Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Sư phạm Nghiệm dừng của một số lớp phương trình đạo hàm riêng có trễ...

Tài liệu Nghiệm dừng của một số lớp phương trình đạo hàm riêng có trễ

.PDF
52
1
86

Mô tả:

TRƢỜNG ĐẠI HỌC HÙNG VƢƠNG KHOA KHOA HỌC TỰ NHIÊN ----------------------- NGUYỄN HOÀNG ANH TUẤN NGHIỆM DỪNG CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CÓ TRỄ KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngành: Sư phạm Toán . Phú Thọ, 2019 TRƢỜNG ĐẠI HỌC HÙNG VƢƠNG KHOA: KHOA HỌC TỰ NHIÊN ----------------------- NGUYỄN HOÀNG ANH TUẤN NGHIỆM DỪNG CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CÓ TRỄ KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngành: Sƣ phạm Toán học Giảng viên hƣớng dẫn: TS.Đặng Thị Phƣơng Thanh Phú Thọ, năm 2019 LỜI CẢM ƠN Trong suốt thời gian làm khóa luận tốt nghiệp, ngoài sự nỗ lực của bản thân, tôi còn nhận được sự giúp đỡ, chỉ bảo tận tình của các thầy giáo, cô giáo trong Khoa Khoa học tự nhiên, Trường Đại học Hùng Vương. Tôi xin bày tỏ lòng biết ơn sâu sắc tới cô giáo TS. Đặng Thị Phương Thanh Giảng viên Khoa Khoa học tự nhiên, trường Đại học Hùng Vương. Cô đã dành nhiều thời gian quý báu, tận tình hướng dẫn, chỉ bảo tôi trong quá trình thực hiện khóa luận, đồng thời cô đã giúp tôi lĩnh hội được những kiến thức chuyên môn và rèn luyện cho tôi tác phong làm việc khoa học. Qua đây, tôi xin gửi lời cảm ơn chân thành và sâu sắc đến các thầy cô giáo là giảng viên của Khoa Khoa học tự nhiên, trường Đại học Hùng Vương, cùng gia đình, bạn bè là những người luôn sát cánh, ủng hộ, động viên và tạo điều kiện cho tôi trong suốt quá trình học tập cũng như quá trình thực hiện và hoàn chỉnh khóa luận. Mặc dù đã cố gắng, song khóa luận không tránh khỏi những hạn chế và thiếu sót. Vì vậy tôi rất mong nhận được sự góp ý của thầy cô giáo và các bạn để khóa luận được hoàn thiện hơn. Tôi xin chân thành cảm ơn! Việt Trì, tháng 05 năm 2019 Sinh viên Nguyễn Hoàng Anh Tuấn Mục lục Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phần I: MỞ ĐẦU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Phần III: NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU . . . . . . . . . . . . . 7 Chương 1. KIẾN THỨC CƠ SỞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1. Các không gian hàm và toán tử . . . . . . . . . . . . . . . . . 8 1.1.1. Không gian các hàm liên tục . . . . . . . . . . . . . . . 8 1.1.2. Không gian các hàm khả tích Lebesgue . . . . . . . . . 8 1.1.3. Không gian Sobolev . . . . . . . . . . . . . . . . . . . . 9 1.1.4. Không gian đối ngẫu . . . . . . . . . . . . . . . . . . . 10 1.2. Không gian chứa trễ . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3. Một số bất đẳng thức thường dùng . . . . . . . . . . . . . . . . 13 1.4. Một số định lí cơ bản . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.1. Các bổ đề compact . . . . . . . . . . . . . . . . . . . . . 15 1.4.2. Một số định lí quan trọng . . . . . . . . . . . . . . . . . 18 Chương 2. NGHIỆM DỪNG CỦA PHƯƠNG TRÌNH TRUYỀN NHIỆT CÓ TRỄ VÔ HẠN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1. ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2. SỰ TỒN TẠI VÀ DUY NHẤT NGHIỆM . . . . . . . . . . . . 20 2.3. SỰ TỒN TẠI CỦA NGHIỆM DỪNG . . . . . . . . . . . . . . 26 2.4. TÍNH ỔN ĐỊNH CỦA NGHIỆM DỪNG . . . . . . . . . . . . . 28 Chương 3. NGHIỆM DỪNG CỦA PHƯƠNG TRÌNH KHUẾCH TÁN KHÔNG CỔ ĐIỂN CÓ TRỄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 3.1. ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2. SỰ TỒN TẠI VÀ DUY NHẤT NGHIỆM . . . . . . . . . . . . 32 3.3. SỰ TỒN TẠI CỦA NGHIỆM DỪNG . . . . . . . . . . . . . . 40 3.4. TÍNH ỔN ĐỊNH CỦA NGHIỆM DỪNG . . . . . . . . . . . . . 42 KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 TÀI LIỆU THAM KHẢO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 Phần I: MỞ ĐẦU 1. Tính cấp thiết của đề tài Phương trình đạo hàm riêng được nghiên cứu lần đầu vào giữa thế kỷ XVIII và được phát triển mạnh mẽ từ giữa thế kỷ XIX cho đến nay. Nó được coi là chiếc cầu nối giữa toán học và ứng dụng. Rất nhiều phương trình đạo hàm riêng là mô hình toán của các bài toán thực tế. Đặc biệt là lớp phương trình đạo hàm riêng tiến hóa phi tuyến. Lớp phương trình này xuất hiện nhiều trong các quá trình của vật lí, hóa học và sinh học, chẳng hạn quá trình truyền nhiệt và khuếch tán, quá trình truyền sóng trong cơ học chất lỏng, các mô hình quần thể trong sinh học, . . . Vì vậy, nghiên cứu những lớp phương trình này có ý nghĩa quan trọng trong khoa học và công nghệ. Bài toán đặt ra khi nghiên cứu những lớp phương trình đạo hàm riêng tiến hóa phi tuyến có ứng dụng là xét tính đặt đúng của bài toán (bởi, một phương trình đạo hàm riêng có ý nghĩa thực tiễn thì chắc chắn sẽ có nghiệm) và nghiên cứu tính trơn hay dáng điệu tiệm cận nghiệm khi biến thời gian t → ∞. Đây là một việc làm có ý nghĩa thực tiễn, vì nghiệm của phương trình đạo hàm riêng thường miêu tả trạng thái của các mô hình thực tế. Do đó, khi biết dáng điệu nghiệm, ta có thể dự đoán được xu thế phát triển của hệ trong tương lai và đưa ra những đánh giá, điều chỉnh thích hợp. Một phương trình đạo hàm riêng tiến hóa phi tuyến cụ thể, đóng vai trò quan trọng, có nhiều ý nghĩa trong tự nhiên là phương trình phản ứng khuếch tán. Phương trình phản ứng – khuếch tán là một trong những phương trình 3 đã được giới thiệu trong quá trình học tập của sinh viên và có dạng: ut − ∆u + f (u) = g, (1) ở đó f, g tương ứng là hàm phi tuyến và hàm ngoại lực. Lớp phương trình này có nhiều ứng dụng trong thực tế, nó xuất hiện nhiều trong các quá trình của vật lí và sinh học, chẳng hạn các quá trình truyền nhiệt và khuếch tán, các mô hình quần thể trong sinh học,. . . trong các công trình [1, 18, 26, 28]. Do đó, việc nghiên cứu những lớp phương trình này có ý nghĩa quan trọng trong khoa học và công nghệ. Trong những năm gần đây, việc nghiên cứu dáng điệu tiệm cận của nghiệm thông qua chứng minh tính ổn định nghiệm và sự tồn tại tập hút đã được nghiên cứu cho nhiều lớp phương trình parabolic nửa tuyến tính có trễ và nhiều lớp phương trình trong cơ học chất lỏng có trễ. Tuy nhiên, do những khó khăn cơ bản xuất hiện do số hạng chứa trễ gây ra, phần lớn các kết quả về tập hút đạt được là trong trường hợp trễ hữu hạn (xem[3, 5, 6, 7] và các tài liệu tham khảo trong đó). Việc phát triển các kết quả này cho trường hợp trễ vô hạn, trường hợp khó hơn rất nhiều do tính không bị chặn của trễ, mới chỉ đạt được một số ít tiến bộ trong vài năm gần đây trong một vài trường hợp đặc biệt của không gian pha là Cγ hoặc L1g (D(Aα )) [4, 8, 24]. Do đó, trong khóa luận này, chúng tôi xét phương trình truyền nhiệt có trễ vô hạn trên không gian pha chứa trễ được giới thiệu trong [17] như sau: { } BCL−∞ (L2 (Ω)) = φ ∈ C((−∞, 0]; L2 (Ω)) : ∃ lim φ(s) ∈ L2 (Ω) , s→−∞ là không gian Banach với chuẩn ∥φ∥B CL := sup ∥φ(s)∥L2 . s∈(−∞,0] Một lớp phương trình đạo hàm riêng tiến hóa phi tuyến quan trọng cũng được nghiên cứu nhiều trong những năm gần đây là lớp phương trình khuếch 4 tán không cổ điển có dạng: ut − ε∆ut − ∆u + f (u) = g, với ε ∈ (0, 1], (2) ở đó f là hàm phi tuyến và g là hàm ngoại lực. Chú ý rằng khi ε = 0, phương trình khuếch tán không cổ điển trở thành phương trình phản ứng-khuếch tán cổ điển quen thuộc. Lớp phương trình khuếch tán không cổ điển được giới thiệu trong [1] khi E.C. Aifantis chỉ ra rằng phương trình phản ứng-khuếch tán cổ điển không mô tả được hết các khía cạnh của bài toán phản ứng-khuếch tán. Nó bỏ qua tính nhớt, sự đàn hồi, và áp suất của môi trường trong quá trình khuếch tán chất rắn. Hơn nữa, E.C. Aifantis cũng chỉ ra rằng, năng lượng từ phương trình phát ra trong quá trình khuếch tán chất rắn trong môi trường khác nhau sẽ có tính chất khác nhau. Ví dụ, năng lượng phát ra từ phương trình khi môi trường truyền dẫn có áp suất và có độ nhớt hay không có độ nhớt là khác nhau. Do đó, ông đã xây dựng mô hình toán học qua một số ví dụ cụ thể, trong đó có chứa tính dẻo, đàn hồi, với áp lực trung bình và đưa ra lớp phương trình khuếch tán không cổ điển. Lớp phương trình này thường sử dụng để mô tả các hiện tượng vật lí như dòng chảy không Newton, các hiện tượng trong cơ học chất lỏng, cơ học chất rắn và sự tỏa nhiệt (xem [1, 14, 15, 18, 26, 27]). Gần đây, E.C. Aifantis đã đưa thêm một mô hình mới về bài toán này, xin xem trong [2]. Trong những năm gần đây, sự tồn tại và dáng điệu tiệm cận của nghiệm đối với phương trình khuếch tán không cổ điển đã được nghiên cứu rộng rãi trong cả trường hợp ôtônôm và trường hợp không ôtônôm. Mặt khác, có những tình huống mà mô hình sẽ mô tả tốt hơn nếu một hàm chứa trễ xuất hiện trong phương trình. Hàm chứa trễ có thể xuất hiện, chẳng hạn như khi muốn điều khiển hệ bằng cách sử dụng các lực không chỉ tính đến hiện tại mà cả lịch sử của nghiệm. Tuy nhiên, theo hiểu biết của chúng tôi, các kết quả nghiên cứu về sự tồn tại tập hút đạt được đối với phương trình khuếch tán không cổ điển chứa trễ chủ yếu là trong trường hợp trễ hữu hạn 5 [9, 10, 29], ngoại trừ 02 công trình rất gần đây, ở đó xét trễ vô hạn và số hạng phi tuyến tăng trưởng và tiêu hao kiểu Sobolev, kiểu đa thức đối với tập hút toàn cục [19, 25]. 2. Mục tiêu của khóa luận - Chứng minh sự tồn tại và duy nhất nghiệm, sự tồn tại và tính ổn định của nghiệm dừng của phương trình phản ứng - khuếch tán có trễ vô hạn trong không gian pha BCL−∞ (L2 (Ω)). - Chứng minh sự tồn tại và duy nhất nghiệm, sự tồn tại và tính ổn định của nghiệm dừng của phương trình khuếch tán không cổ điển có trễ vô hạn trong trường hợp hàm phi tuyến tăng trưởng và tiêu hao kiểu đa thức bằng cách đặc biệt hóa nội dung bài báo [25]. 3. Ý nghĩa khoa học và thực tiễn Các kết quả nghiên cứu trong đề tài là mới, có ý nghĩa khoa học, góp phần vào việc hoàn thiện lí thuyết hệ động lực vô hạn chiều và lí thuyết phương trình đạo hàm riêng phi tuyến, giải quyết một số vấn đề chưa được nghiên cứu mà nhiều nhà khoa học trong và ngoài nước quan tâm. Về mặt ứng dụng, có thể sử dụng các kết quả và ý tưởng của đề tài để nghiên cứu những bài toán trong vật lý, cơ học, hóa học và sinh học. 6 Phần III: NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 1. Cách tiếp cận và phương pháp nghiên cứu • Để nghiên cứu sự tồn tại duy nhất nghiệm, chúng tôi sử dụng các phương pháp và công cụ của Giải tích hàm phi tuyến: phương pháp xấp xỉ Galerkin và phương pháp compact, bổ đề compact, các bổ đề xử lí số hạng phi tuyến [16]. • Để nghiên cứu tính ổn định của nghiệm dừng, chúng tôi sử dụng các phương pháp của lí thuyết ổn định Lyapunov. 2. Đối tượng và phạm vi nghiên cứu • Đối tượng nghiên cứu: Phương trình phản ứng - khuếch tán và phương trình khuếch tán không cổ điển có trễ. • Phạm vi nghiên cứu: Nghiên cứu sự tồn tại, tính duy nhất và sự tồn tại, tính ổn định của nghiệm dừng của phương trình phản ứng - khuếch tán và phương trình khuếch tán không cổ điển có trễ. 7 Chương 1 KIẾN THỨC CƠ SỞ 1.1. Các không gian hàm và toán tử Trong đề tài, chúng tôi có sử dụng một số khái niệm và không gian hàm sau: 1.1.1. Không gian các hàm liên tục Cho Ω là một miền trong không gian Rn và cho 0 < k < +∞. Tập hợp tất cả các hàm liên tục và khả vi đến cấp k trong miền Ω ký hiệu C k (Ω). Không gian C(Ω) là tập hợp các hàm liên tục trên Ω. Không gian C ∞ (Ω) là tập hợp các hàm u khả vi vô hạn lần trên Ω, ∞ C (Ω) = ∞ ∩ C k (Ω). k=0 Không gian C0k (Ω), 0 ≤ k ≤ ∞ là tập hợp các hàm trong C k (Ω) và có giá compact trong Ω. 1.1.2. Không gian các hàm khả tích Lebesgue Cho Ω là một miền trong không gian Rn và cho 0 ≤ p < +∞ . Khi đó Lp (Ω) là không gian bao gồm tất cả các hàm u(x) khả tổng tuyệt đối cấp p theo Lebesgue trong Ω, tức là ∫ p |u| dx < +∞. Ω 8 Không gian Lp (Ω) là không gian định chuẩn với chuẩn: (∫ )1 p p ∥u(x)∥p = ∥u(x)∥Lp (Ω) = |u| . Ω Hơn nữa, Lp (Ω) là một không gian đầy đủ nên Lp (Ω) là không gian Banach. Đặc biệt, với p = 2, không gian L2 (Ω) là không gian Hilbert với tích vô hướng: ∫ (f, g) = f (x)g(x)dx. Ω Cho Ω là một miền trong Rn . Khi đó L∞ (Ω) là không gian bao gồm tất cả các hàm u(x) đo được theo Lebesgue và bị chặn hầu khắp nơi trên Ω. Ta kí hiệu: ess sup |u(x)| là cận dưới lớn nhất các hằng số k sao cho: x∈Ω |u(x)| ≤ k hầu khắp nơi trên Ω. Khi đó L∞ (Ω) cũng là không gian Banach với chuẩn: ∥u(x)∥∞ = ∥u(x)∥L∞ (Ω) = ess sup |u(t)| . x∈Ω Cho Ω là một miền trong Rn và cho 1 ≤ p < +∞. Khi đó Lploc (Ω) = {u : Ω → R|u ∈ Lp (U ) với mọi U ⊂⊂ Ω}. 1.1.3. Không gian Sobolev Giả sử Ω là một miền trong Rn . W k,p (Ω) là không gian bao gồm tất cả các hàm u sao cho tồn tại các đạo hàm suy rộng theo x đến cấp k và tất cả các đạo hàm đó thuộc không gian Lp (Ω). Không gian W k,p (Ω) được gọi là không gian Sobolev với chuẩn sau: ∥u∥W k,p (Ω) = k ( ∑ ∥α∥=0 9 ∥Dα u∥pLp ) p1 . Không gian Sobolev là một không gian Banach tách được. Trong trường hợp p = 2, không gian Sobolev W k,2 (Ω) thường được ký hiệu là H k (Ω) . H k (Ω) là một không gian Hilbert với tích vô hướng được sinh ra từ chuẩn: ((u, v))H k = k ∑ (Dα u, Dα v). ∥α∥=0 Không gian H0k (Ω) là bổ sung đủ của không gian Cc∞ (Ω) trong không gian H k (Ω). Đặc biệt, H01 (Ω) là tập hợp các hàm trong không gian H 1 (Ω) và bằng 0 trên biên ∂Ω. Không gian H01 (Ω) là một không gian Hilbert với tích vô hướng xác định bởi: ((u, v))H01 = ∑ (Dα u, Dα v), ∥α∥=1 và chuẩn tương ứng là: ∥u∥2H 1 = 0 1.1.4. ∑ |Dα u|2 . ∥α∥=1 Không gian đối ngẫu Không gian đối ngẫu của không gian Lp (Ω) là không gian Lq (Ω), với 1 1 + = 1, 1 ≤ p, q ≤ +∞. p q Không gian đối ngẫu của không gian H0s (Ω) ký hiệu là không gian H −s (Ω). Bổ đề 1.1. Nếu u ∈ H k (Ω), với k ∈ Z thì Dα u ∈ H k−|α| (Ω). 1.2. Không gian chứa trễ Khi nghiên cứu các phương trình vi phân chứa trễ vô hạn, việc chọn không gian pha đóng một vai trò rất quan trọng. Một cách chọn không gian pha thường thấy là một không gian nửa chuẩn thỏa mãn một số tiên đề được giới thiệu bởi J.K. Hale và J. Kato [11], sau đó được F. Kappel và W. Schappacher 10 [13], và K. Schumacher [20] phát triển. Những thảo luận chi tiết về vấn đề này, ta có thể tham khảo trong cuốn sách chuyên khảo của Y. Hino và các cộng sự [12]. Trước tiên, chúng tôi giới thiệu các tiên đề về không gian pha B. Cho E là một không gian Banach thực với chuẩn ∥ · ∥E . Giả sử không gian pha B là một không gian tuyến tính gồm các ánh xạ từ (−∞, 0] vào E, được trang bị nửa chuẩn ∥ · ∥B và thỏa mãn các tiên đề cơ bản sau: (A1) Nếu x : (−∞, σ + a) → E, a > 0, sao cho xσ ∈ B và x(·) liên tục trên [σ, σ + a), thì với mọi t thuộc [σ, σ + a) các kết luận sau là đúng: • (i) xt ∈ B, • (ii) ∥x(t)∥E ≤ H∥xt ∥B , • (iii) ∥xt ∥B ≤ K(t − σ) sup ∥x(s)∥E + M (t − σ)∥xσ ∥B , σ≤s≤t ở đây H là một hằng số, các hàm K(∆), M (∆) : [0, +∞) → [0, +∞), với K liên tục và M bị chặn địa phương, và chúng đều độc lập đối với x. (A2) Với hàm x(·) trong (A1), t 7→ xt là một hàm liên tục với giá trị trong B với t thuộc [σ, σ + a). (B) Không gian B là không gian đầy đủ. Nhận xét 1.1. [12] Từ các tiên đề trên, ta thấy: • Tiên đề (A1)(ii) tương đương với ∥φ(0)∥E ≤ H∥φ∥B , với mọi φ ∈ B. • Do ∥ · ∥B chỉ là một nửa chuẩn, nên với hai phần tử φ, ψ ∈ B thỏa mãn ∥φ − ψ∥B = 0 ta có φ(0) = ψ(0), và chưa thể kết luận φ(θ) = ψ(θ) với mọi θ ≤ 0. • Tiên đề (B) tương đương với điều kiện không gian thương B̂ = B/∥ · ∥B = {φ̂ : φ ∈ B} là một không gian Banach. 11 Tiếp theo, ta sẽ đưa ra một số ví dụ về các không gian pha cụ thể thỏa mãn các tiên đề (A1), (A2) và (B). Ví dụ 1.1. Cho g : (−∞, 0] → (0, +∞) là một hàm liên tục bất kì, đặt { } ∥φ(θ)∥E 0 Cg := φ ∈ C((−∞, 0]; E) : lim =0 , θ→−∞ g(θ) với chuẩn ∥φ∥g := ∥φ(θ)∥E . g(θ) −∞<θ≤0 sup Định lí 1.3.2 và Định lí 1.3.6 trong [12] chứng tỏ rằng nếu g là hàm không tăng, thì (Cg0 , ∥ · ∥g ) thỏa mãn các tiên đề (A1), (A2) và (B). Ví dụ 1.2. Xét không gian Cγ xác định như sau: Cγ := {φ ∈ C((−∞, 0]; E) : lim eγθ φ(θ) tồn tại trong E}, γ > 0, θ→−∞ với chuẩn ∥φ∥γ := sup −∞<θ≤0 eγθ ∥φ(θ)∥E , với φ ∈ Cγ . Lấy H = 1, K(t) = 1, và M (t) = e−γt , chứng minh tương tự như trong [12, Định lí 3.7, tr. 23], ta thấy không gian Cγ cũng thỏa mãn các tiên đề (A1), (A2) và (B). Ví dụ 1.3. Cho A là toán tử quạt xác định dương với giải thức compact trên không gian Banach (E, ∥ · ∥), 0 < α < 1 và g thỏa mãn các điều kiện sau: (g1) tồn tại một hàm bị chặn địa phương G : (−∞, 0] → [0, +∞) thỏa mãn g(ξ + θ) ≤ G(ξ)g(θ), với mọi ξ ≤ 0và θ ∈ (−∞, 0] \ Nξ , trong đó Nξ ⊆ (−∞, 0] là tập có độ đo Lebesgue bằng 0; ∫ 0 (g2) k1 := g(θ)dθ < ∞; −∞ ∫ (g3) k2 := 0 −∞ g(θ)e−λθ dθ < ∞ với λ > 0 trong Mệnh đề ?? (4); (g4) G(−t) → 0 khi t → +∞. 12 Ta có thể lấy hàm g(θ) := eρθ , trong đó ρ > λ. Xét không gian L1g (D(Aα )) là không gian tuyến tính gồm tất cả các lớp hàm φ : (−∞, 0] → D(Aα ) sao cho φ là hàm đo được Lebesgue và g(·)∥φ(·)∥α khả tích Lebesgue trên (−∞, 0], ở đây g : (−∞, 0] → R là hàm có độ đo Lebesgue dương. Chuẩn trong không gian L1g (D(Aα )) được định nghĩa như sau: ∫ ∥φ∥L1g := 0 −∞ g(θ)∥φ(θ)∥α dθ. Định lí 1.3.8 trong [12] khẳng định rằng L1g (D(Aα )) là một không gian pha thỏa mãn các tiên đề (A1), (A2) và (B). Ngoài ra, nếu {φn } là một dãy Cauchy trong L1g (D(Aα )) và nếu φn hội tụ compact tới φ trên (−∞, 0], thì φ ∈ L1g (D(Aα )) và ∥φn − φ∥L1g → 0 khi n → ∞. Cho C00 là tập các hàm liên tục từ (−∞, 0] vào D(Aα ) với giá compact, và kí hiệu supp (φ) là giá của φ trong C00 . Từ một kết quả trong [12, Chương 1], ta có Nhận xét 1.2. Cho hàm φ ∈ C00 thuộc L1g (D(Aα )). Nếu supp (φ) chứa trong [−r, −s], 0 ≤ s ≤ r < ∞, thì tồn tại một hằng số δ(r, s) sao cho ∥φ∥L1g ≤ δ(r, s) 1.3. sup ∥φ(θ)∥α . θ∈[−r,−s] Một số bất đẳng thức thường dùng • Bất đẳng thức Cauchy: ab ≤ a2 b2 + . 2 2 • Bất đẳng thức Cauchy với ϵ: ab ≤ ϵa2 + b2 , (ϵ > 0). 4ϵ • Bất đẳng thức Young: 1 1 Cho 1 < p, q < ∞, + = 1. Khi đó p q ap bq ab ≤ + , (a, b > 0). p q 13 • Bất đẳng thức Young với ϵ: ab ≤ ϵap + C(ϵ)bq , (a, b, ϵ > 0), với C(ϵ) = (ϵp) −q p q −1 . • Bất đẳng thức Holder: Giả thiết 1 < p, q ≤ ∞, 1 1 + = 1. Khi đó nếu u ∈ Lp (Ω), v ∈ Lq (Ω) thì p q ta có ∫ |uv|dx ≤ ∥u∥Lp (Ω) .∥v∥Lq (Ω) . Ω • Bất đẳng thức nội suy đối với chuẩn Lp : 1 η 1−η Giả thiết 1 ≤ s ≤ r ≤ t ≤ ∞ và = + . r s t Giả sử u ∈ Ls (Ω) ∩ Lt (Ω). Khi đó u ∈ Lr (Ω) và ∥u∥Lr (Ω) ≤ ∥u∥tLs (Ω) ∥u∥1−η Lt (Ω) . • Bất đẳng thức Gronwall dạng vi phân Giả sử x(t) là một hàm liên tục tuyệt đối trên [0, T ] và thỏa mãn dx ≤ g(t)x + h(t), với hầu khắp t, dt trong đó g(t), h(t) là các hàm khả tích trên [0, T ]. Khi đó : ∫t x(t) ≤ x(0)eG(t) + eG(t)−G(s) h(s)ds, 0 với 0 ≤ t ≤ T , ở đó ∫t G(t) = g(r)dr. 0 Nói riêng, nếu a và b là các hằng số và dx ≤ ax + b, dt 14 thì a a x(t) ≤ (x(0) + )eat − . b b • Bất đẳng thức Gronwall dạng tích phân Cho ξ(t) là một hàm khả tích, không âm trên [0, T ] và thỏa mãn hầu khắp t bất đẳng thức tích phân: ∫t ξ(t) ≤ C1 ξ(s)ds + C2 , 0 với C1 , C2 là các hằng số không âm. Khi đó ξ(t) ≤ C2 (1 + C1 teC1 t ) với hầu khắp t, 0 ≤ t ≤ T. • Bất đẳng thức Gronwall đều Giả sử x, a, b là các hàm dương thỏa mãn dx ≤ ax + b, dt với ∫t+r ∫t+r ∫t+r x(s)ds ≤ X, a(s)ds ≤ A, b(s)ds ≤ B, t t t với r > 0 nào đó với mọi t ≤ t0 . Khi đó x(t) ≤ ( X + B)eA , r với mọi t ≤ t0 + r. 1.4. 1.4.1. Một số định lí cơ bản Các bổ đề compact Trước tiên ta nhắc lại khái niệm về hội tụ yếu và hội tụ ∗ −yếu. Một dãy {un } ⊂ X được gọi là hội tụ yếu đến một phần tử u ∈ X nếu ⟨un − u, f ⟩ → 0 15 khi n → ∞ với mọi phần tử f thuộc không gian đối ngẫu X ∗ và ta kí hiệu là un ⇁ u (n → ∞). Một dãy fn trong X ∗ được gọi là hội tụ ∗ −yếu tới f ∈ X ∗ nếu với mọi u ∈ X ta có ⟨u, fn − f ⟩ → 0 khi n → ∞. Nếu X là không gian phản xạ, nghĩa là X = (X ∗ )∗ , thì sự hội tụ ∗ −yếu trong không gian phản xạ trùng với sự hội tụ yếu. Ta biết rằng sự hội tụ yếu có tính chất sau đây: Nếu un ⇁ u khi n → ∞ trong X, thì ∥u∥X ≤ lim inf ∥un ∥X . n→∞ Tương tự, nếu fn ⇁ f ∗ −yếu trong X ∗ khi n → ∞, thì ∥f ∥X ∗ ≤ lim inf ∥fn ∥X ∗ . n→∞ Các định lí sau rất hữu ích (xem [1, 7, 10, 16]) Bổ đề 1.2 (Bổ đề Aubin-Lions). ([16, Chương 1]) Cho X0 , X và X1 là ba không gian Banach với X0 và X1 là không gian phản xạ. Giả sử X0 nhúng compact trong X và X nhúng liên tục trong X1 . Với 1 < p, q < +∞, ta đặt: W = {u ∈ Lp ([0, T ]; X0 ) |∂t u ∈ Lq ([0, T ]; X1 )}. Khi đó W nhúng compact trong Lp ([0, T ]; X). Bổ đề 1.3. [16, Bổ đề 1.3, tr.12] Giả sử O là một tập mở bị chặn trong Rt × Rnx và {gj } là một dãy các hàm trong Lp (O), 1 < p < ∞, thoả mãn: ∥gj ∥Lp (O) ≤ C với mọi j ∈ N∗ . Khi đó, nếu g ∈ Lp (O) và gj → g h.k.n trong O thì gj ⇀ g trong Lp (O). Định lí 1.1 (Bổ đề compact ∗ − yếu Alaoglu). Nếu không gian X là phản xạ thì có thể chọn một dãy con hội tụ yếu từ một dãy bị chặn bất kì trong X. Nếu X ∗ là đối ngẫu của một không gian tách được thì mọi dãy bị chặn trong X ∗ đều chứa một dãy con hội tụ ∗ −yếu. Bổ đề 1.4. Cho O là một miền bị chặn trong Rd , X ⊂ E là các không gian Banach, trong đó phép nhúng trên là compact. Xét 1 ≤ p < q ≤ +∞. Giả sử 16 F ⊂ Lp (O; E) thỏa mãn (i) ∀w ⊂⊂ O, lim sup ∥τh f − f ∥Lp (w;E) = 0 (ở đó τh f là toán tử chuyển h→0 f ∈F τh f (x) = f (x + h)), (ii) F bị chặn trong Lp (O; E) ∩ L1 (O; E). Khi đó, F compact tương đối trong Lp (O; E). Mệnh đề sau suy ra từ định lí Hahn - Banach: Mệnh đề 1.1. Giả sử X là một không gian Banach với đối ngẫu X ∗ . Khi đó ∥u∥X = max ⟨u, f ⟩, f ∈X ∗ , ∥f ∥X ∗ ≤1 và maximum là đạt được. Định lí 1.2. Cho E ⊂ E0 là các không gian Banach, trong đó phép nhúng là liên tục. Giả sử u ∈ L∞ (τ, T ; E) và u(t) ∈ E0 với mọi t ∈ [τ, T ], hơn nữa, với bất kì φ ∈ E0∗ , ⟨u(t), φ⟩ là một hàm liên tục đối với t ∈ [τ, T ] (tức là u(t) là một hàm liên tục yếu từ [τ, T ] vào E0 ). Khi đó a) u(t) ∈ E với mọi t ∈ [τ, T ], ∥u(t)∥E ≤ ∥u∥L∞ (τ,T ;E) , ∀ t ∈ [τ, T ], và u(t) là hàm liên tục yếu từ [τ, T ] vào E; b) hàm ∥u(t)∥E là nửa liên tục dưới trên [τ, T ], tức là ∥u(t)∥E ≤ lim inf ∥u(t)∥E , s→t ∀ t ∈ [τ, T ]. Nhận xét Như vậy, nếu ∂t u ∈ Lp1 (τ, T ; E0 ), p1 ≥ 1 thì u ∈ C([τ, T ]; E0 ). Nếu u ∈ L∞ (τ, T ; E) và E ⊂ E0 thì u(t) ∈ E được xác định một cách duy nhất với bất kì t ∈ [τ, T ]. Định lí 1.3 (Compact yếu). Cho X là không gian Banach phản xạ và giả sử ∞ ∞ dãy {uk }∞ k=1 là bị chặn. Khi đó tồn tại một dãy con {ukj }j=1 ⊂ {uk }k=1 và u ∈ X sao cho ukj ⇀ u. Tức là, dãy bị chặn trong không gian Banach phản xạ là tiền compact yếu. Nói riêng, một dãy bị chặn trong không gian Hilbert chứa một dãy con hội tụ yếu. 17
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng