Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu hoạt tính sinh học của một số chất phân lập từ các chủng vi nấm nội s...

Tài liệu Nghiên cứu hoạt tính sinh học của một số chất phân lập từ các chủng vi nấm nội sinh thuộc họ cam (rutaceae) và họ gừng (zingiberaceae) (tóm tắt)

.PDF
28
646
50

Mô tả:

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐH KHOA HỌC TỰ NHIÊN VÕ THỊ NGỌC MỸ LUẬN ÁN TIẾN SĨ NGHIÊN CỨU PHÂN LẬP CÁC CHỦNG VI NẤM NỘI SINH CÓ KHẢ NĂNG TẠO HỢP CHẤT CÓ HOẠT TÍNH SINH HỌC TỪ CÂY THUỘC HỌ CAM (RUTACEAE) VÀ HỌ GỪNG (ZINGIBERACEAE) Chuyên ngành: VI SINH VẬT HỌC Mã số chuyên ngành: 62 42 40 01 TOÙM TAÉT LUAÄN AÙN TIEÁN SÓ SINH HỌC Tp.HCM, năm 2016 Công trình được hoàn thành tại: Bộ Môn Vi Sinh – Kí Sinh Trùng, Khoa Dược, Trường Đại Học Y- Dược Tp.HCM Người hướng dẫn khoa học: Phản biện 1: PGS. TS. Nguyễn Tiến Thắng Phản biện 2: TS. Phạm Nguyễn Đức Hoàng Phản biện 3: TS. Đinh Minh Hiệp Phản biện độc lập 1: TS. Phạm Nguyễn Đức Hoàng Phản biện độc lập 2: TS. Đinh Minh Hiệp Luận án sẽ được bảo vệ trước Hội đồng chấm luận án họp tại ................................................................................................................. ................................................................................................................. vào lúc giờ ngày tháng năm Có thể tìm hiểu luận án tại thư viện: - Thư viện Khoa học Tổng hợp Tp.HCM Thư viện Trường Đại học Khoa học Tự Nhiên GIỚI THIỆU LUẬN ÁN 1. Mở đầu Vi sinh vật nội sinh là những vi sinh vật sống bên trong các mô thực vật nhưng không gây bệnh cho cây chủ. Trong đó, vi khuẩn và vi nấm là các vi sinh vật nội sinh thường gặp nhất. Theo nghiên cứu gần đây của Hawksworth và Rossman ước tính có đến 1,5 triệu loài vi nấm khác nhau, nhưng chỉ khoảng 100.000 loài đã được mô tả. Vi nấm nội sinh có mối quan hệ chặt chẽ với cây chủ, chúng sử dụng các chất dinh dưỡng trong cây để tồn tại, tạo ra các sản phẩm trao đổi chất có hoạt tính sinh học như các hormon sinh trưởng, các chất kháng sinh có khả năng bảo vệ cây khỏi các vi sinh vật gây bệnh. Nhiều tài liệu cho thấy, khi sống cộng sinh trong mô thực vật, vi nấm nội sinh đã sinh ra nhiều hoạt chất kháng khuẩn và kháng nấm. Họ Cam (Rutaceae) và họ Gừng (Zingiberaceae) ở Việt Nam rất đa dạng, trong đó cam, chanh, quýt, bưởi...là những cây trồng phổ biến, có nhiều ứng dụng trong dược phẩm, thực phẩm… Từ những đặc tính trên cho thấy, tiềm năng đây là những họ chứa hệ vi nấm nội sinh phong phú, sinh nhiều chất biến dưỡng và có ý nghĩa trong việc điều trị bệnh...Tuy vậy, cho đến nay, ở Việt Nam nói riêng và trên thế giới nói chung vẫn chưa có nhiều nghiên cứu về vi nấm nội sinh trên các loài cây thuộc hai họ thực vật này. Do đó, việc nghiên cứu tìm kiếm các chủng vi nấm nội sinh có khả năng tạo ra các chất biến dưỡng có lợi và có khả năng sinh các hoạt chất sinh học với hy vọng dùng để điều trị bệnh cho người là một công việc hết sức thú vị và được nhiều nhà nghiên cứu quan tâm. Từ đó chúng tôi thực hiện luận án: “Nghiên cứu phân lập các chủng vi nấm nội sinh có khả năng tạo hợp chất có hoạt tính sinh học từ cây thuộc họ Cam (Rutaceae) và họ Gừng (Zingiberaceae)” với mục tiêu chính là tìm ra được các chủng vi nấm nội sinh có khả năng sinh các hoạt chất sinh học cao từ các cây thuộc họ Cam (Rutaceae) và họ Gừng (Zingiberaceae). 2. Tính cấp thiết của đề tài: Hiện nay, thực vật và các hoạt chất chiết từ thực vật đang được sử dụng rộng rãi trong điều trị nhiều loại bệnh. Theo Balick và cộng sự năm 1996, trong 119 loại hợp chất hóa học, ít nhất 90 loại có nguồn gốc từ thực vật, đây là các hợp chất đang được sử dụng ở nhiều quốc gia. Trước thực tế này, một vấn đề được đặt ra là các hoạt chất sinh học quí giá trong cây là do chính cây sinh ra hay là do mối liên hệ tương sinh với các vi nấm nội sinh có ích trong mô thực vật. Trên thế giới có nhiều nghiên cứu về các hoạt chất kháng khuẩn, kháng nấm được sinh từ vi nấm nội sinh, và chúng chủ yếu thuộc về nhiều nhóm, bao gồm: alkaloid, peptid, steroid, terpenoid, phenol, quinine và flavonoid… Điều này mang lại nhiều hứa hẹn giải quyết được vấn đề kháng thuốc ở vi khuẩn vì các chất kháng sinh này là các hợp chất mới và có hoạt tính cao. 1 3. Những đóng góp mới của luận án: Đây là những nghiên cứu đầu tiên về A. terreus phân lập được từ họ Cam (Rutaceae) và họ Gừng (Zingiberaceae) trong nước và trên thế giới. Nghiên cứu này mở ra một hướng tiếp cận mới về nguồn và phương thức cung cấp hoạt chất kháng khuẩn và chống oxy hóa, với những đóng góp mới cụ thể như sau: - Phân lập và định danh được 16/32 chủng vi nấm nội sinh từ họ Cam (Rutaceae) và họ Gừng (Zingiberaceae) trong đó có 4 chủng A.terreus có khả năng sinh hoạt chất sinh học cao. - Khảo sát được điều kiện nuôi cấy tối ưu của chủng A. terreus R-TN3. Nuôi cấy và chiết được chất chiết thô có hoạt tính kháng S. aureus và MRSA của chủng A. terreus R-TN3. - Chiết được hợp chất Y có hoạt tính kháng khuẩn. Đã xác định được giá trị MIC của hợp chất Y có hoạt tính kháng S. aureus và MRSA. Hợp chất Y đã được xác định có khả năng ức chế 4 dòng tế bào ung thư thử nghiệm (ung thư vú MCF-7, ung thư cổ tử cung Hela, ung thư gan Hep G2 và ung thư phổi NCI-H460). - Đã tách được hợp chất tinh khiết X1 và X2 có hoạt tính chống oxy hóa cao và giải phổ để tìm ra cấu trúc hợp chất. Đây là các hợp chất mới chưa được công bố trên bất cứ công trình nào trong nước và trên thế giới. Hai hợp chất này có khả năng ức chế 4 dòng tế bào ung thư thử nghiệm, bao gồm các dòng tế bào: ung thư vú MCF-7, ung thư cổ tử cung Hela, ung thư gan Hep G2 và ung thư phổi NCI-H460. Hợp chất X1 cũng đã được chứng minh có khả năng ức chế tế bào ung thư thông qua khả năng cảm ứng apoptosis trên dòng tế bào ung thư phổi NCI-H460 ở các điều kiện khảo sát. 4. Bố cục luận án: Luận án gồm 124 trang, đặt vấn đề 2 trang, tổng quan tài liệu 26 trang, vật liệu và phương pháp nghiên cứu 21 trang, kết quả nghiên cứu 51 trang, bàn luận 11 trang, kết luận và kiến nghị 3 trang. Luận án có 66 bảng, 24 hình, 6 sơ đồ, 15 biểu đồ, 91 tài liệu tham khảo, gồm 10 tài liệu tiếng Việt, 79 tài liệu tiếng Anh và 2 tài liệu tham khảo từ internet, 6 phụ lục thể hiện các kết quả thực nghiệm. CHƯƠNG 1. TỔNG QUAN TÀI LIỆU 1.1. Tổng quan về vi nấm nội sinh: Khái niệm vi sinh vật nội sinh, vi nấm nội sinh, đặc điểm vi nấm nội sinh, trình bày quan hệ giữa vi nấm nội sinh và thực vật, nguyên tắc cơ bản để chọn thực vật ly trích vi nấm nội sinh, sự đa dạng của vi nấm nội sinh, một số vi nấm nội sinh sinh hoạt chất sinh học. 1.2. Tổng quan về Aspergillus: Trình bày vị trí phân loại, đặc điểm hình thể, đặc điểm sinh thái và phân bố của Aspergillus. Phân loại và mô tả đặc điểm hình thể, đặc điểm sinh thái và phân bố của A. terreus, các điều kiện 2 ảnh hưởng đến sự sinh hoạt chất sinh học và một số hoạt chất sinh học do A. terreus sản sinh. 1.3. Hệ thống phân loại Aspergillus: Định danh Aspergillus theo phương pháp truyền thống và phương pháp sinh học phân tử. 1.4..Tình hình nghiên cứu trong và ngoài nước: Trình bày các nghiên cứu ở ngoài nước và trong nước. 1.5. Tổng quan về các phương pháp chiết và phân tách hoạt chất sinh học - Các phương pháp chiết, tách phân đoạn: Khái niệm về các phương pháp chiết như chiết lỏng – lỏng, chiết lỏng rắn, chiết pha rắn. Các phương pháp sắc ký như phương pháp sắc ký lớp mỏng, phương pháp sắc kí cột cổ điển. - Các phương pháp khảo sát hoạt tính sinh học như phương pháp khuếch tán, tự sinh đồ hay phương pháp pha loãng. - Các phương pháp xác định cấu trúc hóa học hợp chất: Phổ hồng ngoại (IR), phổ tử ngoại khả kiến (UV-vis), khối phổ (MS), phổ cộng hưởng từ hạt nhân (NMR). - Các phương pháp thử độc tính tế bào: Phương pháp xác định khả năng ức chế tế bào và phương pháp xác định khả năng cảm ứng apoptosis: Kỹ thuật nhuộm huỳnh quang, thử nghiệm DNA phân mảnh, thử nghiệm caspase – 3. CHƯƠNG 2. VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1. VẬT LIỆU 2.1.1. Nguồn mẫu phân lập: Các cây thuộc họ Gừng (Zingiberaceae) và họ Cam (Rutaceae). 2.1.2. Vi sinh vật thử nghiệm: E.coli ATCC 25922; P.aeruginosa ATCC 27853; S.aureus ATCC 29213; MRSA ATCC 43300; S. faecalis ATCC 29212; C. albicans ATCC 10231. 2.1.3. Môi trường nuôi cấy: PDA, PSB,TSB,TSA, SDA, CDA. 2.2. PHƯƠNG PHÁP NGHIÊN CỨU 2.2.1. Phân lập vi nấm nội sinh từ thực vật 2.2.2. Sàng lọc vi nấm nội sinh có khả năng sinh hoạt chất kháng khuẩn, kháng nấm: Sử dụng phương pháp khuếch tán từ khoanh thạch thử. 2.2.3. Sàng lọc vi nấm nội sinh có khả năng sinh hoạt chất chống oxy hóa: Hoạt hóa vi nấm và chuẩn bị mẫu thử; xác định hoạt chất chống oxy hóa của các chất do vi nấm nội sinh sản sinh bằng phương pháp nhuộm DPPH nhanh. 2.2.4. Phương pháp định danh vi nấm: Các vi nấm nội sinh sẽ được định danh theo khóa phân loại của Guy St. Germain, năm 1995. 3 2.2.5. Chọn chủng vi nấm nội sinh có khả năng sinh hoạt chất sinh học: Sử dụng phương pháp khuếch tán từ khoanh thạch thử. 2.2.6. Khảo sát ảnh hưởng của pH môi trường lên sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3: A. terreus R-TN3 được nuôi trên môi trường PDB với pH môi trường được điều chỉnh trong khoảng từ 4, 5, 6, 7, 8. 2.2.7. Khảo sát ảnh hưởng của nhiệt độ nuôi cấy lên sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3: Chủng vi nấm nội sinh được nuôi trong môi trường PDB ở 37 oC và nhiệt độ phòng (25 – 30 oC). 2.2.8. Khảo sát ảnh hưởng của nguồn carbon, nitrogen, độ thông khí lên sự sinh hoạt chất kháng khuẩn: Thiết kế mô hình thực nghiệm D – Optimal bằng phần mềm Design-Expert 6.0.6 với các thành phần môi trường và điều kiện nuôi cấy (xi) được xác định dựa vào đường kính vòng ức chế trên MRSA, S.aureus. 2.2.9. Khảo sát ảnh hưởng của dầu lên sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3: Nuôi cấy A. terreus R-TN3 trên môi trường đã được bổ sung 1 % dầu mè, dầu hướng dương, dầu đậu nành, dầu bắp, dầu olive. 2.2.10. Khảo sát các điều kiện nuôi cấy tối ưu: Thiết kế mô hình thực nghiệm bằng phần mềm Design - Expert 6.0.6. Tối ưu hóa điều kiện nuôi cấy bằng phần mềm BC Pharsoft và nuôi cấy 3 lô kiểm chứng. 2.2.11. Nuôi cấy chủng A. terreus R-TN3 trong môi trường tối ưu: A. terreus R-TN3 được nuôi cấy trên môi trường tối ưu đã khảo sát ở điều kiện nuôi cấy tĩnh, nhiệt độ phòng (25 – 30 oC). 2.2.12. Chiết hoạt chất kháng khuẩn từ dịch nuôi cấy A. terreus RTN3: Sử dụng các phương pháp để chiết hoạt chất sinh học của cao chiết thô như: Phương pháp khuếch tán qua đĩa giấy; Khảo sát hoạt tính kháng khuẩn của chất chiết thô; Phương pháp tự sinh đồ và phương pháp vi pha loãng. 2.2.13. Tách các phân đoạn cho hoạt tính sinh học từ chất chiết thô 2.2.13.1. Sắc ký lớp mỏng: Chất chiết thô từ môi trường nuôi A. terreus R-TN3 được hòa trong MeOH với nồng độ 8 mg/ml, chấm dung dịch chất thử lên bản mỏng và phát hiện kết quả bằng phương pháp soi dưới đèn UV254, UV365, thuốc thử VS. 2.2.13.2. Sắc kí cột cổ điển: Hệ dung môi được dùng để triển khai cột là chloroform - methanol với tỷ lệ thay đổi theo hướng methanol tăng dần. Triển khai cột, hứng các phân đoạn và kiểm tra các phân đoạn bằng sắc ký lớp mỏng. Xác định phân đoạn cho hoạt tính kháng khuẩn bằng phương pháp tự sinh đồ. Xác định phân đoạn cho hoạt tính chống oxy hóa bằng phương pháp định tính nhanh bằng DPPH. 4 2.2.14. Xác định cấu trúc hóa học của hợp chất: Các chất thu được qua sắc ký cột được xác định cấu trúc dựa trên các phương pháp phổ: Phổ khối phun mù điện tử (ESI-MS); phổ cộng hưởng từ hạt nhân một chiều (1HNMR, 13C-NMR, DEPT) và hai chiều (HMBC, HSQC, COSY, NOESY). 2.2.15. Thử độc tính tế bào: Phương pháp thử độc tính tế bào in vitro được Viện Ung thư Quốc gia Hoa Kỳ xác nhận là phép thử độc tính tế bào chuẩn nhằm sàng lọc, phát hiện các chất có khả năng kìm hãm hoặc diệt tế bào ung thư ở điều kiện in vitro. 2.2.16. Phân tích thống kê dữ liệu: Số liệu được xử lý thống kê bằng phần mềm Microsoft Excel, trong bộ Microsoft Office phiên bản 2003. CHƯƠNG 3. KẾT QUẢ VÀ BÀN LUẬN 3.1. KẾT QUẢ 3.1.1. Kết quả sàng lọc hoạt tính khảng khuẩn, kháng nấm: Qua sàng lọc, chúng tôi thu được 10/82 chủng vi nấm nội sinh trên cây họ Gừng (Zingiberaceae) và 11/64 chủng vi nấm nội sinh trên cây họ Cam (Rutaceae) có khả năng sinh hoạt chất kháng khuẩn, kháng nấm. Trong đó, các chủng sinh chất có hoạt tính cao và ổn định, phổ kháng khuẩn rộng là: R - TN3, N GL1, Q - TL3, T2-CL1. 3.1.2. Kết quả sàng lọc hoạt tính chống oxy hóa: Kết quả sàng lọc các chủng có hoạt tính chống oxy hóa thu được 18/146 chủng có hoạt tính từ trung bình đến mạnh ở họ Cam (Rutaceae) và họ Gừng (Zingiberaceae). 3.1.3. Kết quả định danh các chủng vi nấm nội sinh có hoạt tính sinh học: Qua quá trình sàng lọc và thử hoạt tính sinh học các chủng vi nấm nội sinh, chúng tôi thu được cả xạ khuẩn và vi nấm sống nội sinh trong cây. Vì các chủng xạ khuẩn nội sinh này có khả năng sản sinh các hoạt chất sinh học nên chúng tôi tiến hành thu nhận và định danh. Kết quả định danh được 16/32 chủng có khả năng sinh hoạt chất từ trung bình đến mạnh và thu được kết quả sau: 3.1.4. Chọn lọc chủng vi nấm nội sinh có hoạt tính cao: Tiến hành khảo sát khả năng phát triển và sinh hoạt chất sinh học của các chủng A. terreus. 3.1.4.1. Khảo sát khả năng sinh hoạt chất kháng khuẩn của các chủng A. terreus: Tiến hành nuôi các chủng A. terreus trên môi trường PDA, thử hoạt tính kháng khuẩn, kháng nấm trên 5 chủng vi khuẩn thử nghiệm là S. aureus, S. feacalis, Pseudomonas, E. coli, MRSA và 1 chủng vi nấm C. albicans vào ngày thứ 7 nuôi cấy. Bảng 3.7. Tác động kháng khuẩn của các chủng A. terreus STT Chủng 1 T2– CL1 Đường kính vòng ức chế (mm) S. aureus MRSA 10,33 ± 1,33d 12,0 ± 1,54c 5 2 3 4 Q – TL3 R – TN3 N – GL1 14,66 ± 1,33c 21,33 ± 1,85a 20,33 ± 1,33a 17,33 ± 1,54b 20,67 ± 1,31a 20,33 ± 1,54a a,b,c,d: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Kết quả cho thấy chủng T2 – CL1 tác động kháng yếu nhất, chủng R – TN3, N – GL1 kháng mạnh, chủng Q – TL3 khả năng kháng yếu hơn N – GL1 nhưng vẫn kháng khuẩn ở mức cao (Bảng 3.6). 3.1.4.2. Khả năng sinh hoạt chất chống oxy hóa của các chủng A. terreus: Sau khi cấy hoạt hóa trên CDA, tiến hành pha dịch treo nuôi trên PDB trong 7 ngày; sau đó định tính khả năng sinh hoạt chất chống oxy hóa của các chủng A. terreus. Bảng 3.8. Kết quả định tính khả năng chống OXH của các chủng A. terreus STT 1 2 3 4 Chủng T2 – CL1 Q – TL3 R – TN3 N – GL1 Kết quả chống OXH ++ ++ +++ ++ Chú thích: (+): có hoạt tính chống oxy hóa yếu; (++): có hoạt tính chống oxy hóa trung bình; (+++): có hoạt tính chống oxy hóa mạnh. Dựa vào kết quả ở Bảng 3.7 cho thấy trong 4 chủng A. terreus nghiên cứu, chủng R – TN3 sinh hoạt chất chống oxy hóa mạnh nhất, ba chủng còn lại gồm T2 – CL1, Q – TL3, N – GL1 sinh hoạt chất chống oxy hóa ở mức trung bình (Phụ lục 3). 3.1.4.3. Khảo sát đặc tính cao chiết  Khảo sát hệ dung môi tối ưu: Chạy sắc ký với 8 hệ dung môi khảo sát thu được kết quả hệ dung môi CHCl3:CH3COOH với tỷ lệ 9:1 phân tách nhiều hoạt chất nhất ở cả 4 chủng A. terreus.  Phương pháp khuếch tán qua đĩa giấy: Các cao chiết thô sau khi được hòa tan bằng dung môi với nồng độ thích hợp được tẩm lên đĩa giấy đặt lên môi trường đã trải dịch khuẩn thử nghiệm. Bảng 3.10. Tác động kháng khuẩn của cao chiết thô các chủng A. terreus. Vi khuẩn S. aureus MRSA T2 – CL1 16,67±1,72b 16,0±1,54a Đường kính vòng ức chế (mm) Q - TL3 R – TN3 N - GL1 9,67±1,72c 18,67±1,72a 17,67±1,72ab 17,0±1,54a 17,33±1,54a 13,67±1,54b a,b,c,ab: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. 6 Cao chiết thô của chủng R-TN3 cho kết quả kháng tối đa đối với 2 chủng MRSA và S.aureus. Các cao chiết thô của các chủng T2-CL1, Q-TL3, NGL1 cho kết quả kháng trung bình.  Phương pháp tự sinh đồ: Các bản mỏng sắc ký đã phân tách thành các hoạt chất được đặt trên đĩa môi trường trải khuẩn thử nghiệm nhằm tìm ra phân đoạn có hoạt tính kháng khuẩn (Bảng 3.10). Bảng 3.11. Tác động kháng khuẩn của các phân đoạn thu được từ các chủng A. terreus PĐ PĐ 6 PĐ 12 T2-CL1 PĐ 13 PĐ 15 PĐ 6 PĐ 9 Q-TL3 PĐ 10 PĐ 12 PĐ 15 Chủng MRSA 9,33±1,44b 11,67±1,44a 11,33±1,44a 12,67±1,44a 0,0c 9,33±0,81b 13,67±0,81a 0,0c 9,33±0,81b S.aureus 0,00c 11,67±1,22b 0,00c 13,33±1,22a 14,33±1,24b 9,33±1,24d 0,0e 12,33±1,24c 16,67±1,24a PĐ MRSA S.aureus PĐ 6 12,67±1,15b 12,0±1,49b PĐ 12 6,67±1,15c 7,33±1,49c R-TN3 PĐ 13 16,67±1,15a 16,67±1,49a Chủng PĐ 11 PĐ 12 N-GL1 PĐ 13 0,0c 9,33±1,33b 13,0±1,33a 9,33±0,94b 12,67±0,94a 0,0c a,b,c,d,e: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Từ kết quả Bảng 3.10 cho thấy chủng R-TN3 có 3 phân đoạn kháng trong đó phân đoạn 13 cho hoạt tính kháng khuẩn cao nhất đối với MRSA và S. aureus. 3.1.5. Khảo sát điều kiện nuôi cấy của chủng A. terreus R-TN3 3.1.5.1. Khảo sát ảnh hưởng của pH môi trường nuôi cấy với chủng A. terreus R-TN3: Khảo sát ảnh hưởng của pH môi trường nuôi cấy lên sự sinh hoạt chất kháng khuẩn của chủng A. terreus R-TN3. Bảng 3.13. Ảnh hưởng của pH môi trường khác nhau đối với sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3 pH môi trường 4 5 6 7 8 Đường kính vòng ức chế (mm) S. aureus MRSA 11,67 ± 1,41d 9,67 ± 1,24d 14,0 ± 1,41c 15,0 ± 1,24b a 20,67 ± 1,31 21,33 ± 1,85a b 15,67 ± 1,41 15,67 ± 1,24b c 14,0 ± 1,41 13,67 ± 1,24c a,b,c,d: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Kết quả ở Bảng 3.12 cho thấy môi trường nuôi cấy có pH 6 thích hợp nhất cho sự sinh hoạt chất kháng khuẩn của chủng A. terreus R-TN3.. 3.1.5.2. Khảo sát ảnh hưởng nhiệt độ đối với chủng A. terreus R-TN3 7 Khảo sát ảnh hưởng của nhiệt độ lên sự sinh hoạt chất kháng khuẩn của chủng A. terreus R-TN3. Nhiệt độ được khảo sát trong thí nghiệm là nhiệt độ phòng và nhiệt độ 37 oC. Kết quả được trình bày ở Bảng 3.13. Bảng 3.14. Ảnh hưởng của nhiệt độ đối với sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3 Nhiệt độ nuôi cấy Nhiệt độ phòng Nhiệt độ 37oC Đường kính vòng ức chế (mm) MRSA S. aureus 21,33 ± 1,85a 20,67 ± 1,31a 15,0 ± 1,85b 15,67 ± 1,31b a,b: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Ở nhiệt độ phòng (25-30 oC), chủng A. terreus R-TN3 sinh hoạt chất kháng khuẩn mạnh hơn. Vậy chọn nhiệt độ phòng là nhiệt độ thích hợp để tiến hành nuôi cấy chủng A. terreus R-TN3. 3.1.5.3. Khảo sát ảnh hưởng của nguồn carbon, nitrogen, độ thông khí Khảo sát ảnh hưởng của nguồn carbon, nitrogen và độ thông khí lên sự sinh hoạt chất kháng khuẩn của chủng A. terreus R-TN3. Lượng bào tử đầu vào là 104 CFU/ml, nuôi cấy ở điều kiện nhiệt độ phòng. Thành phần môi trường và điều kiện nuôi cấy được xác định dựa vào đường kính vòng ức chế của MRSA và S. aureus vào các thời điểm 5, 7, 9, 12 ngày. Bảng 3.15. Các mức khảo sát của biến độc lập Mức khảo sát 1 2 3 4 x1 Glucose 2 % Saccharose 1 % Tinh bột gạo 2 % Rỉ đường 2,7 % x2 Khoai tây 20 % Cao thịt 1 % Cao nấm men 1 % Dịch đậu nành 10 % x3 Lắc Tĩnh Từ 23 môi trường có thành phần và điều kiện thông khí khác nhau, ở môi trường có hàm lượng khoai tây 20 %, rỉ đường 2,7 % hoặc saccharose 1 %, trong điều kiện tĩnh, A. terreus R-TN3 cho tác động kháng MRSA, S. aureus tốt và ổn định; thời gian thích hợp để thu nhận hoạt chất kháng khuẩn từ dịch nuôi cấy là ngày thứ 7 nuôi cấy. 3.1.5.4. Ảnh hưởng của dầu: Để khảo sát ảnh hưởng của dầu lên sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3, các dầu thực vật như dầu mè, dầu hướng dương, dầu nành, dầu bắp, dầu olive (nồng độ 1 %) được bổ sung vào môi trường khoai tây-rỉ đường với thành phần gồm khoai tây 20 %, rỉ đường 2,7 %, nuôi cấy trong điều kiện tĩnh. Thực hiện song song với chứng là môi trường khoai tây 20 %, rỉ đường 2,7 % không bổ sung dầu. Kết quả cho thấy ở môi trường khoai tây-rỉ đường không bổ sung dầu thì chủng A. terreus R-TN3 có khả năng sinh hoạt chất kháng khuẩn cao nhất. Điều này cho thấy dầu ảnh hưởng không tốt hoặc có khả năng kiềm hãm sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3 (Bảng 3.16). 8 Bảng 3.17. Ảnh hưởng của các loại dầu thực vật đối với sự sinh hoạt chất kháng khuẩn của A. terreus R-TN3 Môi trường nuôi cấy KT-RĐ KT-RĐ + dầu mè KT-RĐ + dầu hướng dương KT-RĐ + dầu đậu nành KT-RĐ + dầu bắp KT-RĐ + dầu olive Đường kính vòng ức chế (mm) MRSA S. aureus 19,33 ± 1,03a 20,33 ± 1,03a 14,67 ± 1,03c 15,33 ± 1,03d c 14,67 ± 1,03 16,33 ± 1,03c b 16,67 ± 1,03 18,0 ± 1,03b b 17,33 ± 1,03 17,33 ± 1,03bc b 16,33 ± 1,03 15,33 ± 1,03d a,b,c,d,bc: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. 3.1.6. Thiết kế và tối ưu hóa điều kiện nuôi cấy 3.1.6.1. Thiết kế mô hình thực nghiệm Mô hình thực nghiệm được thiết kế bằng phần mềm Design-Expert 6.0.6 gồm 26 môi trường. Dữ liệu môi trường, đường kính vòng ức chế và sinh khối được trình bày trong Bảng 3.17. Bảng 3.18. Môi trường nuôi cấy A. terreus R-TN3 được thiết kế bằng phần mềm Design Expert 6.0.6 STT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 x1 20 10 10 30 30 10 30 10 20 30 20 10 20 20 10 30 10 20 30 30 20 x2 (%) 2 2 2 2 2 3 3 3 3 4 4 4 4 0,5 0,5 0,5 0.5 0.5 1 1 1 x3 Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Rỉ đường Saccharose Saccharose Saccharose Saccharose Saccharose Saccharose Saccharose Saccharose x4 0,05 0,05 0,1 0,2 0,05 0,2 0,05 0,1 0,2 0,1 0,05 0,2 0,1 0,2 0,05 0,1 0,2 0,1 0,1 0,2 0,05 y1 22 22 22 23 21 24 24 21 20 22 18 16 20 0 14 13 10 15 20 19 11 y2 0,0744 0,0535 0,0486 0,106 0,167 0,1567 0,16 0,0563 0,0414 0,1745 0,103 0,0881 0,088 0,0826 0,0795 0,0929 0,0561 0,0543 0,1124 0,1397 0,1409 9 22 23 24 25 26 10 10 30 10 20 1 2 2 2 2 Saccharose Saccharose Saccharose Saccharose Saccharose 0,05 0,1 0,05 0,05 0,2 16 12 18 11 20 0,0964 0,134 0,1614 0,1149 0,1569 3.1.6.2. Tối ưu hóa điều kiện nuôi cấy Kết quả tối ưu hóa bằng phần mềm BC Pharsoft bao gồm các thông số tối ưu của điều kiện nuôi cấy và giá trị dự đoán của các tính chất sản phẩm. Bảng 3.25. Thành phần công thức tối ưu Thành phần công thức xi Giá trị tìm được x1 30 x2 3,28 x3 Rỉ đường x4 0,1 Tính chất sản phẩm yi Giá trị dự đoán y1 22,03 y2 0,17 Thành phần môi trường tối ưu dự đoán gồm khoai tây 30 %; rỉ đường 3,28 %; lượng nấm đầu vào có OD530 = 0,1; sử dụng 1 ml dịch nấm cho 100 ml môi trường nuôi cấy. Kiểm chứng công thức tối ưu bằng thực nghiệm,so sánh với kết quả dự đoán: Tiến hành nuôi cấy 3 lô với các điều kiện tối ưu trong cùng một điều kiện và xác định các thông số yi. Kết quả phân tích phương sai 2 yếu tố không lặp những số liệu trong bảng cho thấy: Quy trình nuôi cấy có tính lặp lại, tính chất sản phẩm giữa 3 lô khác nhau không có ý nghĩa thống kê (p=0,87 > 0,05). Kết quả dự đoán của phần mềm khác nhau không có ý nghĩa thống kê (p > 0,05). Do đó, phần mềm BC Pharsoft đã dự đoán đúng điều kiện nuôi cấy tối ưu cũng như tính chất của dịch nuôi cấy. 3.1.7. Khảo sát dung môi chiết tối ưu: Nuôi cấy chủng A. terreus RTN3 trên môi trường tối ưu, sau đó tiến hành chiết 2 lần (1:1) với dung môi. Bảng 3.27. Hoạt tính kháng khuẩn của dịch chiết Dịch chiết Methanol Ethyl acetat Chloroform n – hexan Đường kính vòng ức chế (mm) S. aureus MRSA 16,67 ± 0,94a 12,0 ± 1,22b 17,33 ± 0,94a 17,33 ± 1,22a b 13,33 ± 0,94 10,33 ± 1,22c c 0,0 0,0d a,b,c,d: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Dựa vào Bảng 3.26 cho thấy hoạt chất kháng khuẩn phân bố chủ yếu trong chất chiết với ethyl acetat, tuy nhiên dịch chiết methanol và nhexan vẫn cho hoạt tính kháng khuẩn tương đối cao trên S. aureus, MRSA. Chọn dung môi ethyl acetat làm dung môi chiết tối ưu. 10 3.1.8. Khảo sát hoạt tính kháng khuẩn của chất chiết từ môi trường nuôi nấm và từ sinh khối Chất chiết từ môi trường nuôi cấy A. terreus R-TN3 và từ sinh khối. Các chất chiết được khảo sát hoạt tính kháng khuẩn bằng phương pháp khuếch tán qua đĩa giấy. Bảng 3.28. Tác động kháng khuẩn của các chất chiết của A. terreus R-TN3. Chất thử Chiết từ dịch nuôi cấy Chiết từ sinh khối Đường kính vòng ức chế (mm) S. aureus MRSA 17,33 ± 0,93a 17,33 ± 0,93a 0,0b 0,0b a,b: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. Chất chiết từ môi trường nuôi nấm A. terreus R-TN3 có tác động kháng khuẩn đối với S.aureus và MRSA. Chất chiết từ sinh khối nấm A. terreus R-TN3 không có tác động kháng khuẩn đối với S.aureus và MRSA. 3.1.9. Nuôi cấy và chiết hoạt chất kháng khuẩn từ A. terreus R-TN3: Dịch nuôi cấy sau 7 ngày có màu nâu xám được chiết với EtOAc để cho chất chiết thô – EtOAc (chất CT – EtOAc). Chất CT – EtOAc đã hút ẩm đến khối lượng không đổi: Màu nâu đen, có mùi thơm, thể chất dẻo. Kết quả nuôi cấy từ 1 lít môi trường nuôi cấy tối ưu, thu được khoảng 415 mg cao thô. Để có đủ lượng cao thô để có thể cô lập được hợp chất tinh khiết cho việc chạy phổ xác định cấu trúc, chúng tôi đã tiến hành nuôi cấy trên 50 lít môi trường. 3.1.10. Xác định hoạt tính sinh học của cao chiết thô 3.1.10.1. Xác định hoạt tính kháng khuẩn của cao chiết thô Cao chiết thô sau khi được hòa tan bằng dung môi với nồng độ thích hợp được tẩm lên đĩa giấy đặt lên môi trường đã trải dịch khuẩn thử nghiệm bằng phương pháp khuếch tán qua đĩa giấy. Kết quả cho thấy cao chiết thô có tác động kháng khuẩn khá cao đối với S. aureus và MRSA. 3.1.10.2. Định tính sơ bộ thành phần của cao chiết thô Thực hiện các phản ứng định tính hóa học nhằm sơ bộ xác định nhóm hợp chất tự nhiên của cao chiết thô. Kết quả trên cho thấy cao chiết thô của chủng A.terreus R-TN3 có chứa tinh dầu, carotenoid, courmarin, anthraglycosid. 3.1.11. Khảo sát thành phần hóa học của chất CT– EtOAc từ dịch nuôi cấy A. terreus R-TN3 3.1.11.1. Xác định vị trí hoạt chất kháng khuẩn trên bản mỏng Trên sắc ký đồ SKLM chất chiết thô với hệ dung môi CHCl3 – CH3COOH (9:1), được phát hiện bằng cách soi UV ở bước sóng 254 nm, 365 nm và phun thuốc thử VS cho tổng cộng 17 vết, đường kính vòng ức chế được thể hiện ở Bảng 3.31. 11 Bảng 3.32. Hoạt tính kháng khuẩn của chất CT – EtOAc Vết 6 12 13 Đường kính vòng ức chế (mm) S. aureus MRSA 11,33 ± 1,15b 11,33 ± 1,15b 7,33 ± 1,15c 7,33 ± 1,15c a 15,33 ± 1,15 15,33 ± 1,15a a,b,c: Trong cùng 1 cột các số có cùng mẫu tự không khác biệt nhau ở mức 0,05. 3.1.12. Sắc ký cột cổ điển Tổng khối lượng cao cả 9 phân đoạn thu được qua quá trình sắc ký cột là 10,592 g. Từ phân đoạn 1 tinh sạch được hợp chất X1 màu vàng nhạt, dạng vô định hình, có Rf là 0,692. Tiến hành định tính khả năng chống oxy hóa của hợp chất X1 bằng DPPH, kết quả cho thấy hợp chất X1 có hoạt tính chống oxy hóa mạnh. Từ phân 3 gam phân đoạn 1 trên (sau khi đã tách hợp chất X1), nhồi chạy cột nhỏ với hệ dung môi n-hexan : chloroform (9:1). Bảng 3.35. Kết quả chạy cột của phân đoạn 1 PĐ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dung môi giải ly n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan: chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform n-hexan : chloroform Tỷ lệ 9:1 9:1 8:2 7:3 7:3 7:3 7:3 7:3 7:3 6:4 6:4 6:4 6:4 5:5 5:5 5:5 Vết 4 0 0 3 2 2 3 3 0 4 2 4 3 2 1 Ghi chú Tạp Chất Y Chất X2 Khóa cột, kết tinh Kết quả chạy cột 3g phân đoạn X1 thu được chất X2 có hoạt tính chống oxy hóa cao và hợp chất Y có hoạt tính kháng khuẩn cao. Tiến hành tinh sạch hợp chất X2 và Y để giải cấu trúc và thử độc tế bào ung thư để xác định hoạt tính sinh học của hợp chất X2 và Y. 12 Y X2 X1 2 Hình 3.13. Kết quả SKLM của hợp chất X1, X2 và Y 3.1.13. Hợp chất Y 3.1.13.1. Hoạt tính kháng khuẩn của hợp chất Y Thử hoạt tính kháng khuẩn các phân đoạn của hợp chất Y bằng phương pháp tự sinh đồ và khuếch tán qua đĩa giấy thu được kết quả hợp chất Y có hoạt tính kháng cao đối với S.aureus và cho hoạt tính kháng trung bình đối với MRSA. Xác định phân đoạn kháng của hợp chất Y bằng phương pháp tự sinh đồ Hợp chất Y chỉ chứa 2 vết trên sắc ký đồ (UV254), trong đó chủ yếu là vết số 13 và vết số 12, hai phân đoạn này cho hoạt tính kháng khuẩn mạnh hơn vết 6 và các vết còn lại. Kết quả cho thấy ở nồng độ chất thử Y là 3,125 µg/ml thì cho hoạt tính kháng với chủng S. aureus và MRSA ở mức trung bình. Bằng phương pháp SKLM và tự sinh đồ, đã chiết được hợp chất Y chứa hai hợp chất khác nhau có hoạt tính kháng khuẩn và xác định được giá trị MIC của hợp chất Y là 25 µg/ml. 3.1.13.2. Kết quả thử độc tế bào của hợp chất Y Thử độc tế bào trên tế bào ung thư vú MCF-7: Hợp chất Y được xác định khả năng ức chế tế bào ung thư vú MCF-7. Bảng 3.38. Kết quả thử độc tế bào vú MCF-7 của hợp chất Y Nồng độ (μg/ml) 100 75 50 25 10 IC50 Phần trăm ức chế tế bào (%) Lần 1 Lần 2 Lần 3 TB ĐLC 76,90 87,02 89,23 84,38 6,57 70,09 71,58 69,51 70,39 1,07 43,75 48,09 45,21 45,69 2,21 17,30 10,92 9,72 12,64 4,08 1,00 -6,08 -9,30 -4,79 5,27 54,08 52,38 54,19 53,55 1,01 Khả năng ức chế tế bào ung thư vú MCF-7 của hợp chất Y gia tăng tuyến tính theo nồng độ. Ở nồng độ 75 µg/ml gây chết hơn 70 % tế bào MCF-7 và khi tăng lên nồng độ 100 µg/ml thì gây chết hơn 84 % tế bào MCF-7. 13 Thử độc tế bào trên tế bào ung thư cổ tử cung Hela: Hợp chất Y được xác định khả năng ức chế tế bào ung thư cổ tử cung Hela. Bảng 3.39. Kết quả thử độc tế bào Hela của hợp chất Y Nồng độ (μg/ml) 75 50 40 30 20 10 IC50 Lần 1 64,36 52,14 50,31 29,12 20,16 9,37 39,86 Lần 2 65,59 52,83 51,42 21,05 19,03 10,32 39,53 Lần 3 61,56 60,75 53,23 24,73 16,40 8,60 38,87 TB 63,83 55,24 51,65 24,97 18,53 9,43 39,42 ĐLC 2,06 4,79 1,47 4,04 1,93 0,86 0,50 Khả năng ức chế tế bào ung thư Hela của hợp chất Y gia tăng tuyến tính theo nồng độ. Ở nồng độ 50 µg/ml gây chết hơn 55 % tế bào Hela và khi tăng lên ở nồng độ 75 µg/ml thì gây chết hơn 63 % tế bào Hela. Thử độc tế bào trên tế bào ung thư gan Hep G2: Hợp chất Y được xác định khả năng ức chế tế bào ung thư gan Hep G2. Bảng 3.40. Kết quả thử độc tế bào ung thư gan Hep G2 của hợp chất Y Nồng độ (μg/ml) 100 75 50 25 10 IC50 Phần trăm ức chế tế bào (%) Lần 1 Lần 2 Lần 3 TB ĐLC 78,25 75,00 70,07 74,44 4,12 61,63 58,86 56,58 59,02 2,53 46,83 41,34 35,36 41,18 5,73 26,89 29,13 23,85 26,62 2,65 -1,27 -3,56 -2,27 -2,37 1,15 52,38 56,45 63,80 57,54 5,79 Khả năng ức chế tế bào ung thư Hep G2 của hợp chất Y gia tăng tuyến tính theo nồng độ. Ở nồng độ 75 µg/ml gây chết hơn 59 % tế bào Hep G2 và khi tăng lên ở nồng độ 100 µg/ml gây chết hơn 74 % tế bào Hep G2. Thử độc tế bào trên tế bào ung thư phổi NCI-H460: Hợp chất Y được xác định khả năng ức chế tế bào ung thư phổi NCI-H460. Bảng 3.41. Kết quả thử độc tế bào ung thư phổi NCI-H460 của hợp chất Y Nồng độ (μg/ml) 100 75 50 25 10 IC50 Phần trăm ức chế tế bào (%) Lần 1 Lần 2 Lần 3 TB ĐLC 76,34 84,36 82,10 80,93 4,13 58,99 60,11 64,43 61,18 2,87 18,28 18,51 21,79 19,53 1,96 -7,07 2,01 4,12 -0,31 5,94 -15,82 -4,30 -0,59 -6,90 7,94 71,07 68,79 66,56 68,81 2,26 14 Khả năng ức chế tế bào ung thư NCI-H460 của hợp chất Y gia tăng tuyến tính theo nồng độ. Ở nồng độ 75 µg/ml gây chết hơn 61 % tế bào NCI-H460 và khi tăng lên ở nồng độ 100 µg/ml gây chết hơn 80 % tế bào NCI-H460. 3.1.15. Xác định cấu trúc hóa học các hợp chất phân tách 3.1.15.1. Hợp chất X1: Hợp chất X1 thu được từ sắc ký cột cổ điển, được xác định cấu trúc dựa vào các kỹ thuật phổ như phổ H, C13, phổ HRMS và phổ 2 chiều để xác định cấu trúc (Phụ lục 4). Kết quả cho thấy hợp chất X1 có công thức cấu tạo như sau: Hình 3.18. Các tương tác HMBC chính và CTCT của X1 Chất X1 có tên gọi: Methyl 2-acetyl-5-methoxy-4-oxo-4H-chromen-7carboxylat. Đây là hợp chất mới, chưa được công bố ở công trình nào trong nước và trên thế giới. 3.1.15.2. Hợp chất X2: Hợp chất X2 thu được từ sắc ký cột cổ điển, được xác định cấu trúc dựa vào các kỹ thuật phổ như phổ H, C13, phổ HRMS và phổ 2 chiều để xác định cấu trúc (Phụ lục 5). Dung môi hòa tan mẫu: DMSO. Kết quả cho thấy hợp chất X2 có công thức cấu tạo như sau: Hình 3.19. Các tương tác HMBC và CTCT của X2 Chất X2 có tên gọi: Methyl 2-((4-amino-2-bromo-3-methyl-5thioxocyclopenta-1,3-dien-1-yl) oxy)-4-hydroxy-6-methoxybenzoat. Đây là hợp chất mới và chưa được công bố ở bất cứ công trình nào trên thế giới. 3.1.16. Kết quả thử hoạt tính sinh học của hợp chất X1 3.1.16.1. Kết quả xác định khả năng chống oxy hóa bằng thử nghiệm DPPH của hợp chất X1: Kết quả cho thấy chất X1 có hoạt tính chống oxy hóa cao, khả năng đánh bắt gốc tự do DPPH gia tăng tuyến tính theo nồng 15 độ. Ở nồng độ 100 ppm chất X1 có khả năng đánh bắt hơn 80 % gốc tự do DPPH. 3.1.16.2. Kết quả thử độc tế bào của hợp chất X1 Hợp chất X1 được xác định khả năng ức chế tế bào ung thư như MCF-7, Hela, Hep G2 và NCI-H460. Kết quả được trình bày như sau: Thử độc tế bào MCF-7: Các hợp chất phân lập được xác định khả năng ức chế tế bào ung thư vú MCF-7. Bảng 3.48. Kết quả thử độc tế bào MCF-7 của chất X1 Nồng độ (µg/ml) 100 50 40 20 10 5 IC50 (µg/ml) Lần 1 80,82 75,06 68,92 33,12 10,54 -0,86 28,88 Lần 2 81,27 73,61 65,20 31,40 11,29 4,12 30,04 Lần 3 79,87 78,34 71,28 34,50 8,05 -3,09 27,90 TB 80,65 75,67 68,47 33,01 9,96 0,06 28,94 ĐLC 0,71 2,43 3,07 1,55 1,69 3,69 1,07 Ở nồng độ 75 µg/ml gây chết hơn 75 % tế bào MCF-7 và tăng lên gây chết hơn 80 % tế bào MCF-7 ở nồng độ 100 µg/ml. Thử độc tế bào Hela: Các hợp chất phân lập được xác định khả năng ức chế tế bào ung thư cổ tử cung Hela. Bảng 3.49. Kết quả thử độc tế bào Hela của chất X1 Nồng độ (µg/ml) 100 75 50 25 10 IC50 (µg/ml) Lần 1 90,78 65,48 58,58 21,13 -3,77 46,26 Lần 2 84,20 64,11 59,27 25,00 2,82 45,39 Lần 3 81,10 66,51 60,14 23,92 0,91 45,59 TB 85,36 65,37 59,33 23,35 -0,01 45,75 ĐLC 4,94 1,20 0,78 2,00 3,39 0,46 Ở nồng độ 75 µg/ml gây chết hơn 65 % tế bào Hela và tăng lên gây chết hơn 85 % tế bào Hela ở nồng độ 100 µg/ml. Thử độc tế bào Hep G2: Các hợp chất phân lập được xác định khả năng ức chế tế bào ung thư gan Hep G2. Bảng 3.50. Kết quả thử độc tế bào Hep G2 của chất X1 Nồng độ (µg/ml) 100 75 50 25 10 IC50 (µg/ml) Lần 1 81,83 75,75 65,50 32,81 12,18 36,53 Lần 2 79,79 75,90 67,29 36,30 15,06 34,21 Lần 3 77,23 74,58 64,26 32,26 14,58 37,35 TB 79,62 75,41 65,68 33,79 13,94 36,03 ĐLC 2,31 0,72 1,52 2,19 1,54 1,63 16 Ở nồng độ 75 µg/ml gây chết hơn 75 % tế bào NCI-H460 và tăng lên gây chết gần 80 % tế bào ung thư gan Hep G2 ở nồng độ 100 µg/ml. Thử độc tế bào NCI-H460: Các hợp chất phân lập được xác định khả năng ức chế tế bào ung thư phổi NCI-H460. Bảng 3.51. Kết quả thử độc tế bào NCI-H460 của chất X1 Nồng độ (µg/ml) 100 50 35 25 10 IC50 (µg/ml) Lần 1 76,34 68,46 62,67 31,91 16,59 32,12 Lần 2 80,46 72,86 60,74 29,04 22,96 30,83 Lần 3 78,21 73,92 65,20 31,09 20,08 29,74 TB 78,34 71,75 62,87 30,68 19,88 30,90 ĐLC 2,06 2,90 2,24 1,48 3,19 1,19 Ở nồng độ 50 µg/ml gây chết hơn 70 % tế bào NCI-H460 và tăng lên gần 80 % tế bào NCI-H460 ở nồng độ 100 µg/ml. Kết quả cho thấy hợp chất X1 có khả năng ức chế nhiều dòng tế bào ung thư khác nhau, thông qua khả năng ức chế 4 dòng tế bào thử nghiệm: ung thư vú MCF-7, ung thư cổ tử cung Hela, ung thư gan Hep G2 và ung thư phổi NCI-H460. 3.1.17. Kết quả thử hoạt tính sinh học của hợp chất X2 3.1.17.1. Kết quả xác định khả năng chống oxy hóa bằng thử nghiệm DPPH của hợp chất X2: Hợp chất X2 được xác định khả năng chống oxy hóa bằng thử nghiệm DPPH. Kết quả cho thấy chất X2 có hoạt tính chống oxy hóa khá cao, khả năng đánh bắt gốc tự do DPPH gia tăng tuyến tính theo nồng độ. Ở nồng độ 400 ppm chất X2 có khả năng đánh bắt hơn 75 % gốc tự do DPPH. 3.1.17.2. Kết quả thử độc tế bào của hợp chất X2 Hợp chất X2 được xác định hoạt tính ức chế tế bào trên các dòng tế bào MCF-7, Hela, Hep G2 và NCI-H460. Kết quả được trình bày như sau: Thử độc tế bào ung thư vú MCF-7: Hợp chất X2 được xác định khả năng ức chế tế bào ung thư vú MCF-7. Bảng 3.53. Kết quả thử độc tế bào ung thư vú MCF-7 của chất X2 Nồng độ (μg/ml) 100 75 50 25 10 IC50 Phần trăm ức chế tế bào (%) Lần 1 Lần 2 Lần 3 TB ĐLC 78,65 77,02 78,96 78,21 1,04 74,91 74,84 74,69 74,82 0,11 65,97 67,39 67,32 66,89 0,80 19,34 27,95 27,62 24,97 4,88 -9,67 -7,38 -8,32 -8,45 1,15 44,45 41,20 41,14 42,26 1,89 17 Khả năng ức chế tế bào của hợp chất X2 gia tăng tuyến tính theo nồng độ. Ở nồng độ 75 µg/ml gây chết hơn 74 % tế bào ung thư vú MCF-7 và tăng lên gây chết gần 80 % tế bào MCF-7 ở nồng độ 100 µg/ml. Thử độc tế bào ung thư cổ tử cung Hela: Hợp chất X2 được xác định khả năng ức chế tế bào ung thư cổ tử cung Hela. Bảng 3.54. Kết quả thử độc tế bào Hela của chất X2 Nồng độ (μg/ml) 75 50 40 30 20 10 IC50 Lần 1 66,59 60,82 51,82 23,23 7,54 0,00 39.36 Lần 2 62,27 57,73 53,26 27,27 8,09 -8,07 38,75 Lần 3 68,56 56,05 51,32 24,27 5,80 -4,49 39,51 TB 65,81 58,20 52,13 24,93 7,14 -4,19 39,21 ĐLC 3,22 2,42 1,01 2,10 1,19 4,04 0,41 Khả năng ức chế tế bào của hợp chất X2 gia tăng tuyến tính theo nồng độ. Ở nồng độ 50 µg/ml gây chết hơn 58 % tế bào ung thư Hela và tăng lên gây chết hơn 65 % tế bào Hela ở nồng độ 75 µg/ml. Thử độc tế bào Hep G2: Hợp chất X2 được xác định khả năng ức chế tế bào ung thư gan Hep G2. Bảng 3.55. Kết quả thử độc tế bào ung thư gan Hep G2 của chất X2 Nồng độ (μg/ml) 100 75 50 25 10 IC50 Phần trăm ức chế tế bào (%) Lần 1 Lần 2 Lần 3 TB ĐLC 82,72 86,85 90,89 86,82 4,09 71,96 75,99 78,23 75,39 3,18 53,44 59,92 56,96 56,77 3,24 3,88 14,61 9,37 9,29 5,37 0,18 4,59 -2,53 0,75 3,60 52,00 45,44 47,47 48,30 3,36 Khả năng ức chế tế bào của hợp chất X2 gia tăng tuyến tính theo nồng độ. Ở nồng độ 75 µg/ml gây chết hơn 75 % tế bào ung thư gan Hep G2 và tăng lên gây chết hơn 86 % tế bào Hep G2 ở nồng độ 100 µg/ml. Thử độc tế bào ung thư phổi NCI-H460: Hợp chất X2 được xác định khả năng ức chế tế bào ung thư phổi NCI-H460. Khả năng ức chế tế bào ung thư phổi NCI-H460 của hợp chất X2 gia tăng tuyến tính theo nồng độ. Ở nồng độ 50 µg/ml gây chết gần 50 % tế bào ung thư phổi NCI-H460 và tăng lên gây chết hơn 70 % tế bào NCI-H460 ở nồng độ 75 µg/ml. Kết quả thử nghiệm độc tính tế bào hợp chất X1 và X2 cho thấy chất X1 có khả năng ức chế các dòng tế bào ung thư in vitro tốt hơn X2. Do đó, chúng tôi bước đầu tìm hiểu cơ chế tác động của X1 thông qua khả năng cảm ứng apoptosis (Bảng 3.55). 18
- Xem thêm -

Tài liệu liên quan