Đăng ký Đăng nhập
Trang chủ Một số lớp ideal đặc biệt trong vành giao hoán...

Tài liệu Một số lớp ideal đặc biệt trong vành giao hoán

.PDF
65
987
55

Mô tả:

Header Page 1 of 161. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA TOÁN Đinh Thị Dĩnh MỘT SỐ LỚP IDEAL ĐẶC BIỆT TRONG VÀNH GIAO HOÁN KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Hà Nội – Năm 2016 Footer Page 1 of 161. Header Page 2 of 161. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA TOÁN Đinh Thị Dĩnh MỘT SỐ LỚP IDEAL ĐẶC BIỆT TRONG VÀNH GIAO HOÁN Chuyên ngành: Đại số KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: Th.S. Đỗ Văn Kiên Hà Nội – Năm 2016 Footer Page 2 of 161. Header Page 3 of 161. LỜI CẢM ƠN Em xin chân thành cảm ơn Thầy giáo Đỗ Văn Kiên đã tận tình hướng dẫn, giúp đỡ em trong suốt thời gian thực hiện đề tài thực tập. Em xin chân thành cảm ơn các thầy, các cô trong tổ đại số-khoa Toán, trường Đại học sư phạm Hà Nội 2 đã tạo mọi điều kiện giúp đỡ em hoàn thành đề tài thực tập này. Em xin chân thành cảm ơn gia đình và bạn bè đã tạo mọi điều kiện thuân lợi cho em trong quá trình thực hiện đề tài thực tập. Em xin chân thành cảm ơn. Hà Nội, tháng 05 năm 2016 Sinh viên Đinh Thị Dĩnh Footer Page 3 of 161. Header Page 4 of 161. LỜI CAM ĐOAN Em xin cam đoan, dưới sự hướng dẫn của Thầy Đỗ Văn Kiên đề tài "Một số lớp ideal đặc biệt trong vành giao hoán" được hoàn thành không trùng với bất kỳ đề tài nào khác. Trong quá trình hoàn thành đề tài, em đã thừa kế những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Hà Nội, tháng 05 năm 2016 Sinh viên Đinh Thị Dĩnh Footer Page 4 of 161. Header Page 5 of 161. Mục lục Lời mở đầu 1 1 Một số kiến thức chuẩn bị 3 1.1 Một số kiến thức cơ bản về vành và ideal . . . . . . . . . 3 1.2 Các phép toán trên ideal . . . . . . . . . . . . . . . . . . 9 1.2.1 Tổng các ideal . . . . . . . . . . . . . . . . . . . 9 1.2.2 Tích các ideal . . . . . . . . . . . . . . . . . . . 10 1.2.3 Tích một họ các ideal . . . . . . . . . . . . . . . . 13 1.2.4 Giao của các ideal . . . . . . . . . . . . . . . . . 14 1.2.5 Căn của ideal . . . . . . . . . . . . . . . . . . . . 15 1.2.6 Thương các ideal . . . . . . . . . . . . . . . . . . 17 2 Một số lớp ideal đặc biệt 19 2.1 Ideal cực đại . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Ideal nguyên tố . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Ideal nguyên sơ . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Mối liên hệ giữa ideal cực đại, ideal nguyên tố và ideal nguyên sơ . . . . . . . . . . . . . . . . . . . . . . . . . . i Footer Page 5 of 161. 37 Header Page 6 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh 3 Địa phương hóa của vành 41 3.1 Địa phương hóa của vành . . . . . . . . . . . . . . . . . 41 3.2 Một số ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Phổ của vành R/I . . . . . . . . . . . . . . . . . . . . . 49 3.4 Phổ của vành S −1 R . . . . . . . . . . . . . . . . . . . . 50 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . 59 ii Footer Page 6 of 161. Header Page 7 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh Lời mở đầu 1. Lý do chọn đề tài Đại số là một ngành rất quan trọng trong toán học. Nó không chỉ là cơ sở cho nhiều ngành toán học khác mà còn có ứng dụng trong một số ngành khoa học - kĩ thuật. Kiến thức của đại số rất phong phú và trừu tượng, nó được xây dựng và phát triển từ những kiến thức cơ bản của cấu trúc đại số như: nhóm, vành, môđun,... Mặt khác các khái niệm về ideal nguyên tố, ideal cực đại, ideal nguyên sơ là những khái niệm trọng tâm cho việc ứng dụng lý thuyết vành giao hoán vào hình học đại số. Có thể nói vần đề ideal là một phần quan trọng trong lý thuyết vành. Tuy nhiên trong chương trình đại học, vần đề này mới chỉ trình bày một cách sơ lược. Vì vậy em chọn đề tài “Một số lớp ideal đặc biệt trong vành giao hoán” là đề tài khóa luận. 2. Mục đích nghiên cứu -Cung cấp kiến thức về một số lớp ideal đặc biệt trong vành giao hoán. Footer Page 7 of 161. 1 Header Page 8 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh 3. Nhiệm vụ nghiên cứu Tìm hiểu các khái niệm về ideal cực đại, nguyên tố, nguyên sơ. 4. Đối tượng và phạm vi nghiên cứu Đối tương nghiên cứu: Các khái niệm về các lớp ideal đặc biệt trong vành giao hoán và địa phương hóa của vành. Phạm vi nghiên cứu: Nội dung kiến thức trong phạm vi của đại số giao hoán. 5. Cấu trúc đề tài Ngoài phần mở đầu, kết luận, danh mục tài liệu tham khảo thì đề tài bao gồm 3 chương: Chương 1: Một số kiến thức chuẩn bị Chương 2: Một số lớp ideal đặc biệt Chương 3: Địa phương hóa của vành Footer Page 8 of 161. 2 Header Page 9 of 161. Chương 1 Một số kiến thức chuẩn bị Chương này sẽ trình bày một số kiến thức về vành và các tính chất cơ bản về vành, ideal, các phép toán trên ideal. 1.1 Một số kiến thức cơ bản về vành và ideal Định nghĩa 1.1. Cho X là một tập tùy ý khác rỗng. Trên X trang bị hai phép toán hai ngôi, kí hiệu là (+) và (.). Khi đó X được gọi là vành nếu X cùng hai phép toán (+) và (.) thỏa mãn 3 tiên đề sau i) X cùng phép cộng lập thành nhóm Abel. ii) X cùng phép nhân là nửa nhóm. iii) Phép nhân phân phối đối với phép cộng, tức là với mọi x, y, z ∈ X ta có x(y + z) = xy + xz (x + y)z = xz + yz Footer Page 9 of 161. 3 Header Page 10 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh Hơn nữa, nếu phép nhân giao hoán thì X được gọi là vành giao hoán. Nếu phép nhân có đơn vị thì X được gọi là vành có đơn vị. Nếu phép nhân vừa giao hoán vừa có đơn vị thì X được gọi là vành giao hoán có đơn vị. Ví dụ 1.1. Tập hợp Z, Q, R, C cùng với phép cộng và phép nhân thông thường là một vành giao hoán có đơn vị. Ví dụ 1.2. Tập Zn (n ≥ 1) cùng với các phép cộng và phép nhân thông thường a+b=a+b a.b = a.b là vành các lớp thặng dư môđun n. Mệnh đề 1.1. Cho X là một vành. Với mọi x, y, z ∈ X ta có i) x (y − z) = xy − xz , (y − z) x = yx − zx. ii) 0.x = x.0 = 0. iii) x (−y) = (−x) y = −xy , (−x) (−y) = xy. Định nghĩa 1.2. Cho X là một vành, A là một bộ phận ổn định với hai phép toán trong X, nghĩa là x + y ∈ A và xy ∈ A, với mọi x, y ∈ A. A được gọi là một vành con của vành X nếu A cùng hai phép toán cảm sinh trên A là một vành. Mệnh đề 1.2. Cho X là một vành, tập A là một bộ phận khác rỗng của X. Các khẳng định sau là tương đương Footer Page 10 of 161. 4 Header Page 11 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh i) A là một vành con của X. ii) Với mọi a, b ∈ A thì a + b ∈ A, ab ∈ A, −a ∈ A. iii) Với mọi a, b ∈ A thì a − b ∈ A, ab ∈ A. Ví dụ 1.3. Bộ phận mZ gồm các số nguyên là bội của một số nguyên m cho trước là một vành con của vành các số nguyên Z. Mệnh đề 1.3. Giao của một họ bất kì những vành con của một vành X là một vành con của X. Định nghĩa 1.3. Cho X là một vành, A là tập con của X. I được gọi là ideal của X khi đó nó thỏa mãn các điều kiện sau i) A ̸= ∅. ii) Với mọi a, b ∈ A thì a + b ∈ A. iii) Với mọi a ∈ A, r ∈ X thì r.a ∈ A. Ví dụ 1.4. Bộ phận {0} và bộ phận X là hai ideal của vành X. Mệnh đề 1.4. Một bộ phận A khác rỗng của một vành X là một ideal của X nếu và chỉ nếu các điều kiện sau thỏa mãn i) a − b ∈ A với mọi a, b ∈ A. ii) xa ∈ A và ax ∈ A với mọi a ∈ A và với mọi x ∈ X. Mệnh đề 1.5. Giao của một họ bất kì những ideal của một vành X là một ideal của X. Footer Page 11 of 161. 5 Header Page 12 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh Định nghĩa 1.4. Cho A là ideal của vành X. Tập X/A = {x + A | x ∈ X} cùng hai phép toán (+) và (.) xác định như sau (x + A) + (y + A) = x + y + A , với mọi x, y ∈ X. (x + A)(y + A) = xy + A , với mọi x, y ∈ X. lập thành một vành gọi vành thương của X theo ideal A. Nhận xét 1.1. i) Nếu X là vành giao hoán thì X/A cũng là vành giao hoán. ii) Nếu X có đơn vị 1 thì X/A cũng là vành có đơn vị (1 + A). Ví dụ 1.5. Trong vành Z , thì nZ là ideal của Z với mọi n ∈ N. Khi đó vành là vành thương Z/nZ = {x + n | Zx ∈ Z} với hai phép toán (x + nZ) + (y + nZ) = x + y + nZ , với mọi x, y ∈ Z. (x + nZ)(y + nZ) = xy + nZ , với mọi x, y ∈ Z. Đặc biệt: {0} , X là hai ideal của X nên hai vành thương X/{0} = {x + 0 | x ∈ X} = X X/X = {x + X | x ∈ X} = {X} ∼ = {0} Định nghĩa 1.5. Cho X, Y là các vành, ánh xạ f : X −→ Y được gọi là đồng cấu vành nếu thỏa mãn 2 điều kiện sau: với mọi x, y ∈ X thì f (x + y) = f (x) + f (y) Footer Page 12 of 161. 6 Header Page 13 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh f (x.y) = f (x).f (y) Hơn nữa: Nếu f là đơn ánh thì f được gọi là đơn cấu vành. Nếu f là toàn cấu thì f được gọi là toàn cấu vành. Nếu f là song ánh thì f dược gọi là đẳng cấu vành. Ví dụ 1.6. Giả sử A là một vành con của vành X. Đơn ánh chính tắc f :A→X a 7→ a là một đồng cấu gọi là đơn cấu chính tắc. Mệnh đề 1.6. (1) Tích của hai đồng cấu vành (nếu có) là một đồng cấu vành. (2) Cho f : X −→ Y là một đồng cầu vành, A là vành con của X, B là ideal của Y . Khi đó f (A) là vành con của Y và f −1 (B) là ideal của X. Đặc biệt: Cho f : X −→ Y là đồng cấu vành, Hạt nhân của f, kí hiệu Kerf, được các định bởi Kerf = {x + X | f (x) = 0Y }. Ảnh của X, kí hiệu Imf , xác định bởi Imf = {f (x) | x ∈ X}. Ta thấy, X là nhóm con của X nên Imf cũng là nhóm con của Y . Footer Page 13 of 161. 7 Header Page 14 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh {0Y } là ideal của Y nên Kerf cũng là ideal của X. Mệnh đề 1.7. Cho đồng cấu vành f : X → Y . i) Nếu I là ideal của X thì f (I) chưa chắc là ideal của Y. ii) Nếu Q là ideal của Y thì f −1 (Q) là ideal của X. Mệnh đề 1.8. Cho đồng cấu vành f : X −→ Y . i) f là đơn cấu ⇔ Kerf = {0X }. ii) f là toàn cấu ⇔ Imf = Y . Định lý 1.1. (Định lí cơ bản tổng quát của đồng cấu vành) Cho đồng cấu vành f : X −→ Y . A, B tương ứng là ideal của X, Y sao cho f (A) ⊆ B. Khi đó tồn tại duy nhất đồng cấu vành f : X/A −→ Y /B làm cho biểu đồ sau giao hoán X  f pA X/ A f / Y  pB / Y/ B nghĩa là f .pA = pB .f với pA : X → X/A, pB : Y → Y /B là hai toàn cấu chính tắc. Hệ quả 1.1. Nếu A = Kerf , B = {0Y } thì Y /B = Y /{0Y } = Y , khi Footer Page 14 of 161. 8 Header Page 15 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh đó ta có biểu đồ sau giao hoán f X III II p II II I$ /Y uu u u uu uu uz u f Y /Kerf nghĩa là f .p = f với p : X → X/Kerf là toàn cấu chính tắc. Nếu f là toàn cấu vành thì X/Kerf ∼ = Y. Hệ quả 1.2. Cho A, B là hai ideal của vành R thỏa mãn B ⊇ A. ( )/( ) R R B ∼ Khi đó /B = /A /A Định nghĩa 1.6. U là tập con của vành X. Giao của họ tất cả các ideal của X chứa U là một ideal chứa U và được gọi là ideal sinh bởi tập U . Kí hiệu ⟨U ⟩ hoặc XU Nhận xét 1.2. ⟨U ⟩ là ideal nhỏ nhất của X chứa U . Nếu U là tập con hữu hạn của X thì ta nói I = ⟨U ⟩ là ideal hữu hạn sinh của X. { Nếu U = {ui | i = 1, n, n ∈ N} thì ⟨U ⟩ = n ∑ } xi ui |n ∈ N, xi ∈ X, ui ∈ U . i=1 Nếu U = ∅ thì ⟨U ⟩ = ⟨0⟩ = {0}. 1.2 1.2.1 Các phép toán trên ideal Tổng các ideal Định nghĩa 1.7. Cho (Iλ )λ∈Λ là họ các ideal của vành giao hoán R. Ta ∑ định nghĩa tổng các ideal của họ đã cho, kí hiệu Iλ là một ideal của λ∈Λ Footer Page 15 of 161. 9 Header Page 16 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh R sinh bởi tập ∪ Iλ . ⟨ λ∈Λ ⟩ ∑ Vậy Iλ = ∪ Iλ . λ∈Λ λ∈Λ Đặc biệt: Nếu Λ = ∅ thì ∑ Iλ = 0 là ideal không. λ∈Λ Ví dụ 1.7. Z là vành giao hoán. I = 2Z và J = 4Z là hai ideal của Z. Khi đó I + J = 2Z. Mệnh đề 1.9. Cho R là vành giao hoán, (Iλ )λ∈Λ là họ các ideal của R. Khi đó ∑ Iλ = λ∈Λ { n ∑ } cλ i | c λ i ∈ I λ i , λ i ∈ Λ i=1 . ∪ ∑ Chứng minh. Đặt H = Iλ Ta có Iλ = λ∈Λ λ∈Λ {n } ∑ ri hi | ri ∈ R, hi ∈ H . i=1 ∪ Do hi ∈ H ⇔ hi ∈ Iλ ⇒ hi ∈ Iλi , (∀λi ∈ Λ). ⟨ ∪ ⟩ Iλ = ⟨H⟩ = λ∈Λ λ∈A Vì Iλi là ideal của R nên ri hi ∈ Iλi , (∀λi ∈ Λ) ∪ ⇒ ri hi ∈ Iλi = H. λ∈A { } n ∑ Do đó ⟨H⟩ = ci | ci ∈ H . i=1 {n } ∑ ∑ Vậy Iλ = cλi | cλi ∈ Iλi , λi ∈ Λ . 1.2.2  i=1 λ∈Λ Tích các ideal Định nghĩa 1.8. Cho R là vành giao hoán và I, J là hai ideal của R. Tích của I và J, kí hiệu IJ, được định nghĩa là ideal của R sinh bởi tập Footer Page 16 of 161. 10 Header Page 17 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh H = {ab | a ∈ I, b ∈ J} . Mệnh đề 1.10. Cho I và J là hai ideal của vành giao hoán R. Khi đó IJ = { n ∑ } ai bi | ai ∈ I, bi ∈ J, i = 1, n i=1 Chứng minh. Theo định nghĩa tích hai ideal thì IJ = ⟨H⟩ = ⟨{ab | a ∈ I, b ∈ J}⟩ . { Mà ⟨H⟩ = n ∑ } ri hi | ri ∈ R, hi ∈ H i=1 trong trường hợp này, hi = ai bi với ai ∈ I, bi ∈ J. Do  của vành giao hoán R nên  I, J đều là ideal  (ai ri ).bi ∈ H  ri ai ∈ I ⇒  a .(r b ) ∈ H rb ∈J i i i i i suy ra mọi{phần tử x ∈ ⟨H⟩ đều được biểu}diễn x = ab với x ∈ I, b ∈ J. n ∑ Vậy IJ = ai bi | ai ∈ I, bi ∈ J, i = 1, n .  i=1 Ví dụ 1.8. Cho (Z, +, .) là một vành giao hoán, I = 2Z , J = 3Z là hai ideal của Z. Footer Page 17 of 161. 11 Header Page 18 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh Khi đó IJ = = = { n ∑ { i=1 n ∑ { i=1 n ∑ } ai bi | ai ∈ 2Z, bi ∈ 3Z, i = 1, n } 2hi 3mi | hi , mi ∈ Z, i = 1, n } 6ti | ti ∈ Z, i = 1, n i=1 = 6Z. Mệnh đề 1.11. Cho I, J, K, I1 , ..., In là các ideal của vành giao hoán R (1) J = JI ⊆ I ∩ J. (2) (IJ)K = I(JK) = ⟨H⟩ với H = {abc | a ∈ I, b ∈ J, c ∈ K} . Chứng minh. (1) IJ = JI , dễ dàng chứng minh được do R là vành giao hoán. { IJ = JI ⊆ I ∩ J. Thật vậy IJ = Với x ∈ IJ bất kì có x = n ∑ n ∑ } ai bi | ai ∈ I, bi ∈ J, i = 1, n i=1 ai bi , (ai ∈ I, bi ∈ J). i=1 Do (I, J là ideal R) và (ai ∈ I ⊂ R, bi ∈ J ⊂ R với i = 1, n) nên  của n  ∑   ai bi ∈ I  bi ai ∈ I  n ∑ i=1 ⇒ ⇒ ai bi ∈ I ∩ J ⇒ x ∈ I ∩ J n ∑ ba ∈J  i=1  ai bi ∈ J i i  i=1 vì x bất kì nên IJ I ∩ J. } {⊆ n ∑ (2) Ta có ⟨H⟩ = ai bi ci | ai ∈ I, bi ∈ J, ci ∈ K, i = 1, n . i=1 {n } ∑ IJ và JK đều là ideal của R và IJ = ai bi | ai ∈ I, bi ∈ J, i = 1, n . i=1 } { ( ) m n ∑ ∑ nên (IJ)K = ai bi ci | ai ∈ I, bi ∈ J, cj ∈ K, j = 1, m, i = 1, n . j=1 Footer Page 18 of 161. i=1 12 Header Page 19 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh Nhận thấy ) ( m n ∑ ∑ ai bi cj = a1 b1 c1 + ... + an bn c1 + a1 b1 c2 + ... + an bn c2 + ... + an bn cm . j=1 i=1 suy ra m ∑ j=1 ( n ∑ ) ai bi cj ∈ ⟨H⟩ với ai ∈ I, bi ∈ J, cj ∈ K, i = 1, n, j = 1, m. i=1 Suy ra (IJ)K ⊆ ⟨H⟩. (1) Lại có x ∈ ⟨H⟩ thì x= ⇒x = n ∑ i=1 n ∑ ai bi ci vớiai ∈ I, bi ∈ J, cj ∈ K, i = 1, n (ai bi )ci ∈ (IJ)K. i=1 Suy ra ⟨H⟩ ⊆ (IJ)K. (2) Từ (1) và(2) suy ra (IJ)K = ⟨H⟩. Tương tự ta chứng minh{được I(JK) = ⟨H⟩ } n ∑ Vậy I(JK) = (IJ)K = ai bi ci | ai ∈ I, bi ∈ J, ci ∈ K, i = 1, n .  i=1 Từ 2 tính chất (1) và (2) ta có thể đưa ra định nghĩa tích của một họ các iđêan của R như sau: 1.2.3 Tích một họ các ideal Định nghĩa 1.9. Cho I1 , I2 , ...., In là một họ các ideal của vành giao n ∏ hoán R. Khi đó tích các ideal đã cho, kí hiệu Ii là một ideal của R i=1 sinh bởi tập Footer Page 19 of 161. { } L = a1 a2 ...an | ai ∈ I1 , i = 1, n 13 Header Page 20 of 161. Khóa luận tốt nghiệp Đại học Đinh Thị Dĩnh . Biểu diễn phần tử n ∏ Ii = { m ∑ i=1 } a1j a2j ...anj | aij ∈ Ii , i = 1, n, j = 1, m j=1 . Nhận xét 1.3. (1) Với I, J, K là các ideal của R ta có I(J + K) = IJ + IK. Thật vậy I(J + K) = = = { n ∑ { i=1 n ∑ { i=1 n ∑ } ai (bi + ci ) | ai ∈ I, bi ∈ J, cj ∈ K, i = 1, n } (ai bi + ai ci ) | ai ∈ I, bi ∈ J, cj ∈ K, i = 1, n a i bi + i=1 n ∑ } ai ci | ai ∈ I, bi ∈ J, cj ∈ K, i = 1, n . i=1 (2) Chú ý với trường hợp đặc biệt I m (m ∈ N) các phần tử được xác định n ∑ ∗ m như sau: Nếu m ∈ N : x ∈ I thì x = ai1 ai2 ...aim với aij ∈ I, i=1 i = 1, n, j = 1, m. Nếu m = 0 thì ta quy ước I o = R 1.2.4 Giao của các ideal Định nghĩa 1.10. Cho (Iλ )λ∈Λ là họ các ideal của vành giao hoán R. Giao của họ ideal đã cho là một ideal của R xác định như sau ∩ Iλ = {a | a ∈ Iλ , λ ∈ Λ} λ∈Λ Footer Page 20 of 161. 14
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất