Đăng ký Đăng nhập

Tài liệu Bài giảng toán 3

.PDF
185
7
79

Mô tả:

TRẦN AN HẢI  BÀI GIẢNG TOÁN 3 NHẬP MÔN ĐẠI SỐ TUYẾN TÍNH HÀ NỘI - 2008 TÀI LIỆU THAM KHẢO [1] Strang, Gilbert, Introduction to Linear Algebra, 3rd ed., Wellesley-Cambridge press, 2005 [2] Strang, Gilbert, Linear Algebra and its Applications, Academic press, 1976 [3] Leon, Steven J., Linear Algebra with Applications, Upper Saddle River, N.J.: Prentice Hall, 1998 [4] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh, Toán học cao cấp - Tập 1, Nhà xuất bản giáo dục, 2007  TUẦN 1  GIỚI THIỆU MÔN HỌC Theo dòng lịch sử, môn Đại số tuyến tính khởi đầu với việc giải và biện luận các hệ phương trình bậc nhất. Về sau để có thể hiểu rõ cấu trúc của tập nghiệm và điều kiện để một hệ phương trình bậc nhất có nghiệm, người ta xây dựng những khái niệm trừu tượng hơn như không gian vectơ và phép biến đổi tuyến tính. Người ta cũng có nhu cầu khảo sát các không gian với nhiều thuộc tính hình học hơn, trong đó có thể có khái niệm độ dài và góc. Ngày nay Đại số tuyến tính được ứng dụng vào hàng loạt lĩnh vực khác nhau, từ Giải tích tới Hình học, từ Cơ học, Vật lý tới Kỹ thuật, Kinh tế, ... Vì thế, nó trở thành một môn học cơ sở cho sinh viên các chuyên ngành khoa học cơ bản và công nghệ trong tất cả các trường đại học. Chương 1 GIỚI THIỆU VECTƠ GIẢI HỆ PHƯƠNG TRÌNH TUYẾN TÍNH _____________________________________________________ 1.1  GIỚI THIỆU VECTƠ Các phép toán vectơ Vectơ hình học là đoạn thẳng được định hướng •→ gốc ngọn Các vectơ hình học có hai phép toán cơ bản là phép cộng vectơ và phép nhân vectơ với một vô hướng. ĐỊNH NGHĨA 1. Tổng v + w của hai vectơ v và w được xác định theo Quy tắc ba điểm hoặc Quy tắc hình bình hành. Phép toán tìm tổng của hai vectơ được gọi là phép cộng vectơ. 2. Tích xv của vectơ v với số thực x, được xác định như sau: * Nếu x ≥ 0 thì xv cùng hướng với v. Nếu x < 0 thì xv ngược hướng với v; * |xv| = |x|⋅|v|. x thường được gọi một vô hướng. Phép toán tìm tích của một vectơ với một vô hướng được gọi là phép nhân vectơ với một vô hướng. Ngoài ra, hiệu của hai vectơ v và w là v - w := v + (-w). Phép toán tìm hiệu của hai vectơ được gọi là phép trừ vectơ. ĐỊNH NGHĨA Với những vectơ v1, v2,...,vn và các vô hướng x1, x2, ..., xn, gọi x1v1+x2v2+...+xnvn là một tổ hợp tuyến tính của v1, v2,...,vn. VÍ DỤ Nhận xét 1) Khi vectơ v ≠ 0, tập tất cả các tổ hợp xv lấp đầy một đường thẳng. 2) Khi những vectơ v1 và v2 không cùng phương, tập tất cả các tổ hợp x1v1 + x2v2 lấp đầy một mặt phẳng. 3) Khi ba vectơ v1, v2, v3 không đồng phẳng, tập tất cả các tổ hợp x1v1+x2v2 +x3v3 lấp đầy không gian. ĐỊNH NGHĨA Tích vô hướng của hai vectơ v và w là số thực v⋅w := |v|⋅|w|cosϕ, trong đó ϕ là góc giữa hai vectơ v và w. Hermann Grassmann (1808-1877) cha đẻ của tích vô hướng Biểu diễn vectơ hình học theo toạ độ Việc tìm một tổ hợp tuyến tính của nhiều vectơ hình học theo định nghĩa của hai phép toán vectơ nói chung là cồng kềnh. Tuy nhiên, việc này được giải quyết rất gọn khi biểu thị các vectơ hình học dưới dạng tọa độ. Với mỗi vectơ hình học v trong mặt phẳng tọa độ Oxy luôn luôn tồn tại duy nhất hai số x và y sao cho v = x i + y j . Ta gọi cặp số (x, y) là tọa độ của v. Để tiện làm việc về sau, cặp số này còn được viết ở dạng x   y .   Ta đồng nhất v với cặp số này: x  v=  .  y Với mỗi vectơ hình học v trong không gian Oxyz luôn luôn tồn tại duy nhất ba số x, y và z sao cho v = x i + y j + z k . Ta gọi bộ ba số (x, y, z) là tọa độ của v. Để tiện làm việc về sau, bộ ba số này còn được viết ở dạng x   y .    z  Ta đồng nhất v với bộ ba số này: x  v =  y  .  z  Giả sử x   y  x'   y ' v=  ,w=   và c là một vô hướng. Ta có  x + x'  cx  v+w=  , cv =   , v⋅w = xx' + yy'   y + y ' cy  Đối với các vectơ hình học trong không gian ta cũng có những điều tương tự trên. Mở rộng khái niệm vectơ Từ biểu diễn toạ độ của vectơ hình học ta có thể mở rộng khái niệm vectơ hình học một cách tự nhiên như sau: ĐỊNH NGHĨA Gọi dãy gồm n số thực  x1  x   2 M     xn  là một vectơ cột n - thành phần. Ta còn có thể viết như sau (x1, x2,..., xn), nhưng không được hiểu là vectơ hàng. Tập các vectơ cột n - thành phần được ký hiệu là Rn. Ta ký hiệu các vectơ cột bởi những chữ cái nhỏ viết nghiêng và đậm, còn các số thực bởi những chữ cái nhỏ viết nghiêng không đậm. Trên tập Rn ta định nghĩa các phép toán, tổ hợp tuyến tính, tích vô hướng, độ dài của vectơ theo các công thức tương tự với những công thức trong hình học nói trên. ĐỊNH NGHĨA 1. Cộng hai vectơ theo từng thành phần:  x1   y1   x1 + y1  x   y  x + y  2  2+ 2= 2 . M  M   M         xn   y n   x n + y n  2. Nhân một vectơ với một vô hướng (là số thực) theo từng thành phần:  x1  cx1   x  cx  2 2 c  =  . M   M       x n  cxn  n 3. Với các vectơ v1, v2,...,vm thuộc R và các vô hướng x1, x2, ..., xm, gọi x1v1+x2v2+ ⋅⋅⋅ +xmvm là một tổ hợp tuyến tính của v1, v2,...,vm. 4. Tích vô hướng của hai vectơ v = (x1, x2,..., xn) và w = (y1, y2,..., yn) là số thực v⋅w = x1y1 + x2y2 + ⋅⋅⋅ + xnyn. 5. Độ dài của vectơ v = (x1, x2,..., xn) là số |v| = (v⋅v)1/2 = (x12 + x22 + ⋅⋅⋅ + xn2)1/2. Sau này ta gọi Rn là một không gian n-chiều. Như vậy, tập các vectơ hình học trên mặt phẳng, hay không gian 2-chiều, là  x   R2 =   1  x1 , x 2 ∈ R  .  x2   Tập các vectơ hình học trong không gian, hay không gian 3-chiều, là   x1     R =  x2  x1 , x 2 , x3 ∈ R  .  x    3   3 Ứng dụng Trong một siêu thị có n mặt hàng, ký hiệu qi là lượng mặt hàng thứ i (qi dương khi bán và âm khi mua). Ký hiệu pi là giá của một đơn vị mặt hàng thứ i. Với hai vectơ q = (q1, q2,..., qn) và p = (p1, p2,..., pn), thì doanh thu = q⋅p = q1p1 + q2p2 + ⋅⋅⋅ + qnpn. Khi q⋅p = 0 có nghĩa là "cân bằng về sổ sách". 1.2  ĐỊNH NGHĨA HỆ PHƯƠNG TRÌNH TUYẾN TÍNH Có lẽ bài toán quan trọng nhất trong toán học là giải một hệ phương trình tuyến tính. Có trên 75% vấn đề toán học gặp trong khoa học hay những áp dụng công nghiệp liên quan đến giải một hệ tuyến tính ở một giai đoạn nào đấy. Bằng cách sử dụng những phương pháp của toán học hiện đại, thường có thể đạt được một bài toán phức tạp và quy nó về một hệ tuyến tính đơn giản. Các hệ tuyến tính xuất hiện trong các áp dụng vào những lĩnh vực như thương mại, kinh tế, xã hội học, nhân khẩu học, di truyền học, điện học, kỹ thuật và vật lí. Một số bài toán dẫn đến hệ phương trình tuyến tính Bài toán Mạng điện Cho mạng điện Hãy xác định dòng điện trong mỗi nhánh. Thiết lập hệ phương trình Áp dụng Định luật Kirchhoff về dòng điện "Tổng đại số các dòng điện tại một nút bằng 0", ta có i1 - i2 + i3 = 0 (nút A) -i1 + i2 - i3 = 0 (nút B) Áp dụng Định luật Kirchhoff về điện thế "Tổng đại số hiệu điện thế theo một vòng kín bằng 0", ta có 4i1 + 2i2 = 8 (mạch trên) 2i2 + 5i3 = 9 (mạch dưới). Ta có hệ i1 - i2 + i3 = 0 -i1 + i2 - i3 = 0 4i1 + 2i2 =8 2i2 + 5i3 = 9. Bài toán Lưu lượng giao thông ☺ Dưới đây là các đường một chiều giao nhau và lượng xe vào-ra trung bình mỗi giờ lúc cao điểm trong một khu vực ở thành phố nào đấy. Hãy xác định lưu lượng xe ở mỗi ngã tư. Thiết lập hệ phương trình Tại mỗi giao lộ, số xe vào phải bằng số xe ra. Chẳng hạn, tại giao lộ A, số xe vào là x1+ 450 và số xe ra là x2 + 610. Như vậy x1 + 450 = x2 + 610 (giao lộ A) Tương tự x2 + 520 = x3 + 480 (giao lộ B) x3 + 390 = x4 + 600 (giao lộ C) x4 + 640 = x1 + 310 (giao lộ D). Ta có hệ x1 - x2 = 160 x2 - x3 = -40 x3 - x4 = 210 -x1 + x4 = -330. Giải hệ gồm bốn phương trình này ta xác định được lưu lượng xe.☺ Ta sẽ nghiên cứu các hệ phương trình có dạng như trong hai bài toán trên. ĐỊNH NGHĨA Một phương trình tuyến tính n ẩn là một phương trình có dạng a1x1 + a2x2 + ⋅⋅⋅ + anxn = b, trong đó a1, a2, ..., an và b là những số thực, x1, x2, ..., xn là các ẩn. Một hệ phương trình tuyến tính gồm m phương trình n ẩn (hay hệ m×n) là một hệ có dạng a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn = b2 .......................................................................... am1x1 + am2x2 + ⋅⋅⋅ + amnxn = bm trong đó tất cả aij và bj là những số thực, x1, x2, ..., xn là các ẩn. Tìm hiểu hệ phương trình tuyến tính là một trong những vấn đề trung tâm của Đại số tuyến tính. Dạng hệ phương trình tuyến tính trong định nghĩa được gọi là dạng hàng. Trong trường hợp hệ m×3, dạng này có hình dung về hình học như sau: Nếu mỗi phương trình của hệ là phương trình một mặt phẳng, thì nghiệm của hệ là tọa độ giao điểm của m mặt phẳng. Những dạng khác của hệ phương trình tuyến tính Đối với hệ phương trình a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn = b2 ...................................................................... ta ký hiệu am1x1 + am2x2 + ⋅⋅⋅ + amnxn = bm  a1 j  a  2j vj =   (j = 1, ..., n), b =  M     a mj   b1  b   2. M   bm  Theo các phép toán vectơ, hệ trên đưa được về dạng phương trình vectơ hay dạng cột x1v1+ x2v2+ ⋅⋅⋅ + xnvn = b. Dạng này có hình dung hình học như sau: Nếu m = 3, phương trình vectơ có nghiệm khi và chỉ khi b là một tổ hợp tuyến tính của vj (j = 1, ..., n). Đối với phương trình tuyến tính ta ký hiệu a1x1 + a2x2 + ⋅⋅⋅ + anxn = b,  a1  a  h =  2 , x = M   a n   x1  x   2. M    xn  Dễ thấy vế trái của phương trình này là tích vô hướng h⋅x. Do đó phương trình này có dạng mới là h⋅x = b. Bây giờ ta xét hệ a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn = b2 ...................................................................... am1x1 + am2x2 + ⋅⋅⋅ + amnxn = bm Ta gọi bảng số  a11 a A =  21  M  a m1 a12 a 22 M am2 L a1n  L a 2 n  M   L a mn  là ma trận hệ số của hệ này. Ký hiệu  x1  x  hi = (ai1 , ai 2 ,L , ain ) (i = 1, ..., m), x =  2  , b = M    xn  Ta định nghĩa phép nhân A với x như sau  b1  b   2 . M   bm   a11 x1 + a12 x2 + L + a1n xn   h1 ⋅ x   a x + a x +L + a x   h ⋅ x  2 22 2 2n n  Ax =  21 1 =  ...    M  M   h ⋅ x  am1 x1 + am 2 x2 + L + a mn xn   m  Hệ phương trình này đưa được về dạng phương trình ma trận Ax = b. Ví dụ Dưới đây là ba cách thể hiện cùng một hệ phương trình tuyến tính * Dạng hàng * Dạng phương trình vectơ x1 + 2x2 + 3x3 = 6 2x1 + 5x2 + 2x3= 4 6x1 - 3x2 + x3 = 2. 1  2  3  6      x1 2 + x2  5  + x3 2 = 4 . 6  − 3 1  2 * Dạng ma trận 1 2 3  x1  6  2 5 2  x  = 4 .    2   6 − 3 1   x3  2 1.3  PHÉP KHỬ GAUSS Ma trận bậc thang và trụ Ta quan sát những ma trận sau đây 1 4 2  5 4 3 1 2 4 0 0 2 − 1 , 0 0 2 , 0 0 3 2 ,       0 0 5  0 0 0 0 0 0 0 5 0  0  0 4 0 0 0 2 1  . 0  0 Chúng có các đặc điểm chung là (1) Nếu hàng k không phải toàn 0, thì số các 0 đứng đầu hàng k+1 lớn hơn số các 0 đứng đầu hàng k. (2) Nếu có các hàng gồm toàn 0, thì chúng nằm dưới những hàng chứa số khác 0. ĐỊNH NGHĨA Ma trận bậc thang là ma trận có đặc điểm (1) và (2). Số khác không đầu tiên trong một hàng được gọi là trụ. Ví dụ 1 1 4 2  0 2 − 1 có các trụ 1, 2, 5.   0 0 5  1 2 4 0 0 0 3 2 có các trụ 1, 3.   0 0 0 0 Ma trận mở rộng ĐỊNH NGHĨA Đối với hệ a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn = b2 .......................................................................... am1x1 + am2x2 + ⋅⋅⋅ + amnxn = bm ta gọi bảng số a11 a12 L a1n  a21 a22 L a2 n [A b] =  ..........................  am1 am 2 L amn b1  b2  ..   bm  là ma trận mở rộng của nó. ĐỊNH NGHĨA Hệ dạng bậc thang là hệ phương trình tuyến tính có ma trận mở rộng dạng bậc thang. Ẩn có hệ số là trụ được gọi là biến trụ. Những ẩn còn lại được gọi là biến tự do. Ví dụ 2 1x1 + x2 + x3 + x4 + x5 = 1 1x3 + x4 + 2x5 = 0 1x5 = 3 Ta thấy 3 trụ là 1, 1, 1 nên x1, x3, x5 là các biến trụ, x2 và x4 là các biến tự do. Một trường hợp đặc biệt của hệ dạng bậc thang là hệ dạng tam giác a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a22x2 + ⋅⋅⋅ + a2nxn = b2 ...................................................... annxn = bn trong đó các hệ số aii khác 0 (i = 1, ..., n). Ta thấy ma trận mở rộng của hệ này có các trụ là aii (i = 1, ..., n). Những biến trụ là x1, x2, …, xn. Hệ dạng tam giác không có biến tự do. Phương pháp giải hệ dạng bậc thang Cách giải hệ dạng tam giác a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1 a22x2 + ⋅⋅⋅ + a2nxn = b2 ...................................................... annxn = bn Giải hệ này bằng phép thế ngược từ dưới lên. Từ phương trình một ẩn cuối cùng tìm −1 −1 . Tiếp theo, thay xn = bn a nn vào phương trình thứ n-1 ta lại có phương được xn = bn a nn trình một ẩn xn-1 cho phép tính xn-1. Lặp lại liên tiếp thủ tục này cho đến lúc gặp phương trình đầu tiên, ta tìm được nghiệm của hệ này. Rõ ràng hệ dạng tam giác có nghiệm duy nhất. Ví dụ 3 Hệ có nghiệm duy nhất (-3, 4, 2). 3x1 + 2x2 + x3 = 1 x2 - x3 = 2 2x3 = 4 Cách giải hệ dạng bậc thang có biến tự do Trường hợp hệ chứa phương trình dạng 0 = bi với bi khác 0: hệ vô nghiệm. Trường hợp còn lại: Trước hết ta loại đi tất cả các phương trình dạng 0 = 0 (vì chúng là hằng đẳng thức). Trong mỗi phương trình còn lại, chuyển những hạng tử chứa biến tự do (nếu có) sang vế phải rồi gán cho các biến này giá trị thực tùy ý. Ta có hệ dạng tam giác đối với những biến trụ. Giải hệ dạng tam giác này, ta tìm được giá trị của những biến trụ. Ví dụ 4 Giải hệ Chuyển hệ về 1x1 + x2 + x3 + x4 + x5 = 1 1x3 + x4 + 2x5 = 0 1x5 = 3 x 1 + x3 + x5 = 1 - x2 - x4 x3 + 2x5 = -x4 x5 = 3 Gán cho x2 và x4 giá trị thực tùy ý, rồi giải hệ này ta được x1 = 4 - x2, x3 = -6 - x4, x5 = 3. Nghiệm của hệ là (4 - x2, x2, -6 - x4, x4, 3). Chẳng hạn, nếu x2 = x4 = 0, thì một nghiệm của hệ là (4, 0, -6, 0, 3). Giải hệ phương trình tuyến tính bất kỳ C.F.Gauss đã đề xuất ra phương pháp giải hệ phương trình tuyến tính bất kỳ, có tên là phép khử Gauss. Đó là chuyển hệ cho trước về hệ phương trình tương đương có dạng bậc thang nhờ sử dụng những phép toán sau đây I. Đổi chỗ hai phương trình của hệ. II. Lấy một phương trình của hệ trừ đi bội của một phương trình khác trong hệ. III. Nhân cả hai vế của một phương trình trong hệ với một số khác 0. Carl Friedrich Gauss (1777-1855) Chú ý Trong quá trình thực hiện phép khử, nếu xuất hiện phương trình dạng 0 = 0, ta có thể loại nó khỏi hệ. Còn nếu xuất hiện phương trình dạng 0 = b với b khác 0, thì hệ vô nghiệm. Ví dụ 5 Giải hệ trong Bài toán Mạng điện i1 - i2 + i3 = 0 -i1 + i2 - i3 = 0 4i1 + 2i2 =8 2i2 + 5i3 = 9 Bước 1: phương trình 2 - (-1)×phương trình 1 phương trình 3 - 4×phương trình 1 ta được i1 - i2 + i3 = 0 0 =0 6i2 - 4i3 = 8 2i2 + 5i3 = 9 Bước 2: Đổi chỗ ba phương trình cuối, ta được hệ i1 - i2 + i3 = 0 2i2 + 5i3 = 9 6i2 - 4i3 = 8 0 = 0. (Thực ra ta có thể loại đi 0 = 0). Bước 3: phương trình 3- 3×phương trình 2 ta có i1 - i2 + i3 = 0 6i2 - 4i3 = 8 -19i3 = -19 0 = 0. Bước 4: Giải hệ này bằng phép thế ngược, ta có nghiệm i1 = 1, i2 = 2, i3 = 1. Nhận xét Quá trình giải hệ trên bằng phép khử Gauss có thể trình bày theo cách ghi lại sự biến đổi của ma trận mở rộng  1 − 1 1 0  1 − 1 1    0 − 1 1 − 1 0  → 0 0 4 2 0 8  0 6 − 4    2 5 9  0 2 5  0 0  1 − 1 1  5 0  0 2 → 8  0 6 − 4   9  0 0 0 0  1 − 1 1  5 9  0 2 → 8  0 0 − 19   0  0 0 0 0  9  . − 19   0  Ngoài ra, ta thấy các trụ là 1, 2, -19. Trụ dùng để khử những số cùng cột nằm bên dưới. Khi trụ thuộc cột j và ta muốn khử số cùng cột ở hàng i thì ta phải lấy hàng chứa số này trừ đi tích của hàng chứa trụ với một số thích hợp. Số thích hợp này được gọi là số nhân, ký hiệu là lij. Chẳng hạn, trụ 2 thuộc cột 2 và ta muốn khử số 6 cùng cột thuộc hàng 3 thì ta lấy hàng 3 (chứa trụ) trừ đi 3 lần hàng 2. Số nhân l32 = 6 = 3. 2 Số nhân lij = (phần tử cần khử trong hàng i, cột j) chia cho (trụ trong cột j). Phương pháp khử Gauss trừ phương trình thứ i đi lij lần phương trình thứ j. Ví dụ 6 Giải hệ trong Bài toán Lưu lượng giao thông x1 - x2 = 160 x2 - x3 = -40 x3 - x4 = 210 -x1 + x4 = -330.  1 − 1 0 0 160  1 − 1 0 0 160       0 1 − 1 0 − 40  → 0 1 − 1 0 − 40  →  0 0 1 − 1 210  0 0 1 − 1 210      − 1 0 0 1 − 330  0 − 1 0 1 − 170  1 − 1 0 0 160  1 − 1 0 0    0 1 − 1 0 − 40  → 0 1 − 1 0 0 0 1 − 1 210  0 0 1 − 1    0 0 0 0 − 1 1 − 210  0 0 160  − 40  . 210   0  Hệ có vô số nghiệm (x4 + 330, x4 + 170, x4 + 210, x4). Sơ đồ lưu lượng giao thông đã không cho đủ thông tin để xác định duy nhất x1, x2, x3, x4. Nếu biết thêm lưu lượng xe ở đường nối một cặp giao lộ bất kỳ, thì dễ dàng tính được lưu lượng xe ở các nhánh còn lại. Chẳng hạn khi biết lưu lượng xe ở đường nối giao lộ C và D là 200 xe/giờ, thì x4 = 200. Suy ra x1 = 530, x2 = 370, x3 = 410. Ví dụ 7 Giải hệ x1 + x2 + x3 + x4 + x5 = 1 -x1 - x2 + x5 = -1 -2x1 - 2x2 + 3x5 = 1 x3 + x4 + 3x5 = -1 x1 + x2 + 2x3 + 2x4 + 4x5 = 1. Giải  1 1   −1 −1 − 2 − 2   0 0  1 1  1  0 0  0 0  1 1   1 −1  0 3 1 → 0   3 −1  0 0  4 1  1 1 1 0 0 0 0 1 1 2 2 1 1 1 1 11   0 1 1 2 0 0 0 0 0 1 3  → 0   0 0 0 1 − 1 0 0 0 0 0 1 0   1 1 1 11  0 1 1 2 0  0 2 2 53 →  0 1 1 3 − 1 0 1 1 3 0  1 1 1 1 1  0 1 1 2 0  0 0 0 1 3 .  0 0 0 0 −4  0 0 0 0 − 3 Từ ma trận cuối suy ra hệ vô nghiệm. Chú ý 1) Hệ tuyến tính chỉ có một trong ba khả năng: duy nhất nghiệm, có vô số nghiệm, vô nghiệm. Hệ n×n mà có nghiệm duy nhất được gọi là hệ không suy biến, còn trong trường hợp ngược lại nó được gọi là hệ suy biến. 2) Khi đưa được ma trận mở rộng về dạng bậc thang, để lấy ra nghiệm ta có thể không cần dùng phép thế ngược, mà đem chia mỗi hàng chứa trụ cho trụ ấy rồi dùng phép khử biến đổi tiếp ma trận này về dạng bậc thang thu gọn, đó là ma trận bậc thang mà các trụ bằng 1 và trụ là phần tử khác 0 duy nhất trong cột chứa nó. Ta quay lại Ví dụ 3 1 − 1 1 1 − 1 1 0     5 9  0 1 2.5 0 2 → 0 0 − 19 − 19  0 0 1    0  0 0 0 0 0 0 0  1 − 1  4.5 0 1 → 1  0 0   0  0 0 0 − 1 1  0 2  0 → 1 1  0   0 0  0 0 0 1 1 0 2 . 0 1 1  0 0 0 Từ ma trận bậc thang thu gọn cuối này, ta có nghiệm (1, 2, 1). 1.4  HỆ THUẦN NHẤT ĐỊNH NGHĨA Hệ phương trình tuyến tính có dạng a11x1 + a12x2 + ⋅⋅⋅ + a1nxn = 0 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn = 0 ...................................................................... được gọi là hệ thuần nhất. am1x1 + am2x2 + ⋅⋅⋅ + amnxn = 0 Ký hiệu A là ma trận hệ số, 0 = (0, ... , 0) ∈Rm. Hệ thuần nhất có dạng ma trận là Ax = 0 Chú ý Hệ thuần nhất luôn luôn có ít nhất một nghiệm x = (0, ... , 0) = 0∈Rn, gọi là nghiệm tầm thường. Nghiệm khác nghiệm này gọi là nghiệm không tầm thường. Ứng dụng Trong quá trình quang hợp, thực vật sử dụng năng lượng tỏa ra từ ánh sáng mặt trời để biến đổi carbon dioxide (CO2) và nước (H2O) thành glucose (C6H12O6) và oxygen (O2). Phương trình phản ứng hóa học có dạng x1CO2 + x2H2O → x3O2 + x4C6H12O6 Để cân bằng phương trình ta phải chọn x1, x2, x3, x4 sao cho số nguyên tử của carbon, hydrogen, và oxygen ở hai vế bằng nhau. Do carbon dioxide chứa một nguyên tử carbon và glucose chứa sáu nguyên tử carbon nên để cân bằng nguyên tử carbon ta đòi hỏi x1 = 6x4. Tương tự, để cân bằng oxygen ta cần 2x1 + x2 = 2x3 + 6x4 và cuối cùng để cân bằng hydrogen, ta cần 2x2 = 12x4 Ta có hệ thuần nhất x1 - 6x4 = 0 2x1 + x2 - 2x3 - 6x4 = 0 2x2 - 12x4 = 0 Hệ có nghiệm không tầm thường (6x4, 6x4, 6x4, x4) với x4 là số nguyên dương. Đặc biệt nếu lấy x4 = 1, thì x1 = x2 = x3 = 6 và phương trình có dạng 6CO2 + 6H2O → 6O2 + C6H12O6
- Xem thêm -

Tài liệu liên quan