Luận án tiến sĩ toán học Các phụ thuộc logic trong mô hình dữ liệu dạng khối

  • Số trang: 105 |
  • Loại file: PDF |
  • Lượt xem: 234 |
  • Lượt tải: 0
dangvantuan

Đã đăng 42636 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ TRẦN MINH TUYẾN CÁC PHỤ THUỘC LOGIC TRONG MÔ HÌNH DỮ LIỆU DẠNG KHỐI LUẬN ÁN TIẾN SĨ TOÁN HỌC HÀ NỘI - 2015 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ TRẦN MINH TUYẾN CÁC PHỤ THUỘC LOGIC TRONG MÔ HÌNH DỮ LIỆU DẠNG KHỐI Chuyên ngành: Cơ sở toán học cho tin học Mã số: 62 46 01 10 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TSKH. NGUYỄN XUÂN HUY HÀ NỘI - 2015 2 LỜI CẢM ƠN Để hoàn thành luận án này, tôi đã nhận được sự giúp đỡ rất nhiệt tình của các thày, cô giáo trong khoa Công nghệ Thông tin, Học viện Kỹ thuật Quân sự và trường Đại học Công đoàn. Tôi xin gửi lời cảm ơn tới các thày, cô giáo trong khoa Công nghệ Thông tin, Học viện kỹ thuật Quân sự và trường Đại học Công đoàn đã tạo điều kiện học tập, nghiên cứu và giúp đỡ tôi rất nhiều trong quá trình viết luận án. Đặc biệt tôi xin trân trọng cảm ơn PGS.TSKH. Nguyễn Xuân Huy, người đã tận tình hướng dẫn, chỉ bảo cho tôi trong toàn bộ quá trình học tập, nghiên cứu đề tài và giúp tôi hoàn thành bản luận án này. Hà Nội, ngày 10 tháng 10 năm 2015 Tác giả luận án Trần Minh Tuyến 3 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của tôi dưới sự hướng dẫn khoa học của PGS.TSKH. Nguyễn Xuân Huy. Các kết quả được viết chung với các đồng tác giả đã được sự chấp thuận của các tác giả trước khi đưa vào luận án. Các kết quả nêu trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận án Trần Minh Tuyến 4 MỤC LỤC Trang MỞ ĐẦU 10 Chương 1: Mô hình dữ liệu dạng khối 20 1.1 Mô hình dữ liệu 20 1.1.1 Khái niệm 20 1.1.2 Phân loại 21 1.2 Mô hình dữ liệu dạng khối 23 1.2.1 Khối, lát cắt của khối 23 1.2.2 Đại số khối 26 1.2.3 Phụ thuộc hàm 31 1.2.4 Bao đóng của tập thuộc tính chỉ số 33 1.2.5 Khóa của lược đồ khối  = (R,F) 34 1.3 Ánh xạ đóng 36 1.3.1 Khái niệm 36 1.3.2 Khóa của ánh xạ đóng 38 1.4 Các công thức Boolean 39 1.4.1 Khái niệm 39 1.4.2 Bảng trị và bảng chân lý 40 1.4.3 Suy dẫn logic 41 1.4.4 Công thức Boolean dương 41 Chương 2: Phép dịch chuyển lược đồ khối và lược đồ khối cân bằng 43 2.1 Phép dịch chuyển lược đồ khối 43 2.2 Thuật toán dịch chuyển lược đồ khối 45 5 2.3 Biểu diễn bao đóng và khóa qua phép dịch chuyển 47 2.3.1 Biểu diễn bao đóng 47 2.3.2 Biểu diễn khóa 49 2.4 Khóa và các tập thuộc tính nguyên thủy, phi nguyên thủy 54 2.5 Lược đồ khối cân bằng 61 2.6 Thuật toán dịch chuyển lược đồ khối về dạng cân bằng 65 2.7 Tập các vế trái cực tiểu 69 Chương 3: Phụ thuộc Boolean dương và phụ thuộc Boolean dương tổng quát trên khối 72 3.1 Lược đồ khối và ánh xạ đóng 72 3.2 Phụ thuộc Boolean dương trên khối 76 3.2.1 Khối chân lý 76 3.2.2 Phụ thuộc Boolean dương 77 3.3 Mối quan hệ giữa các kiểu phụ thuộc hàm và các công thức Boolean dương trên khối 84 3.4 Phụ thuộc Boolean dương tổng quát trên khối 86 3.5 Thể hiện phụ thuộc Boolean dương tổng quát trên khối 92 KẾT LUẬN VÀ HƯỚNG NGHIÊN CỨU TIẾP THEO 95 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ 97 TÀI LIỆU THAM KHẢO 99 6 DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT Kí hiệu XY REL(U) RELp(U) t*v t*S t[X], t.X id  id’ M P M   AXĐ f*g SubSet(U) 2 CTB CTBD PTBD PTBDTQ Fix(f) Gen(G) Coatom(G) MAX(M) Ý nghĩa của kí hiệu Biểu diễn hợp của hai tập X và Y Tập toàn thể các quan hệ trên tập thuộc tính U Tập toàn thể các quan hệ có không quá p bộ trên tập thuộc tính U, p 1. Phép kết nối hai bộ t và v. Phép kết nối bộ t với quan hệ S. hạn chế của bộ (ánh xạ) t trên tập thuộc tính X. Kí hiệu tích rời rạc của id và id’ Hợp của 2 tập con M và P {MX| X   }. {XY | X   , Y   }. Ánh xạ đóng Hội của hai ánh xạ đóng f và g. Tập tất cả các tập con của U. Suy dẫn logic. Suy dẫn theo quan hệ. Suy dẫn theo quan hệ có không quá 2 phần tử. Công thức Boolean. Công thức Boolean dương. Phụ thuộc Boolean dương. Phụ thuộc Boolean dương tổng quát. Tập toàn bộ các điểm bất động của f. Tập sinh của giàn giao G. Đối nguyên tử của giàn giao G Tập các phần tử cực đại của M. 7 PTH Uo UK UI LS(f) RS(f) LS(F) RS(F) Phụ thuộc hàm. Tập tất cả các thuộc tính không khoá. Tập tất cả các thuộc tính khoá. Tập tất cả các thuộc tính nằm trong mọi khoá. Vế trái của phụ thuộc hàm f. Vế phải của phụ thuộc hàm f. Hợp các vế trái của tất cả các phụ thuộc hàm f  F. Hợp các vế phải của tất cả các phụ thuộc hàm f  F. 8 DANH SÁCH BẢNG Trang Bảng 1: Biểu diễn quan hệ CAN_BO_1. 10 Bảng 1.1: Biểu diễn lát cắt của khối KH_HANG. 25 9 DANH SÁCH HÌNH VẼ Trang Hình 1: Biểu diễn khối CAN_BO_2. 11 Hình 2: Biểu diễn khối dữ liệu đa chiều. 12 Hình 1.1: Biểu diễn khối KH_HANG. 24 Hình 3.1: Biểu diễn khối KH_HANG và phụ thuộc Boolean dương f. 77 Hình 3.2: Biểu diễn khối chân lý r1 của khối KH_HANG. 78 Hình 3.3: Biểu diễn khối KH_HANG và PTBDTQ g. 88 Hình 3.4: Biểu diễn khối chân lý r2 của khối KH_HANG. 88 10 MỞ ĐẦU 1. Lý do lựa chọn đề tài Để có thể xây dựng được một hệ thống cơ sở dữ liệu tốt, người ta thường sử dụng các mô hình dữ liệu thích hợp. Đã có một số loại mô hình được sử dụng trong các hệ thống cơ sở dữ liệu như: mô hình thực thể - liên kết, mô hình mạng, mô hình phân cấp, mô hình hướng đối tượng, mô hình dữ liệu datalog [53], [54], và mô hình quan hệ [33], [52], [53], [54]. Trong số các mô hình này, có ba mô hình dữ liệu thường được sử dụng: mô hình phân cấp, mô hình mạng và mô hình quan hệ. Đối với ba mô hình này thì mô hình quan hệ được quan tâm hơn cả. Mô hình này do E. Codd đề xuất ra năm 1970. Sở dĩ mô hình quan hệ được quan tâm như vậy là vì nó được xây dựng trên một cơ sở toán học chặt chẽ - đó là lý thuyết toán học về các quan hệ có áp dụng rộng rãi các công cụ đại số và logic. Tuy nhiên, do các quan hệ có cấu trúc phẳng (tuyến tính) nên mô hình này chưa đủ đáp ứng đối với các ứng dụng phức tạp, các cơ sở dữ liệu có cấu trúc phi tuyến,... Ví dụ: Khi cần theo dõi hồ sơ cán bộ trong một cơ quan, ta lập bảng sau: CAN_BO_1: ma ten luong trinh_do A01 A 350 ThS A02 B 300 DH A03 C 250 CD Bảng 1: Biểu diễn quan hệ CAN_BO_1. 11 Bảng này gồm các trường: ma (mã cán bộ), ten (tên cán bộ), luong (lương hàng tháng), trinh_do (trình độ cán bộ). Bảng này chính là một quan hệ trong mô hình dữ liệu quan hệ. Mỗi khi lương của một cán bộ thay đổi thì người quản lý cập nhật lương mới cho cán bộ đó, như vậy giá trị của lương cũ mất đi mà thay bằng giá trị lương mới. Tình trạng tương tự với thuộc tính: trinh_do (trình độ cán bộ) khi mà trình độ của một cán bộ thay đổi. Do đó, với cách quản lý nhân sự theo bảng trên thì người quản lý không thể theo dõi được quá trình tăng lương hoặc quá trình nâng cao trình độ của những cán bộ mình quản lý. Đối với họ thì trong cách quản lý này, việc theo dõi quá trình phát triển của mỗi người theo thời gian là một công việc khó khăn. Tuy nhiên, trong mô hình dữ liệu dạng khối thì việc này lại trở nên đơn giản hơn. Ta có thể thấy điều đó qua cách quản lý cán bộ theo mô hình khối dữ liệu, cụ thể như hình ảnh của khối CAN_BO_2 dưới đây: CAN_BO_2: ma ten A01 A01 t1 A01 A A A 200 A02 A02 B A03 t3 A03 Ths DH DH C C C 400 300 250 C01 TS ThS DH B B trinh_do 550 350 B02 t2 luong 350 250 200 DH 2015 2010 CD CD 2007 Hình 1: Biểu diễn khối CAN_BO_2. Với khối CAN_BO_2 thì mỗi khi có một cán bộ nào trong cơ quan được tăng lương hoặc thay đổi trình độ, thậm chí cả đổi tên thì ta bổ sung năm đó vào trục thời gian và khối sinh tương ứng một lát cắt mới, ứng với năm vừa bổ sung để người quản lý cập nhật thông tin (trục thời gian có thể tính 12 theo năm, tháng hoặc ngày,... tùy theo yêu cầu quản lý của từng cơ quan). Như vậy, ta có thể quản lý cán bộ trong cơ quan suốt cả quá trình công tác. Nhìn vào khối: CAN_BO_2, ta dễ dàng thấy quá trình tăng lương cũng như quá trình nâng cao trình độ của 3 cán bộ ứng với các bản ghi t1, t2, t3, ở đây các năm 2007, 2010, 2015 cũng chỉ là minh họa; ta có thể bổ sung thêm các năm tùy ý trên trục thời gian này của khối mỗi khi cần cập nhật thông tin cho các cán bộ trong cơ quan. Trong những năm gần đây, việc nghiên cứu nhằm mở rộng mô hình dữ liệu quan hệ đã được nhiều nhà khoa học quan tâm. Một số tác giả đã mở rộng mô hình dữ liệu quan hệ thành mô hình dữ liệu đa chiều và kho dữ liệu,...[14], [15], [16], [18], [19], [20], [21], [26], [32]. Một kỹ thuật thường được dùng trong các hệ thống kho dữ liệu để xử lý phân tích trực tuyến - OLAP (OnLine Analytical Processing) là kỹ thuật sử dụng cách thể hiện dữ liệu đa chiều gọi là các khối (cube) nhằm cung cấp khả năng truy xuất nhanh đến dữ liệu của kho dữ liệu. Với cấu trúc của khối dữ liệu đa chiều thì mỗi chiều tương ứng với một thuộc tính, nó cung cấp cho người quản lý một khung nhìn đa chiều về dữ liệu. Khối dữ liệu dưới đây là một ví dụ: Hình 2: Biểu diễn khối dữ liệu đa chiều. 13 Với khối dữ liệu đa chiều như ở hình 2 ta thấy đây là khối dữ liệu 3 chiều. Một là chiều Thời gian gồm 4 mốc: Jan-01, Feb-01, Mar-01 và Apr-01, hai là chiều Địa điểm gồm 2 nơi: Tokyo và Rome, ba là chiều Sản phẩm gồm 3 loại máy tính: Standard PC, Executive PC và Ambassador PC. Cũng theo hướng nghiên cứu này một mô hình dữ liệu mới đã được đề xuất, đó là mô hình dữ liệu dạng khối [4], [5], [7],... Mô hình dữ liệu này có thể xem là một mở rộng của mô hình dữ liệu quan hệ. Trong mô hình dữ liệu dạng khối, các khái niệm như: khối, lược đồ khối, lát cắt, đại số khối, phụ thuộc hàm, bao đóng của tập thuộc tính chỉ số,... đã được nghiên cứu [4], [5], [7], [8], [9], [10], [11], [12], [13]. Trong mô hình dữ liệu dạng khối, các lược đồ khối, khối nói chung là lớn và phức tạp. Chính vì vậy mà mô hình này đòi hỏi phải có các thuật toán tốt theo nghĩa, độ phức tạp tính toán chấp nhận được, chẳng hạn là hàm tuyến tính hoặc đa thức theo chiều dài của dữ liệu vào. Các thuật toán này giúp ta tìm bao đóng, khóa của lược đồ khối, khối, giải bài toán thành viên,... Một cách tự nhiên, nếu kích thước của lược đồ khối càng nhỏ thì các thuật toán đó càng phát huy hiệu quả hơn. Từ đó, một số hướng nghiên cứu nhằm tinh giản các lược đồ khối được thực hiện thông qua các phép biến đổi tương đương, chẳng hạn đưa tập phụ thuộc hàm về dạng thu gọn, thu gọn tự nhiên, dạng không dư, dạng tối ưu,... cũng được quan tâm. Đi theo hướng này, phép dịch chuyển lược đồ khối nhằm thu gọn, loại bỏ khỏi lược đồ ban đầu những thuộc tính không quan trọng theo nghĩa chúng không làm ảnh hưởng tới kết quả tính toán các đối tượng đang quan tâm như bao đóng, khóa,... Mặc dù lược đồ khối thu được qua phép thu gọn nhìn chung không tương đương với lược đồ khối ban đầu, nhưng ta lại thu được các đối tượng cần tìm bằng những phép toán đơn giản hơn. 14 Cũng như trong mô hình dữ liệu quan hệ, các phụ thuộc dữ liệu trong mô hình khối đóng vai trò quan trọng đối với việc phản ánh ngữ nghĩa của dữ liệu. Phụ thuộc đầu tiên là phụ thuộc hàm, được E. Codd - tác giả của mô hình dữ liệu quan hệ đề xuất. Phụ thuộc này cũng đã được phát triển thành phụ thuộc hàm trong mô hình dữ liệu dạng khối. Khi khối suy biến thành quan hệ thì khái niệm phụ thuộc hàm trong mô hình dữ liệu dạng khối lại trở thành khái niệm phụ thuộc hàm trong mô hình dữ liệu quan hệ. Với mô hình dữ liệu quan hệ, sau phụ thuộc hàm thì một trong các lớp phụ thuộc quan trọng được phát triển là phụ thuộc Boolean dương, phụ thuộc Boolean dương tổng quát, phụ thuộc Boolean dương đa trị,… Ở đây, khái quát hóa các lớp phụ thuộc này vào một khái niệm chung là phụ thuộc logic. Việc nghiên cứu phụ thuộc logic trong mô hình dữ liệu quan hệ được nhiều tác giả quan tâm và các kết quả tìm thấy đã được sử dụng hữu ích trong quá trình thiết kế các cơ sở dữ liệu. Tuy nhiên, trong mô hình dữ liệu dạng khối, cho đến hiện nay thì các phụ thuộc logic còn chưa được quan tâm nhiều, ví dụ như: các khái niệm về phụ thuộc Boolean dương, phụ thuộc Boolean dương tổng quát trên khối,... vẫn chưa có. Chính vì vậy, đề tài muốn đi sâu tìm hiểu xem trong mô hình dữ liệu dạng khối thì các phụ thuộc logic này sẽ được định nghĩa như thế nào? Chúng có những tính chất, đặc trưng gì? Mối quan hệ của chúng với các khái niệm tương ứng trong mô hình dữ liệu quan hệ như thế nào?,... và chắc rằng với các phụ thuộc logic mới được đề xuất trong mô hình dữ liệu dạng khối thì việc sử dụng chúng sẽ có hiệu quả trong việc thiết kế các cơ sở dữ liệu dạng khối trên thực tế. 2. Mục tiêu, đối tượng và phương pháp nghiên cứu Mục tiêu của luận án là đề xuất các khái niệm và tìm hiểu tính chất các loại phụ thuộc logic trong mô hình dữ liệu dạng khối như: phụ thuộc Boolean 15 dương, phụ thuộc Boolean dương tổng quát, ánh xạ đóng và mối quan hệ với phép dịch chuyển lược đồ khối,… Mối quan hệ giữa phụ thuộc logic trong mô hình dữ liệu dạng khối với các phụ thuộc tương ứng trong mô hình dữ liệu quan hệ,... Bên cạnh đó, đề tài cũng tìm hiểu về quan hệ giữa phụ thuộc logic trên lược đồ khối và phụ thuộc tương ứng trên lược đồ lát cắt, từ đó xem xét về cấu trúc của các phụ thuộc logic trong mô hình dữ liệu dạng khối. Đối tượng nghiên cứu của luận án chính là các phụ thuộc logic, ánh xạ đóng, lược đồ cân bằng,… trong mô hình dữ liệu dạng khối với phép dịch chuyển lược đồ khối. Mối quan hệ của chúng trên lược đồ khối và trên lược đồ lát cắt, trên cơ sở đó xác định rõ các cấu trúc cụ thể của các phụ thuộc logic trong mô hình dữ liệu dạng khối. Phương pháp nghiên cứu của luận án: Hướng nghiên cứu của luận án là nghiên cứu lý thuyết, do đó luận án sử dụng các công cụ của toán học, logic (các phương pháp suy luận, chứng minh, lập bảng chân lý,…) để nghiên cứu tìm ra các kết quả mới về các phụ thuộc logic trên lược đồ khối, phép dịch chuyển lược đồ khối, ánh xạ đóng trên khối,… 3. Tổng quan tình hình nghiên cứu liên quan đến luận án 3.1 Các nghiên cứu trên thế giới Hiện nay, trên thế giới việc mở rộng mô hình dữ liệu quan hệ của E. Codd đề xuất năm 1970 cũng đã được nhiều nhà nghiên cứu quan tâm. - Năm 1996 tác giả C. Dyreson đã đề xuất một mở rộng của mô hình dữ liệu quan hệ, đó là các khối dữ liệu (data cube) [17]. - Năm 1997, các tác giả R. Agrawal, A. Gupta, and S. Sarawagi đã đề xuất một mở rộng của mô hình dữ liệu quan hệ, đó là mô hình dữ liệu đa chiều (Modeling Multidimensional Databases) [41]. 16 - Năm 1997 các tác giả S. Chaudhuri and U. Dayal đã đề xuất khái niệm nhà kho dữ liệu (Data Warehousing) [49]. - Năm 2001 Paulraj Ponniah đã bàn về nhà kho dữ liệu trong bài báo “Data warehousing fundamentals” [38]. - Năm 2002 Inmon W.H. đã trình bày về việc xây dựng nhà kho dữ liệu trong bài báo “Building the Data Warehouse “ [26]. - Năm 2003 các tác giả Maurizio Rafanelli, M.Rafanelli, M.Rafanelli(Ed.), Qiang Yang, Joshua Zhexue Huang, Michaeng Ng,… trong các bài báo của mình đã bàn về nhà kho dữ liệu, cơ sở dữ liệu đa chiều và mô hình khối dữ liệu [18], [34], [35], [40]. - Năm 2009 John Paredes đã bàn về các công cụ của mô hình dữ liệu đa chiều [28]. - Năm 2010 các tác giả Apostolos Benisis, Christian S.Jensen, Torben Bach Pedersen, Christian Thomsen, & 1 mo-re trong các bài báo của mình cũng đã nói tới khối dữ liệu, cơ sở dữ liệu đa chiều và nhà kho dữ liệu [15], [19]. - Năm 2013 các tác giả Ralph Kimball, Margy Ross, Haiping Lu, Konstantinos N. Plataniotis, Anastasios Venetsanopoulos đã trình bày về bộ công cụ của nhà kho dữ liệu, dữ liệu đa chiều,…[23], [44]. - Năm 2014 các tác giả Ladjel Bellatreche, Mukesh K. Mohania, Ralph Kimball trong các bài báo của mình đã bàn về nhà kho dữ liệu và các công cụ của nó [32], [45]. 3.2 Các nghiên cứu tại Việt Nam - Tại Việt Nam, năm 1998 các tác giả Nguyễn Xuân Huy, Trịnh Đình Thắng đã đề xuất ra một mở rộng của mô hình quan hệ, đó là mô 17 hình dữ liệu dạng khối [4], mô hình này khác với các mô hình mà các nhà khoa học nước ngoài đã đề xuất. - Trong mô hình dữ liệu dạng khối, các tác giả đã đưa ra các khái niệm như: khối, lược đồ khối, lát cắt, đại số quan hệ trên khối, các thuộc tính chỉ số, phụ thuộc hàm,… đồng thời chứng minh nhiều tính chất trên các khái niệm này [4], [5], [7], [8]. - Năm 2008 các tác giả Trịnh Đình Thắng và Trịnh Đình Vinh đã đề xuất khái niệm phụ thuộc đa trị trong lược đồ khối và chứng minh một số tính chất của nó [9]. - Năm 2009 các tác giả Vũ Đức Thi và Trịnh Đình Vinh đã đưa ra các khái niệm phụ thuộc đa trị xấp xỉ, phụ thuộc hàm xấp xỉ và bao đóng xấp xỉ mức α trong mô hình dữ liệu dạng khối [11]. - Năm 2010 các tác giả Vũ Đức Thi và Trịnh Đình Vinh đề xuất các khái niệm α-phụ thuộc hàm và α-bao đóng, phủ của tập phụ thuộc hàm và vấn đề tựa chuẩn hóa trong mô hình dữ liệu dạng khối [12], [13]. 4. Các vấn đề nghiên cứu chính của luận án Trước khi nghiên cứu các phụ thuộc logic trong mô hình dữ liệu dạng khối, luận án tập trung nghiên cứu các vấn đề sau: - Đề xuất ra khái niệm mới: đó là phép dịch chuyển lược đồ khối, từ đó nghiên cứu vấn đề biểu diễn khóa và bao đóng, khóa, các tập thuộc tính nguyên thủy, phi nguyên thủy với phép dịch chuyển lược đồ khối trong mô hình dữ liệu dạng khối. - Đưa ra khái niệm về lược đồ cân bằng trong mô hình dữ liệu dạng khối, từ đó tìm ra mối quan hệ của nó với vế trái cực tiểu và khóa trong lược đồ khối. 18 - Tìm và chứng minh các tính chất của ánh xạ đóng với phép dịch chuyển lược đồ khối trong mô hình dữ liệu dạng khối. - Đề xuất khái niệm phụ thuộc Boolean dương trên lược đồ khối, phát biểu và chứng minh các tính chất của nó trong mô hình dữ liệu dạng khối,… - Đề xuất khái niệm phụ thuộc Boolean dương tổng quát trên lược đồ khối, phát biểu và chứng minh các tính chất của nó trong mô hình dữ liệu dạng khối,… 5. Một số kết quả nghiên cứu của luận án Các kết quả nghiên cứu của luận án được đưa ra ở toàn bộ các chương 2 và 3. Cụ thể như sau: - Đề xuất khái niệm về phép dịch chuyển lược đồ khối và chứng minh các kết quả về biểu diễn bao đóng và khóa qua phép dịch chyển lược đồ khối. - Mối quan hệ giữa khóa và các tập thuộc tính nguyên thủy, phi nguyên thủy với phép dịch chuyển lược đồ khối. - Đề xuất khái niệm lược đồ khối cân bằng và chứng minh các kết quả về lược đồ khối cân bằng, vế trái cực tiểu và khóa với phép dịch chuyển lược đồ khối. - Chứng minh các tính chất của ánh xạ đóng trong mô hình dữ liệu dạng khối với phép dịch chuyển lược đồ khối. - Đề xuất khái niệm phụ thuộc Boolean dương trên lược đồ khối và chứng minh các tính chất của nó trong mô hình dữ liệu dạng khối. - Đề xuất khái niệm phụ thuộc Boolean dương tổng quát trên lược đồ khối, chứng minh các tính chất và thể hiện của nó trong mô hình dữ liệu dạng khối. 19 6. Bố cục của luận án Luận án gồm phần mở đầu, 3 chương tiếp theo và cuối cùng là phần kết luận. Chương 1 trình bày một vài nét cơ bản nhất về mô hình dữ liệu và giới thiệu một mô hình dữ liệu cụ thể: đó là mô hình dữ liệu dạng khối một mở rộng của mô hình dữ liệu quan hệ. Ánh xạ đóng và các tính chất của nó cùng với các khái niệm về công thức Boolean, công thức Boolean dương, ... cũng đã được giới thiệu ở đây. Chương 2 đưa ra các kết quả nghiên cứu đầu tiên của luận án: đề xuất các khái niệm mới về phép dịch chuyển lược đồ khối, lược đồ khối cân bằng,... Từ đó, các kết quả về biểu diễn của bao đóng, khóa qua phép dịch chuyển, thuật toán dịch chuyển lược đồ khối,… cùng các tính chất của lược đồ khối cân bằng, thuật toán dịch chuyển,... đã được phát biểu và chứng minh. Chương 3 giới thiệu các khái niệm mới như: phụ thuộc Boolean dương, phụ thuộc Boolean dương tổng quát trong mô hình dữ liệu dạng khối,... trình bày khái niệm ánh xạ đóng trên khối. Chứng minh các tính chất của ánh xạ đóng trên khối, điều kiện cần và đủ của tập thuộc tính chỉ số bất động, tập sinh, tập các đối nguyên tử,... Các tính chất, định lý tương đương,... của phụ thuộc Boolean dương, phụ thuộc Boolean dương tổng quát trên khối, thể hiện của phụ thuộc Boolean dương tổng quát,... cũng đã được phát biểu và chứng minh ở đây.
- Xem thêm -