Skkn giúp học sinh tránh sai lầm khi giải toán và trình bày lời giải môn toán.

  • Số trang: 11 |
  • Loại file: PDF |
  • Lượt xem: 27 |
  • Lượt tải: 0
nganguyen

Đã đăng 34173 tài liệu

Mô tả:

Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai 1.ĐẶT VẤN ĐỀ Trong dạy học Toán việc vận dụng lý thuyết đã học để giải bài toán của học sinh còn gặp một số khó khăn và sai lầm.Chính vì vậy giáo viên cần hướng dẫn học sinh sử dụng phương pháp nào để giúp học sinh giải bài toán mà không mắc phải sai lầm là cần thiết và phù hợp , tôi quyết định chọn đề tài:” GIÚP HỌC SINH TRÁNH SAI LẦM KHI GIẢI TOÁN VÀ TRÌNH BÀY LỜI GIẢI MÔN TOÁN ” 2. GIẢI QUYẾT VẤN ĐỀ 2.1 Cơ sở lý luận của vấn đề 2.1.1 Cơ sở triết học: Ta biết răng mâu thuẫn là động lực thúc đẩy quá trình phát triển. Do đó trong quá trình giảng dạy, thầy cô giáo cần tạo ra động cơ học tập giúp các em, giải quyết được những mâu thuẫn, những sai lầm trong lời giải trong quá trình giải toán và khắc phục được những sai lầm đó. Từ đó, các em thấy hứng thú vá say mê hơn trong học toán. Trang 1 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai 2.1.2 Cơ sở tâm lí học: Về mặt tâm lý, con người ta chỉ bắt đầu tư duy tích cực khi nảy sinh nhu cầu tư duy khi đứng trước một khó khăn cần phải khắc phục. Thực tế giảng dạy cho thấy khi giải toán, học sinh hay mắc phải những sai lầm theo cách này hay cách khác mà đôi khi không nhận ra. Do đó cần có sự giúp đỡ của thầy cô. 2.1.3 Cơ sở giáo dục học: Để học sinh học tập tốt hơn, các thầy cô giáo cần tạo cho học sinh hứng thú học tập. Cần cho học sinh thấy được những sai lầm của lời giải và cách khắc phục. 2.2 Thực trạng của vấn đề a. Về phía giáo viên: -Thường nóng vội sợ mất thời gian nên kiểm tra không kỹ do đó không phát hiện ra nhầm lẫn của học sinh. Trang 2 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai - Thường tập trung làm việc nhiều với học sinh khá, giỏi mà không chú ý quan tâm giúp đỡ những học sinh trung bình, yếu nhằm phát hiện sửa chữa kịp thời những sai lầm. b. Về phía học sinh: -Thường đọc qua loa đề bài rồi vội giải ngay, khi giải thì vội vàng, lập luận không chặc chẽ thậm chí vận dụng kiến thức không đúng. -Việc học lý thuyết chưa được quan tâm đúng mức nên không nắm vững những công thức, thường lẫn lộn những công thức với nhau. - Không nắm được phép biến đổi nào dẫn đến phương trình tương đương, phép biến đổi nào dẫn đến phương trình hệ quả. 2.3. Các biện pháp đã tiến hành để giải quyết vấn đề 2.3.1 Sai lầm khi giải toán lượng giác Ví dụ 1: Giải phương trình: tg5x.tgx=1(1) Ví dụ 2.Giải phương trình: tg3x = tg5x. Ví dụ 3.Giải phương trình: Trang 3 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai Cos(cosx) = Cos(2cosx) Ví dụ 4.Giải phương trình: 2log3(cotgx) = log2(cosx) (*) Ví dụ 5: Tính giới hạn: I= lim x 0 1  cos 4 x x Ví dụ 6: Cho tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức: T= sinA +sin B +sinC + 1 1 1   sin A sin B sin C Ví dụ 7: Giải phương trình: cos 2 x  1  sin 2 x  2 sin x  cos x (5) 2.3.2 Các sai lầm thường gặp trong giải phương trình lớp 10 f ( x)  g ( x)  f ( x).h( x)  g ( x).h( x) ? Ví dụ 1: Giải phương trình: x 2  3x  2  x 2  x  1  4 x  3 (3)  f ( x).h( x)  g ( x).h( x)  h( x )  0 KẾT LUẬN: f ( x)  g ( x)   Bài tập tương tự: Giải phương trình: Trang 4 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai a. ( x  1  1)( x  10  4)  x A.B  A. B ; Ví dụ 2: b. ( x  1  1)( x  1  x2  x  7)  x A  B A B ? Giải phương trình ( x  1)( x2  x  2)  x  1 (4) Ví dụ 3.Giải phương trình: 2 x 2  9  ( x  5)  KẾT LUẬN: A.B      A. BnêuA, B  0 A  ;   A.  BnêuA, B  0 B    x3 x 3 (5) A nêuA  0, B  0 B A nêuA  0, B  0 B Các bài tập tương tự: Giải các phương trình sau: a. 3 x 2  25  (2 x  1) x 5 x5 c. (3x  1)(3x2  4 x  1)  x  1 b. 2 x 2  x  6  ( x  5) x2 x 3 d. (2 x  3)(2x2  x  3)  x  1 Trang 5 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai  B C A.B  A.C   A  0 ? Ví dụ 4: Giải phương trình sau: 2 x3  3x  x2  2 x (6) Nguyên nhân sai lầm: Phép biến đổi phương trình sau không phải là phép biến đổi tương đương x(2 x 2  3)  x( x  2)  x 2 x 2  3  x x  2 KẾT LUẬN: A  0  A.B  A.C    B  C    A  0; A.B  0 2.3.3 Sai lầm thường gặp trong giải bất phương trình lớp 10  g ( x)  0 f ( x) a   g ( x) b b. f ( x)  a.g ( x) Ví dụ 1: Giải bất phương trình: x 1 1  x  x  12 2 2 ;  f ( x)  0; g ( x)  0 1 1   f ( x) g ( x)  f ( x)  g ( x) (7) Trang 6 ? Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai Ví dụ 2 .Giải bất phương trình: KẾT LUẬN: 1 1  (8) x  3 4x  6 f ( x) a f ( x) a     0  b.g ( x)[bf(x)-ag(x)]>0 g ( x) b g ( x) b 1 1   f ( x).g ( x)[g ( x)  f ( x)]  0 f ( x) g ( x) f 2 ( x) g ( x)  0  g ( x)  0; f 2 ( x) g ( x)  0  g ( x)  0 ? Ví dụ 3: Giải bất phương trình:x2(2x2-3x+1)  0 (9)  f ( x)  0 2  f ( x)  0 2 ; f ( x) g ( x)  0   KẾT LUẬN: f ( x) g ( x)  0    g ( x)  0  g ( x)  0 Bài tập tương tự: Giải bất phương trình: (2 x 1)2 (4 x  3) 4 (3x2  5 x  2)  0 Trang 7 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai f (x)  0 f (x)  0 f (x).g(x)  0   ; f (x).g(x)  0   g(x)  0 g(x)  0 Ví dụ 4: ? Giải bất trình : ( x2  3x) 2 x2  3x  2  0 (10)  KẾT LUẬN: f ( x) g ( x)  0      f ( x)  0; x  D g ( x)    g ( x)  0 f ( x) g ( x)  0     f ( x)  0 f ( x) g ( x)  0    f ( x)  0   g ( x)  0 Bài tập tương tự:Giải bất phương trình: (2 x  5) 2 x2  5x  2  0 f ( x )  g ( x )  f ( x )  h( x )  g ( x )  h( x ) f ( x )  h( x )  g ( x )  h( x )  f ( x )  g ( x ) Ví dụ 5: Giải bất phương trình sau: x 2  x  4  4  x 2  ? x2 2  4  x2 (11) Trang 8 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai KẾT LUẬN: f ( x)  g ( x)  f ( x)  h( x)  g ( x)  h( x) ;h(x) D với D là tập xác định của f ( x)  g ( x) f ( x)  h( x)  g ( x)  h( x)  f ( x)  g ( x) ;với x thuộc tập xác định của f ( x)  h( x)  g ( x)  h( x) Bài tập tương tự:Giải bất phương trình: 3x 2  2 x  1  25  x 2  x2 5  25  x 2 2.3.4 Sai lầm trong giải toán bất đẳng thức và giá trị lớn nhất, nhỏ nhất  a, b  0 1 1  , tìm GTNN của P  2 2 2ab 1 a  b a  b  1 Ví dụ 1: Cho   a, b  0 1 1 , tìm GTNN của biểu thức P  2 2   4ab . ab a b a  b  1 Ví dụ 2. Cho   a, b  0 1 1 1 , tìm GTNN của biểu thức S  3 3  2  2 . a b a b ab a  b  1 Ví dụ 3. Cho  2.4 Hiệu quả của sáng kiến kinh nghiệm Trang 9 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai Với việc hướng dẫn học sinh khắc phục những sai lầm như trên, tôi thấy việc trình bày lời giải của học sinh đã ít mắc sai lầm hơn. Hiệu quả thấy rõ nhất là học sinh Trịnh Thị Hà My đã không qua được kì thi cấp tỉnh năm học 2012-2013 vì lỗi trình bày đã đạt giải quốc gia năm học 2014. 3.KẾT LUẬN Sáng kiến đã chỉ ra một số phương pháp giúp học sinh tránh được sai lầm trong giải toán và trình bày lời giải. Dù đã rất cố gắng, tham khảo tài liệu, cộng với những kinh nghiệm thực tế trong giảng dạy của tác giả nhưng bản không thể tránh khỏi những khiêm khuyết. Rất mong nhận được ý kiến đong góp của các đồng nghiệp để bản sáng kiến hoàn thiện hơn. TÀI LIỆU THAM KHẢO [1] Trần văn Trứ-Trường THPT Lê Quý Đôn –Tam Kỳ, “Khắc phục một số sai lầm cho học sinh lớp 10 khi giải phương trình và bất phương trình” [2] Nguồn Internet, “Kĩ thuật chọn điểm rơi chứng minh bất đẳng thức Cô Si” [3] Võ Thị Thùy, Một số sai lầm của học sinh khi giải toán lượng giác Trang 10 Giáo viên: Nguyễn Việt Hà-THPT Chuyên Lào Cai [4] Một số tư liệu khác trên Internet. Trang 11
- Xem thêm -