δ giữa các mặt xếp chặt của oxyt đất hiếm Ce203 , Ce202S và pha ɣ-Fe. Thành phần hóa học các mẫu nghiên cứu Hệ số tác động của nguyên tố hợp kim với Cácbon và titan Các thông số mạng tương ứng giữa (110)TiC và (010)M7C3 [70] Thành phần thể tích cácbit các mẫu đúc và nhiệt luyện tương ứng Độ cứng thô đại, độ cứng tế vi nền của các mẫu đúc và nhiệt luyện tương ứng Khối lượng hao mòn của các hợp kim nghiên cứu ở trạng thái đúc và nhiệt luyện Độ dai va đập các hợp kim ở trạng thái đúc và nhiệt luyện tương ứng Danh mục các hình và đồ thị Hình 1.1: Hình 1.2: Hình 1.3: Hình 1.4: Hình 1.5: Hình 1.6: Hình 1.7: Hình 1.8: Hình 1.9: Hình 1.10: Hình 1.11: Hình 1.12: Hình 1.13: Hình 1.14: Hình 1.15: Hình 1.16: Hình 1.17: Mặt lỏng của giản đồ pha Fe-Cr-C Mặt lỏng của giản đồ pha Fe-Cr-C của Jackson Cấu trúc tinh thể NaCl Cấu trúc tinh thể của cementit Cấu trúc dạng chuỗi của tinh thể cementit Mối quan hệ giữa nguyên tử C và các nguyên tử kim loại bên cạnh C trong ô mạng tinh thể Cr23C6 Hình thái của cácbit M7C3 6 hình thái của austenit nhánh cây tồn tại trong gang trắng Ảnh hưởng của nhiệt độ đến hình thái nhánh cây austenit Ảnh hưởng giữa hình thái nhánh cây và độ nứt, độ co ngót So sánh năng lượng tự do của quá trình tạo thành hai giai đoạn cùng tinh So sánh bề mặt lỏng của hai giản đồ pha hệ Fe-Cr-C giả ổn định Mối quan hệ giữa hàm lượng Cr và C tới các vị trị trước cùng tinh, cùng tinh, sau cùng tinh Tổ chức ở trạng thái rắn của gang trắng crôm cao Ảnh hưởng của C và Cr đến thể tích cácbit cùng tinh Các loại cácbit cùng tinh trong gang crôm cao Đường phân tích nhiệt DTA của gang crôm cao trước và sau cùng tinh vi Hình 1.18: Hình 1.19: Hình 1.20: Hình 1.21: Hình 1.22: Hình 1.23: Hình 1.24: Hình 1.25: Hình 1.26: Hình 1.27: Hình 1.28: Hình 1.29: Hình 1.30: Hình 2.1: Hình 2.2: Hình 2.3: Hình 2.4: Hình 2.5: Hình 2.6: Hình 2.7: Hình 2.8: Hình 2.9 Hình 2.10 Hình 3.1: Hình 3.2: Hình 3.3: Hình 3.4: Hình 3.5: Hình 3.6: Hình 3.7: Hình 3.8: Hình 3.9: Hình 3.10: Hình 3.11: Ảnh hưởng của hàm lượng crôm đến sự không đồng nhất của cácbit cùng tinh Ảnh hưởng của Mo đến đường DTA của gang Crôm với w (Cr) = 20% Hình dạng của các khối cùng tinh (M7C3+austenite) của gang trắng trước cùng tinh Cấu trúc một khối cùng tinh của gang trắng Crôm cao trước cùng tinh Các thông số về kích thước của khối cùng tinh (mặt cắt ngang) Ảnh hưởng của hàm lượng Crôm đến kích thước của các khối cùng tinh Ảnh hưởng của Cr đến w(%Cr) theo các pha khác nhau trong gang trắng crôm, w(C) = 2.0% Ảnh hưởng của C đến w(% Cr) theo các pha khác nhau trong gang trắng crôm, w(Cr) = 15% Giản đồ pha hệ Fe –13%Cr-C –0,5% Ti Tỷ lệ khối lượng của các pha rắn trong hệ Fe-C-Cr-Ti Hình ảnh cấu trúc tinh thể của TiC và sự tương xứng của 2 mặt: (110)TiC và cácbit M7C3 Sự lớn lên của M7C3 khi không có chất biến tính (I) và khi có chất biến tính (2) Mối quan hệ hình học tinh thể của oxyt Ce2O2S và cácbit M7C3 Quy trình đúc mẫu cháy Quá trình điền đầy kim loại vào khuôn đúc trong mẫu tự thiêu Quy trình nhiệt luyện Máy phân tích Rơnghen X’Pert Pro – Philip Nguyên lý phát xạ tia X đặc trưng khi bắn phá (ion hóa) nguyên tử bởi điện tử Thiết bị xác định độ cứng thô đại Mitutoyo Máy đánh bóng Struers – Labopol 25 Máy hiển vi quang học Leica 4000 Thiết bị đo mài mòn Tribotech Mẫu thử nghiệm và thiết bị thử va đập Chappy Hình thái cácbit trong gang trắng 13% crôm Phổ EDS các các vị trí khuyết tật: (a)- vị trí nền austenite, (b)-tại vị trí cácbit chứa khuyết tật ( các vị trí phân tích đều trên cùng một mẫu) Hình thái tổ chức hệ hợp kim nghiên cứu trước và sau nhiệt luyện Hình ảnh hiển vi điện tử chụp bề mặt mòn của gang 13% crôm (mẫu 11) a: mẫu đúc b: mẫu sau nhiệt luyện Hiển vi quang học chụp bề mặt các cácbit mòn của gang trắng 13% crôm Bề mặt mòn của các mẫu gang crôm nghiên cứu với sự phân bố cácbit mịn dần Hình ảnh mô phỏng quá trình thử nghiệm va đập bi nghiền Mô hình hình học của bài toán mô phỏng quá trình va đập của bi Sự phân bố ứng suất quá trình va đập bi nghiền Trường phân bố ứng suất của quá trình va đập bi nghiền Bề mặt các mẫu gang crôm khi chưa có tác động va đập vii Hình 3.12: Hình 3.13: Hình 3.14: Hình 3.15: Hình 4.1: Hình 4.2: Hình 4.3: Hình 4.4: Hình 4.5: Hình 4.6: Hình 4.7: Hình 4.8: Hình 4.9: Hình 4.10: Hình 4.11: Hình 4.12: Hình 4.13: Hình 4.14: Hình 4.15: Hình 4.16: Hình 4.17: Hình 4.18: Hình 4.19: Hình 4.20: Hiển vi quang học (a), (X1000, tẩm thực sâu ), hiển vi điện tử thứ cấp (b) chụp bề mặt mẫu 10 ở trạng thái đúc Bề mặt cácbit của gang trắng 13% crôm khi chịu va đập(các mẫu sau nhiệt luyện, hiển vi quang học, X1000) Bề mặt cácbit bị phá hủy của gang crôm 13% khi chịu va đập (hiển vi quang học, X1000) Bề mặt phá hủy 3 mẫu nhóm 3 (Ảnh hiển vi điện tử thứ cấp SEM) Giản đồ nhiễu xạ tia X của mẫu số 1 ở trạng thái đúc (mẫu có 0,21%Ti) Hiển vi điện tử, ảnh phân tích EDS (tại vị trí hạt nhỏ) ghi nhận sự xuất hiện các hạt nhỏ màu đen trên nền là cácbit TiC của mẫu số 1 ( mẫu có 0,21% Ti ) Hiển vi quang học chụp bề mặt mẫu số No.1(0,23% Ti) và No.4 (1,02% Ti), X 1000, tẩm thực mẫu ăn mòn cácbit, các mẫu đều ở trạng thái đúc Hiển vi quang học chụp bề mặt các mẫu nhóm 1 theo chiều tăng lên của Ti (Tăng dần từ 0,21% đến 1,02% ở mẫu 4), X200, tẩm thực màu ăn mòn cácbit, các mẫu ở trạng thái đúc Hiển vi quang học chụp bề mặt các mẫu nhóm 1 theo chiều tăng lên của Ti, X500, tẩm thực màu ăn mòn cácbit, các mẫu đều sau nhiệt luyện Thể tích cácbit trong các hợp kim nhóm 1 theo sự tăng lên của hàm lượng Ti Độ cứng thô đại các hợp kim nhóm 1 ứng với hàm lượng titan tăng từ 0,2% đến 1,02%; (1): mẫu đúc, (2): mẫu nhiệt luyện Độ cứng tế vi pha nền các hợp kim nhóm 1 ứng với hàm lượng titan tăng từ 0,2% đến 1,02%; (1): mẫu đúc, (2): mẫu nhiệt luyện Khối lượng hao mòn của 4 mẫu đúc nhóm 1 theo lượng tăng dần của titan (các mẫu được mài trên cùng một chế độ: tốc độ trượt, khoảng cách trượt, cùng vật liệu mài ) Khối lượng hao mòn của 4 mẫu nhiệt luyện nhóm 1 theo lượng tăng dần titan, (các mẫu được mài trên cùng một chế độ: tốc độ trượt, khoảng cách trượt, cùng vật liệu mài ) Độ dai va đập của các mẫu nhóm 1 ( các mẫu đúc và nhiệt luyện) Ảnh hiển vi điện tử mô tả sự kết tinh của gang crôm 13% : austenit sơ cấp và cùng tinh M7C3 Sự phân bố cácbit M7C3 cùng tinh hoàn chỉnh ở khi vực bên trong các nhánh cây [6] Giản đồ nhiễu xạ tia X của mẫu số 4 ở trạng thái đúc Hiển vi quang học chỉ ra sự kết tinh của các cácbit M7C3 cùng tinh, mẫu 6, X1000 EDS cácbit khu vực trung tâm cùng tinh (a), khu vực xa trung tâm (b) mẫu 6 Cácbit M7C3 thô nằm xa trung tâm cùng tinh, mẫu sau đúc Phổ EDS tại vị trí pha nền của mẫu No.7, mẫu số 9 Cácbit M7C3 thô nằm xa trung tâm cùng tinh, mẫu sau đúc Ảnh hiển vi quang học chụp bề mặt các mẫu nhóm 2 theo chiều tăng của đất hiếm viii Hình 4.21: Hình 4.22: Hình 4.23: Hình 4.24: Hình 4.25: Hình 4.26: Hình 4.27: Hình 4.28: Hình 4.29: Hình 4.30: Hình 4.31: Hình 4.32: Hình 4.33: Hình 4.34: Hình 4.35: Hình 4.36: Hình 4.37: Hình 4.38: Hình 5.1: Hình 5.2: Hình 5.3: (X200, tẩm thực màu ăm mòn cácbit) Cácbit M7C3 thô thay đổi khi tăng hàm lượng đất hiếm (từ 0,1% RE ở mẫu No.5 đến 0,8% RE ở mẫu No.8), X 1000, tẩm thực ăn mòn cácbit Khối lượng hao mòn các mẫu đúc nhóm 2 theo sự tăng lên của hàm lượng RE Khối lượng hao mòn các mẫu nhiệt luyện nhóm 2 theo sự tăng lên của hàm lượng RE Độ dai va đập các mẫu nhóm 2 Giản đồ nhiễu xạ tia X mẫu số 9 Hình ảnh phân tích mapping mẫu số No.11 Hình ảnh hiển vi điện tử thứ cấp mẫu số 10 (Mẫu có 0,23%Ti + 0,2%RE) Kết quả phân tích EDS nền austenit nhánh cây của mẫu No.10 (a) và No.11(b) và No.12 (c) ( Tại vị trí ranh giới cácbit/nền) Mối quan hệ giữa mặt tinh thể của ɣ-Fe và oxyt đất hiếm LaAlO3 a):Hiển vi quang học chỉ ra sự có mặt TiC trên các mẫu M7C3, mẫu số 11 (b): Mối quan hệ giữa mặt tinh thể của TiC và M7C3 Ảnh tổ chức tế vi của các 3 mẫu nhóm 4 ở trạng thái đúc, X500 Ảnh tổ chức tế vi của các 3 mẫu nhóm 3 ở trạng thái nhiệt luyện sự tăng lên của hàm lượng titan và đất hiếm, X500 Thể tích cácbit cùng tinh trong các hợp kim nhóm 3 Độ cứng thô đại của các hợp kim nhóm 3 theo sự tăng lên của Ti và RE Độ cứng tế vi (HV100) của nền các mẫu nhóm 3 Bảng đồ thị đo khối lượng hao mòn với 3 mẫu ở trạng thái đúc với quãng đường 2km dưới các tải khác nhau Bảng đồ thị đo khối lượng hao mòn với 3 mẫu nhiệt luyện với quãng đường 2km dưới các tải khác nhau Độ dai va đập các hợp kim nhóm 3 ở trạng thái đúc và nhiệt luyện. Hiển vi quang học chụp bề mặt các mẫu nhóm 1 (hình 5.1a) và nhóm 3(hình 5.1 b) Hiển vi quang học chụp bề mặt các mẫu nhóm 3 sau nhiệt luyện (hình 4. a , sử dụng dung dịch tẩm thực VILLA’S, hình 4. b, tẩm thực màu ăn mòn cácbit), X1000 Sự tiết cácbit thứ cấp của 3 mẫu đặc trưng cho 3 nhóm gang crôm 13% nghiên cứu sau nhiệt luyện, X1000, tẩm thực ăn mòn cácbit ix DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT 1. Danh mục các chữ viết tắt Cr: Nguyên tố crôm C: Nguyên tố cácbon GTCr: Gang trắng crôm Nguyên tố đất hiếm RE: REO: Oxyt đất hiếm EDS: Phổ phân tán tia X theo năng lượng(Energy Dispersive Spectroscopy SEM: Hiển vi điện tử quét (Scanning Electron Microscope) XRD: Nhiễu xạ tia X SC: Cácbit thứ cấp Au: Austenit M: Mactenxit 2. Các ký hiệu bcc: Lập phương tâm khối fcc: Lập phương tâm mặt L: Pha lỏng α: Pha ferit ɣ: Pha austenit : ΔG: Hệ số chênh lệch giữa hai loại mạng tinh thể Năng lượng tự do (J/mol) θ: Góc giữa hai mặt tinh thể σxx: Ứng suất cắt σzz: Ứng suất nén τxz: Ứng suất cắt HV: Độ cứng Vicke (kg/mm2) HRC: rc: Độ cứng Rockwell theo thang C Bán kính nguyên tử đất hiếm w(C): Hàm lượng cácbon CE: Cácbon đương lượng Av: Công va đập (J/mm2) Ae: Năng lượng biến dạng x Aw: Động năng D: Hệ số khuếch tán Q: Năng lượng khuếch tán ΔT: Độ quá nguội T: Nhiệt độ 1 MỞ ĐẦU Gang crôm cao được biết tới như một vật liệu chịu mòn tốt và được ứng dụng rộng rãi trong các nghành khai thác khoáng sản, nghành công nghiệp xi măng, công nghiệp luyện kim. Tính chịu mòn của hệ hợp kim này có được là do sự hiện diện của các cácbit cứng trên nền mềm austenit/mactenxit. Với hàm lượng crôm thấp, gang trắng crom có cácbit M3C dạng lưới. Khi hàm lượng crôm vượt quá 12% thì các cácbit M3C dạng lưới liên kết chuyển sang dạng cácbit M7C3 rời rạc có dạng que hoặc dạng tấm. Các cácbit M7C3 có độ bền cao hơn hẳn các cácbit M3C, vì thế gang trắng với hàm lượng crôm vượt quá 12% có độ dai va đập, độ chịu mòn cao hơn hẳn so với gang có hàm lượng crôm thấp. Cácbit trong gang crôm cao đóng vai trò chính trong quá trình chống lại sự mài mòn. Có rất nhiều nghiên cứu xoay quanh vấn đề làm thế nào để tăng cơ tính cho hệ gang crôm cao như: nghiên cứu quá trình kết tinh của gang crôm cao, nghiên cứu các cơ chế nứt vỡ, bong tróc khi chịu va đập và mài mòn, nghiên cứu thay đổi hình thái cácbit, nghiên cứu sự chuyển biến của pha nền khi nhiệt luyện. Sự hao mòn khối lượng do sự mài mòn gây ra chỉ đơn giản phụ thuộc vào khả năng chịu mài mòn của vật liệu, nhưng sự giảm khối lượng gây ra bởi bong tróc hoặc vỡ lại phụ thuộc chủ yếu vào độ dai va đập của vật liệu. Thực tế là sự giảm khối lượng gây ra bởi bong tróc và vỡ cao hơn nhiều so gây ra bởi sự mài mòn. Vì vậy rất nhiều nhà vật liệu học đã tập trung nghiên cứu tăng độ dai va đập, tăng tuổi thọ làm việc loại vật liệu này. Hệ gang crôm cao ở Việt Nam phát triển rất mạnh trong những năm gần đây, ứng dụng nhiều trong các nghành khai thác xi măng và khoáng sản. Tuy nhiên các nhà sản xuất vẫn còn đang lúng túng khi sản phẩm có chất lượng thấp, mài mòn nhanh, nứt vỡ bong tróc nhiều, tuổi thọ làm việc thấp. Với mong muốn nâng cao chất lượng, tuổi thọ làm việc của hệ gang crôm cao, đề tài của luận án được lựa chọn với tên gọi “Nghiên cứu ảnh hưởng của Ti và nguyên tố đất hiếm đến tính chất mài mòn, độ dai va đập của gang trắng 13% crôm”. Mục đích của đề tài luận án: Nghiên cứu ảnh hưởng của Ti và các nguyên tố có trong đất hiếm tới các hình thái tổ chức của gang crôm cao nhằm thay đổi tổ chức, sự phân bố, giảm kích thước hạt pha nền, pha cácbit M7C3, kích thước vùng cùng tinh với mục đích tăng cơ tính, tăng tuổi thọ làm việc cho hệ gang crôm 13%. Ý nghĩa khoa học của đề tài luận án: Làm sáng tỏ cơ chế phá hủy gang crôm cao và tác dụng của Ti và đất hiếm đến khả năng chống phá hủy của gang crôm. Đặc điểm chung của gang crôm là cứng và giòn, độ dẻo dai thấp, vì vậy khi sử dụng gang crôm vào môi trường mòn và va đập cao thì gang có tuổi thọ làm việc không cao. Việc đưa titan và các nguyên tố có trong đất hiếm vào gang làm tăng tính dẻo dai, tăng khả năng chịu mòn của gang. Ttitan và đất hiếm dễ dàng đưa vào gang lỏng. Khi được đưa vào gang crôm, Ti kết hợp với cacbon rất mạnh, tạo raTiC. Trong quá trình kết tinh của gang, TiC là cácbit kết tinh đầu tiên, trước cácbit crôm, các cácbit sắt, bên cạnh đó TiC có thể làm tâm mầm cho các pha cácbit M7C3. Các nguyên tố đất hiếm có điểm chảy thấp, có ái lực mạnh với oxy, lưu huỳnh, vì thế trong gang lỏng chúng có tác dụng làm sạch oxy và lưu huỳnh, tạo ra các oxyt đất hiếm. Các oxyt đất hiếm có nhiệt độ nóng chảy cao, làm tâm dị thể cho các pha cácbit M7C3 và pha austenit sơ cấp. Nhờ đó tổ chức gang crôm khi có thêm đất hiếm trở nên nhỏ mịn đi rất nhiều. 2 Phương pháp nghiên cứu: - Tập hợp tài liệu về gang hợp kim trong và ngoài nước - Sử dụng các phương pháp nghiên cứu như phương pháp tổng hợp, đánh giá phân tích, phương pháp chế tạo mẫu đúc, các phương pháp xử lý kết quả thực nghiệm… Nội dung và bố cục của luận án: Ngoài phần mở đầu và kết luận, nội dung của luận án được trình bày trong 5 chương: Chương 1: Cơ sở lý thuyết và tổng quan về gang trắng crôm. Chương 2: Chế tạo mẫu và phương pháp nghiên cứu gang trắng 13% crôm Chương 3: Nghiên cứu quá trình phá hủy của gang trắng crôm khi làm việc trong môi trường mài mòn và va đập tải trọng cao Chương 4: Nghiên cứu ảnh hưởng của titan, nguyên tố đất hiếm và hỗn hợp (titan + đất hiếm) đến tổ chức, cơ tính của gang trắng 13% crôm. Chương 5: Nghiên cứu ảnh hưởng của quá trình nhiệt luyện đến tổ chức, cơ tính của hệ hợp kim gang trắng 13% crôm 3 CHƯƠNG 1: CƠ SỞ LÝ THUYẾT VÀ TỔNG QUAN VỀ GANG TRẮNG CRÔM 1. 1 Lịch sử phát triển của hệ vật liệu chịu mài mòn gang trắng crôm Gang trắng được ứng dụng rất rộng rãi trong các ngành công nghiệp khoáng sản, điện, công nghiệp khai thác mỏ. Đặc biệt trong ngành công nghiệp xi măng, gang trắng là vật liệu chịu mài mòn hầu như không thể thiếu được. Gang trắng được được dùng để chể tạo các tấm lót trong máy nghiền xi măng, bi nghiền đá, bi nghiền clinke.., nói chung là các chi tiết chịu mài mòn, va đập cao. Vì vậy để đáp ứng yêu cầu làm việc đòi hỏi các chi tiết phải có độ cứng, tính chống mài mòn, độ dai va đập tốt. Trong khi thép là vật liệu có độ dai cao nhưng tính chống mài mòn thấp, thì gang trắng là loại vật liệu có tính chịu mài mòn tốt hơn rất nhiều. Trong quá trình phát triển hệ gang trắng, sự phát hiện ra hệ gang trắng hợp kim crôm ở Châu Âu vào những năm 1970 được coi là một điểm sáng nổi bật. Gang trắng crôm hay còn gọi là hệ hợp kim Fe-Cr-C có thành phần crôm lên đến 40% và thành phần cácbon có thể đến 4%. Gang trắng có thành phần Cr lớn hơn 10% được gọi là gang trắng crôm cao. Trong tổ chức ở trạng thái đúc của gang trắng crôm có một số lượng lớn cácbit làm cho các gang này rất cứng nhưng giòn, rất khó gia công. Gang crôm cao có tính chống mài mòn, độ dai va đập , tính chống ăn mòn tốt. Trong môi trường axit, gang có thành phần crôm khoảng 28% có tính chống ăn mòn tốt hơn tính chống mài mòn của gang có thành phần (Cr) = 15%. Khi tăng hàm lượng crôm và giảm hàm lượng cácbon, có thể tăng được khả năng chống ăn mòn cho gang. Trong gang trắng crôm, crôm chỉ hoà tan trong sắt một lượng nhỏ, phần lớn còn lại kết hợp với cácbon tạo ra các loại cácbít có tính chất khác nhau tùy thuộc vào thành phần và hàm lượng. Khi hàm lượng crôm nhỏ hơn 7% thì tạo ra cácbit M3C liên kết dạng lưới, có độ bền thấp. Hàm lượng crôm lớn hơn 11% thì tạo ra cácbit M7C3 hình thái thay đổi, phân bố rời rạc, ít liên tục dẫn đến độ bền cao hơn gang có 7% crôm. Cơ tính của loại vật liệu này đạt giá trị cao nhất khi hàm lượng crôm từ 12 -19%. Hàm lượng crôm vượt quá 25%, hình thành cácbit sau cùng tinh có hình dạng hình kim thô to làm cơ tính của hợp kim giảm đi rõ rệt. Tuy nhiên khi tăng hàm lượng crôm, khả năng chống ăn mòn và chống oxy hóa tăng. Hầu hết gang côm được sử dụng nhiều hiện nay có hàm lượng crôm trong khoảng 11% - 23% và tỷ lệ Cr/C trong khoảng từ 4 – 8. Có rất nhiều nghiên cứu về gang trắng crôm cao trong hơn bốn thập kỷ qua. Các nghiên cứu tập trung nhất là các vấn đề: hợp kim hóa gang trắng crôm với các nguyên tố như Ti, Mn, Mg, Ni, Cu, Al, biến đổi tổ chức gang trắng bằng các nguyên tố đất hiếm, quá trình xử lý nhiệt, nghiên cứu ảnh hưởng của các yếu tố đó tới tổ chức đông đặc, nghiên cứu số lượng, loại cácbit, sự thay đổi của nền….Tất cả các nghiên cứu đó đều có mục đích tìm hiểu sự thay đổi tổ chức dẫn đến thay đổi tính chất, mà chủ yếu là cơ tính của vật liệu, nhất là khả năng tăng độ chịu mòn, ăn mòn, độ dai va đập. Nhiều nghiên cứu đã được công bố và đã có những đóng góp đáng kể làm cải thiện đáng kể tính chống mài mòn và độ dai va đập, làm cho loại vật liệu này có tuổi thọ rất cao khi làm việc trong môi trường cần tải trọng lớn và cần tính bền nhiệt, chống ăn mòn. Từ những năm 1990 cho đến nay, nước ta đã sản xuất gang - thép hợp kim crôm, trong đó vật liệu chống mài mòn và chống va đập tập trung chủ yếu vào hệ gang crôm, còn thép crôm chủ yếu phục vụ cho các sản phẩm chống ăn mòn. 4 Viện Khoa học Vật liệu trực thuộc Viện Khoa học Việt Nam đã tiến hành hợp kim hoá với hợp kim hệ Fe-Cr-C với hàm lượng crôm khá cao thậm chí còn hợp kim hóa với một số nguyên tố hợp kim đắt tiền. Công ty Cơ khí Đông Anh trong nhiều năm qua hàng năm xuất tới 6000-7000 tấn vật liệu chịu mài mòn từ gang trắng crôm cao với lượng crôm từ 13-26%. Nhà máy Đúc Thắng Lợi cũng đã nâng cao chất lượng sản phẩm bằng cách đưa vào gang crôm một lượng nhỏ các nguyên tố hợp kim hóa và biến tính. Tuy là loại vật liệu được nghiên cứu và phát triển rất lâu nhưng hệ gang crôm này vẫn đang được quan tâm nghiên cứu tại rất nhiều phòng thí nghiệm và tại nhiều cơ sở sản xuất với mục đích tăng tuổi thọ làm việc và giảm thiểu lượng các nguyên tố hợp kim nhằm tiết kiệm nguồn nguyên liệu về kim loại. Các hướng nghiên cứu hệ gang crôm tập trung chủ yếu vào nghiên cứu sản xuất để tăng tuổi thọ làm việc và giảm giá thành cho loại sản phẩm này. Tuy hệ gang 13% crôm còn chưa được quan tâm nhiều trên thế giới nhưng lại được quan tâm nhiều tại Việt Nam bởi đặc điểm kinh tế. Luận án tìm cách nghiên cứu các yếu tố ảnh hưởng đến quá trình phá hủy gang crôm khi làm việc trong môi trường mài mòn và va đập, qua đó tìm kiếm các giải pháp nâng cao cơ tính của hệ gang crôm bằng cách sử dụng Ti và đất hiếm nhằm thay đổi tổ chức, sự phân bố cácbit, giảm kích thước các hạt cácbit để tăng tuổi thọ làm việc cho gang trắng crôm nói chung và cho hệ gang 13% crôm nói riêng. 1. 2 Tổ chức đúc của gang trắng crôm 1.2.1 Giản đồ pha hệ Fe-Cr-C Hàm lượng Crôm (% ) Tác giả Thorpe và Chicco [60] năm 1985 đã biểu diễn vị trí đường rắn trên mặt lỏng góc giàu sắt trên hình 1.1: Hàm lượng Cacbon (% ) Hình 1.1: Mặt lỏng của giản đồ pha Fe-Cr-C [60] Tóm tắt sơ lược các phản ứng tại một số nhiệt độ khác nhau như sau: - Điểm U1 trên giản đồ có phản ứng ứng xảy ra ở nhiệt độ 12890C với thành phần Crôm > 30% , 3% C như sau: L + α- Fe γ + M7 C3 [1.1] 0 - Điểm U2 trên giản đồ (1183 C) có phản ứng với thành phần crôm <10%, %C>4%: L + M7 C 3 γ + M3 C [1.2] 5 Hàm lượng Crôm (% ) - Đường U1U2 trên giản đồ xảy ra trong khoảng nhiệt độ từ 1183 đến 12890C và với thành phần crôm khỏang 10% -30% là đường cùng tinh có phản ứng như sau: L γ + M7C3 [1.3] Hầu hết các nhà nghiên cứu về gang trắng crôm đều sử dụng giản đồ pha của Jackson [74] (hình 1.2). Vùng ( + M7C3) bị đường cùng tinh cắt ra thành hai phần. Phần bên trái đường cùng tinh là gang trắng crôm trước cùng tinh, phần bên phải là gang trắng crôm sau cùng tinh. Hàm lượng Cacbon (% ) Hình 1.2: Mặt lỏng của giản đồ pha Fe-Cr-C của Jackson [74] Trong gang trắng, crôm là một nguyên tố tạo cácbit mạnh, tỷ lệ giữa crôm với cacbon (Cr/C) và hàm lượng cácbon sẽ quyết định đến sự hình thành loại cácbit, từ đó quyết định cơ tính của gang. Khi tỷ lệ giữa Cr/C thấp (<3,5) dễ hình thành cacbit dạng M3C có độ cứng và độ bền thấp do vậy gang có tính bền và tính chịu mài mòn kém. Khi tỷ lệ giữa Cr/C > 10,2 dễ hình thành ra cácbit M23C6, cacbit này dễ phân huỷ trong quá trình nhiệt luyện. Cácbit cho độ bền, cơ tính và mài mòn tương đối cao là cácbit M7C3. Vì vậy để đảm bảo gang có cơ tính tổng hợp cao người ta chọn gang có thành phần sao cho tỷ lệ Cr/C nằm trong khoảng 3,5-10,2. Khi tăng hàm lượng cacbon, độ cứng của gang tăng nhưng độ chịu nhiệt giảm. Mặt khác khi tăng hàm lượng C thì nhiệt độ đường lỏng cũng giảm. Ví dụ, nhiệt độ đường lỏng giảm xuống từ 14000C đến 13500C khi lượng cacbon tăng từ 1,5% đến 2% . Hàm lượng cacbon trong gang trắng crôm thường trong khoảng 2,14 - 4,3%. 1.2.2 Các loại cácbit trong gang trắng crôm hợp kim với một số nguyên tố khác. Gang crôm có thể được hợp kim hóa bằng các nguyên tố có xu hướng tạo cácbit nhằm tăng cơ tính, độ bền, thậm chí có thể làm thay đổi cấu trúc và hình dạng cácbit crôm. Các nguyên tố tạo cácbit là các nguyên tố như Fe, Mn, Cr, W, Pt, V, Nb, Ti… Xu hướng tạo thành cácbit có mối quan hệ với tình trạng thiếu điện tử của lớp vỏ d của nguyên tố. Các nguyên tố có lớp d chưa được điền đầy có khả năng tạo cácbit mạnh hơn và tạo ra các cácbit ổn định hơn. Các nguyên tử của các nguyên tố kể trên có nhiều chỗ trống ở lớp điện tử d. Khả năng tạo cácbit giảm dần theo thứ tự: Ti, Nb, Zr, V, Mo, W, Cr và Mn (Fe). Mạng tinh thể của các loại cácbit có dạng cấu trúc xếp chặt, bao gồm mạng kim loại với nguyên tử các bon xen kẽ và thường khác xa với mạng tinh thể của kim loại cơ sở. 6 Cấu trúc mạng của chúng có thể là một trong các loại sau: mạng tâm mặt, mạng tâm diện, mạng lục giác xếp chặt hoặc tổng hợp các loại mạng trên. Nếu lỗ trống trong mạng tinh thể của nguyên tử đủ lớn để chứa nguyên tử cácbon thì một cấu trúc xếp chặt đơn giản được tạo thành; tỷ lệ giữa bán kính của nguyên tử cácbon( rC) và bán kính nguyên tử kim loại cơ sở (rM): rC/rM sẽ quyết định loại cácbit nào được tạo thành. 1.2.2.1 Phân loại cácbit - Cácbit MC Cácbit có cấu trúc đơn giản xếp chặt: khi tỷ số rc/rM =0.59, nguyên tử cácbon được định vị vào lỗ trống của mạng đơn giản tạo thành pha xen kẽ, pha xen kẽ mới tạo thành có mạng khác với mạng tinh thể kim loại ban đầu. Các nguyên tố Mo, W, V, Ti, Nb và Zr đều thuộc về loại kim loại này. Các cácbit tạo thành bao gồm: WC, VC, TiC, NbC, ZrC. Nếu kim loại M trong cacbit dạng MC có cấu trúc mạng lập phương tâm mặt đơn giản thì tất cả các lỗ trống được lấp đầy bởi nguyên tử cácbon vì tỷ số M : C = 1 : 1. Mạng tinh thể là kiểu mạng NaCl như hình 1.3: Hình 1.3 : Cấu trúc tinh thể NaCl - Cácbit M2C Cácbit M2C có cấu trúc lục giác xếp chặt, các cácbit như W2C, Mo2C, V2C và Nb2C. Các nguyên tử cácbon ở vào vị trí xen kẽ của khối tứ diện. - Cácbit M3C Các cácbit dạng xen kẽ cùng với cấu trúc hệ đa lục giác xếp chặt với tỷ số rc/rM > 0.59. Các cácbit của Cr, Fe, Mn thuộc về các cấu trúc xếp chặt như vậy. Trong hệ gang trắng không có nguyên tố hợp kim, cácbit ở dạng cementit. Cấu trúc tinh thể của cementit là mạng trực giao cùng thông số mạng a = 0.45144 nm, b = 0.50787 nm, c = 0.67287 nm [13]. Cấu trúc mạng tinh thể của cementit được trình bầy trong hình 1.4. Xung quanh một nguyên tử cacbon là 6 nguyên tử sắt tạo thành một khối tám mặt. Tất cả các trục của khối tám mặt này bị nghiêng một góc so với trục khác để tạo thành khối tinh thể sáu mặt thoi. Vì mỗi khối tám mặt đều có một nguyên tử cácbon và mỗi một nguyên tử sắt phải chia giữa hai khối tám mặt, tỷ lệ nguyên tử của sắt và cácbon trong phân tử M3C là hoàn toàn chính xác. Hình chiếu khối tám mặt của cementit là một hình thoi cấu trúc chuỗi (như hình 1.5). Khi quan sát toàn thể cấu trúc của cementit, các khối tám mặt có sự phân lớp rõ ràng, song song giữa các khối. Trong mỗi tinh thể khối mặt thoi các nguyên tử Fe-C được kết nối bởi một liên kết cộng hóa trị, liên kết cộng hóa trị được thực hiện bởi các điện tử đồng hóa trị của 4 nguyên tử cácbon và điện tử ở lớp 3-d của nguyên tử sắt gần nhau ở đỉnh của khối mặt thoi.
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất