Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Sư phạm Không gian vectơ các đa thức trên một trường...

Tài liệu Không gian vectơ các đa thức trên một trường

.PDF
64
1
85

Mô tả:

i TRƯỜNG ĐẠI HỌC HÙNG VƯƠNG KHOA KHOA HỌC TỰ NHIÊN ----------------------- NGÔ THỊ THU THỦY KHÔNG GIAN VECTƠ CÁC ĐA THỨC TRÊN MỘT TRƯỜNG KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngành: Sư phạm Toán Phú Thọ, 2019 ii TRƯỜNG ĐẠI HỌC HÙNG VƯƠNG KHOA: KHOA HỌC TỰ NHIÊN ----------------------- NGÔ THỊ THU THỦY KHÔNG GIAN VECTƠ CÁC ĐA THỨC TRÊN MỘT TRƯỜNG KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngành: Sư phạm Toán học Giảng viên hướng dẫn: TS. Nguyễn Tiến Mạnh Phú Thọ, 2019 iii LỜI CẢM ƠN Trong suốt thời gian thực hiện khóa luận tốt nghiệp, ngoài sự nỗ lực của bản thân em còn nhận được sự giúp đỡ tận tình của các thầy giáo, cô giáo trong Khoa Khoa học - Tự nhiên Trường Đại học Hùng Vương. Đặc biệt em xin bày tỏ lòng biết ơn sâu sắc tới Tiến sĩ Nguyễn Tiến Mạnh – Giảng viên Khoa Khoa học - Tự nhiên Trường Đại học Hùng Vương. Thầy đã dành nhiều thời gian quý báu để tận tình hướng dẫn, chỉ bảo em trong suốt quá trình thực hiện khóa luận tốt nghiệp. Đồng thời thầy còn là người giúp em lĩnh hội và nắm vững được nhiều kiến thức chuyên môn cũng như rèn luyện cho tôi tác phong nghiên cứu khoa học. Do chưa có nhiều kinh nghiệm nghiên cứu, nên không tránh khỏi những thiếu sót. Vì vậy em rất mong nhận được sự đóng góp quý báu của thầy cô và các bạn để khóa luận được hoàn thiện hơn. Cuối cùng em xin kính chúc các thầy giáo, cô giáo dồi dào sức khỏe, hạnh phúc và thành đạt. Em xin chân thành cảm ơn! Việt Trì, ngày 10 tháng 5 năm 2019 Sinh viên Ngô Thị Thu Thủy iv MỤC LỤC Trang PHẦN MỞ ĐẦU .............................................................................................. 1 Chương 1: SƠ LƯỢC MỘT SỐ KIẾN THỨC VỀ KHÔNG GIAN VECTƠ VÀ ÁNH XẠ TUYẾN TÍNH ........................................................... 4 1.1 Không gian vectơ ........................................................................................ 4 1.1.1 Định nghĩa ............................................................................................. 4 1.1.2 Một số ví dụ về không gian vectơ ......................................................... 5 1.1.3 Một số tính chất đơn giản ..................................................................... 5 1.2 Không gian con ........................................................................................... 7 1.2.1 Định nghĩa không gian con ................................................................... 7 1.2.2 Ví dụ không gian con ............................................................................ 8 1.3 Ánh xạ tuyến tính ........................................................................................ 9 1.3.1 Định nghĩa ánh xạ tuyến tính ................................................................ 9 1.3.2 Ví dụ ánh xạ tuyến tính ....................................................................... 10 Chương 2: CƠ SỞ VÀ TỌA ĐỘ TRONG KHÔNG GIAN 13 VECTƠ CÁC ĐA THỨC ............................................................................. 13 2.1 Cơ sở và tọa độ trong không gian vectơ các đa thức một biến ................. 13 2.1.1 Các khái niệm cơ bản .......................................................................... 13 2.1.2 Cơ sở trong không gian vectơ các đa thức một biến .......................... 17 2.1.3 Tọa độ trong không gian vectơ các đa thức một biến ......................... 24 2.2 Cơ sở trong không gian vectơ đa thức nhiều biến .................................... 25 2.2.1 Khái niệm đa thức nhiều biến ............................................................. 25 2.2.2 Cơ sở trong không gian đa thức nhiều biến ........................................ 25 2.3 Các bài tập có liên quan ............................................................................ 26 Chương 3: ÁNH XẠ TUYẾN TÍNH GIỮA CÁC KHÔNG GIAN 37 VECTƠ ĐA THỨC ....................................................................................... 37 3.1 Cơ sở lí thuyết: .......................................................................................... 37 3.2 Các bài tập có liên quan ............................................................................ 44 KẾT LUẬN .................................................................................................... 59 TÀI LIỆU THAM KHẢO ............................................................................ 60 1 PHẦN MỞ ĐẦU 1. Tính cấp thiết của đề tài Có thể nói Không gian vectơ (KGVT) là một lĩnh vực rất quan trọng. Nó được coi là cơ sở cho hầu hết các môn Toán mà sinh viên được học. Chính vì vậy KGVT được giảng dạy trong năm đầu tiên cho các chương trình đào tạo: Sư phạm, Kĩ thuật Công nghệ, Kinh tế, Nông Lâm,...Tìm hiểu về KGVT là tìm hiểu về: Định nghĩa, tính chất của KGVT; Không gian con; Sự độc lập tuyến tính và phụ thuộc tuyến tính; Cơ sở của KGVT;... Bên cạnh đó, đa thức cũng có vai trò rất quan trọng trong toán học. Nó không những là đối tượng nghiên cứu trọng tâm của Đại số xuyên suốt từ bậc Trung học cơ sở đến Đại học như các phép toán trên vành đa thức (chia đa thức, phân tích đa thức thành nhân tử, nghiệm của đa thức, ước chung lớn nhất, bội chung nhỏ nhất, hằng đẳng thức,...); các dạng toán về phương trình, hệ phương trình (bậc nhất, bậc hai, bậc cao, giá trị tuyệt đối, vô tỉ,...); dạng toán về bất đẳng thức, bất phương trình, hệ bất phương trình,... mà còn là công cụ đắc lực của Giải tích trong lý thuyết xấp xỉ, lý thuyết biểu diễn, tối ưu,... Ngoài ra, lý thuyết đa thức còn được sử dụng nhiều trong toán cao cấp, toán ứng dụng và được xem như những dạng toán khó. Như chúng ta đã biết, tập đa thức trên các trường số vừa có cấu trúc vành, vừa có cấu trúc KGVT. Và KGVT là một cấu trúc cơ bản của Đại số hiện đại, mang tính trừu tượng. Để hiểu rõ hơn về KGVT và nhằm ứng dụng cấu trúc này trong học tập, nghiên cứu chúng ta cần thể hiện việc áp dụng KGVT trên các đối tượng cụ thể và một trong những đối tượng toán học quen thuộc vừa cổ điển, vừa hiện đại có mặt trong hầu hết mọi lĩnh vực là đa thức. Từ kinh nghiệm và thực tiễn cho thấy nhiều bài toán về đa thức có thể được giải quyết nếu được xem xét trong cấu trúc KGVT. Với mục đích hiểu rõ hơn những vấn đề về đa thức, đồng thời để tìm hiểu ứng dụng của cấu trúc KGVT trên những đối tượng cụ thể của Toán học, tôi chọn đề tài: “Không 2 gian vectơ các đa thức trên một trường” cho khóa luận tốt nghiệp của mình. 2. Mục tiêu khóa luận Cụ thể hóa những vấn đề thuộc lý thuyết về KGVT nói chung, áp dụng vào KGVT các đa thức trên một trường. Giải những bài toán về đa thức có ứng dụng KGVT để giải quyết. 3. Nhiệm vụ nghiên cứu  Nghiên cứu các khái niệm, tính chất của các đối tượng liên quan đến cấu trúc KGVT.  Nghiên cứu về các kiến thức cơ sở của tập các đa thức trên một trường, chú ý đến hai cấu trúc trên lớp đối tượng này (cấu trúc vành, cấu trúc KGVT).  Tìm ra sự liên hệ để làm rõ những vấn đề về KGVT nói chung khi xem xét cụ thể đối với KGVT các đa thức trên một trường. 4. Phương pháp nghiên cứu  Phương pháp nghiên cứu lí luận: Đọc và nghiên cứu tài liệu, giáo trình có liên quan đến cấu trúc không gian vectơ.  Phương pháp tổng kết kinh nghiệm: Qua việc nghiên cứu, tham khảo tài liệu, từ đó rút ra kinh nghiệm để áp dụng vào việc nghiên cứu.  Phương pháp lấy ý kiến chuyên gia: Lấy ý kiến của giảng viên trực tiếp hướng dẫn và ý kiến của các giảng viên khác để hoàn thiện về mặt nội dung và hình thức của khoá luận. 5. Đối tượng và phạm vi nghiên cứu Đối tượng: Cấu trúc KGVT các đa thức. Phạm vi: Khoá luận chủ yếu tập trung vào các vấn đề liên quan đến cấu trúc không gian vectơ, ánh xạ tuyến tính thể hiện cụ thể trên không gian vectơ các đa thức. 6. Ý nghĩa khoa học và thực tiễn 3 Khoá luận đã hệ thống những kiến thức cơ sở về không gian vectơ các đa thức một biến, nhiều biến. Đồng thời liên hệ với những vấn đề quen thuộc trong giải tích, đại số. Cụ thể: Đồ thị hàm số, nguyên hàm tích phân, khai triển, hoặc đa thức số học, biểu diễn đa thức,… 7. Bố cục của khóa luận Chương 1. Sơ lược một số kiến thức về KGVT và ánh xạ tuyến tính. 1.1 Không gian vectơ 1.2 Không gian con 1.3 Ánh xạ tuyến tính Chương 2. Cơ sở và tọa độ của KGVT các đa thức 2.1 Cơ sở và tọa độ của KGVT các đa thức một biến 2.2 Cơ sở và tọa độ của KGVT các đa thức nhiều biến 2.3 Một số bài toán có liên quan Chương 3. Ánh xạ tuyến tính giữa các không gian vectơ các đa thức 3.1 Cơ sở lí thuyết 3.2 Một số bài toán có liên quan 4 Chương 1: SƠ LƯỢC MỘT SỐ KIẾN THỨC VỀ KHÔNG GIAN VECTƠ VÀ ÁNH XẠ TUYẾN TÍNH 1.1 Không gian vectơ 1.1.1 Định nghĩa Mọi tập hợp V được trang bị Phép cộng “+” : V .V  V ( ,  )   Phép nhân “. ” : K .V  V   ,   Bộ V , ,. gọi là một KGVT trên K hay K  không gian vectơ nếu thỏa mãn 8 tiên đề: 1)           2)             3) 0 V :   0   ,  V   4)  V ,    :     0   5)      .  . ,  ,  V ,   K 6)      .   .   . ,   V ;  ,  K   7)    .   . ,  V ;  ,  K 8)1.   ,  V Khi đó mỗi phần tử  V được gọi là một vectơ, mỗi số   K gọi là một vô hướng.  2 5 1.1.2 Một số ví dụ về không gian vectơ Ví dụ 1.1.1: Xét tập tất cả các đa thức một biến K  X  với phép cộng. Cho P   an n ; Q   bn n  K  X . Khi đó P  Q   an  bn n  K  X  và phép nhân:   K , P   an n  K  X . Khi đó  P    an n  K  X . Chính vì vậy các phép cộng và phép nhân thông thường thực sự là các phép toán trên K  X . Đa thức 0 đóng vai trò là vectơ không, còn đa thức đối là vectơ đối. Các tính chất còn lại là những tính chất quen thuộc của đa thức. Vậy K  X  lập thành một KGVT. Ví dụ 1.1.2: Tương tự, tập tất cả các đa thức một biến K  x  bậc nhỏ hơn hoặc bằng một số n  0 cho trước là một KGVT. Ví dụ 1.1.3: Tuy nhiên tập tất cả các đa thức một biến K  x  bậc lớn hơn hoặc bằng một số n  0 cho trước với phép cộng đa thức thông thường và phép nhân đa thức với phần tử của trường nêu trên không phải là KGVT. Lí do là tổng của hai đa thức bậc lớn hơn hoặc bằng n có thể có bậc nhỏ hơn n , nên phép cộng thông thường không phải là phép toán ( trên tập đang xét ). 1.1.3 Một số tính chất đơn giản Định lý 1.1.1: Trong không gian vectơ bất kỳ tồn tại duy nhất một vectơ không.  2 Chứng minh: Thật vậy giả sử trong không gian vectơ có hai vectơ không kí hiệu 1 và  2 Vì 1 là vectơ không nên 2  1  2 . Tương tự 1  2  1. Từ hai đẳng thức trên suy ra điều phải chứng minh. Định lý 1.1.2: Mỗi vectơ của không gian vectơ chỉ có duy nhất một vectơ đối.  2 Chứng minh: Giả sử mọi  V có hai đa thức đối là 1 và  2 Khi đó: 6      2    1   2    1. Vì   1  0 và    2  0 nên 1   2 . Định lý 1.1.3: Trong không gian vectơ bất kỳ ta có 0.  0. 2 Chứng minh: Ta xét phần tử 0.  1.   0  1  1.   0.  1.  0.   Từ đó suy ra:   0.   . Thêm vào hai vế của đẳng thức đa thức đối của  là  ta có:    0      0.      0.       0.  0  0. Từ đó rút ra 0.  0. Định lý 1.1.4: Với mọi  V vectơ đối của  bằng tích của  với 1.  2 Chứng minh: Ta có: 1.   1   1  1   0 Điều đó chứng tỏ rằng  1  là đa thức đối của  . Định lý 1.1.5:  2 i) a  K ta có a .0  0.   0 a  0 ii) a  0   Chứng minh: i) Ta có:     a    1   a  a  1 a.0  a     a   a   0 7 1 ii) Giả sử a  0 khi đó vì a  K nên a . Từ đó:   a 1 a  a 1.0     Vế trái: a 1 a  a 1a   1. Vế phải bằng 0. Do đó   0. 1.2 Không gian con 1.2.1 Định nghĩa không gian con Định nghĩa 1.2.1: Giả sử W là một tập con của không gian vectơ V . Nếu W cũng là không gian vectơ đối với hai phép toán đã cho trong V thì W được gọi là không gian con của V .  2 Định lý 1.2.1: Giả sử W là tập hợp khác rỗng trong không gian vectơ V trên trường K  K  , K  . Khi đó W là một không gian con của V nếu và chỉ nếu: 1) Mọi x, y  W  x  y W . 2) Với mọi x  W   x  W . với mọi   K . 2 Chứng minh: 1) Giả sử W là không gian con của V . Khi đó theo định nghĩa không gian con các phép toán cộng và nhân đa thức với một số được thỏa mãn, nghĩa là: x, y W  x  y W x W ,a  K  a. x W . 2) Ngược lại, các điều kiện 1) và 2) chứng tỏ rằng các phép toán được định nghĩa trong V cũng là những phép toán trong W . Ta cần chứng minh tập hợp W là không gian vectơ. Hiển nhiên các tiên đề 1, 2, 5, và 8 thỏa mãn trong W vì chúng đúng với mọi phần tử của V (do đó nó đúng với mọi phần tử của W V ) Ta cần kiểm tra tiên đề 3 và 4. Vì W   nên x  W . Khi đó  x  W với   K bất kỳ. Ta lấy   0. Khi đó theo định lý 3 ta có: 0. x  0. Điều đó có nghĩa là 0  W và tiên đề 3 được thỏa mãn. 8 Bây giờ lấy   1. Theo định lý 5 ta có  1 x là phần tử đối của x. Vì  x  W , x  W nên  1 x W , x W . Điều đó chứng tỏ x  W cùng với phần tử đối của nó. Như vậy tiên đề 4 được thỏa mãn. Định nghĩa 1.2.2 ( Tổng và giao của những không gian con) Giả sử W1 ,W2 ,...,Wm là những không gian vectơ con của K  không gian vectơ V . Khi đó:   - Tập hợp W  1   2  ...   m | i Wi , i 1, 2,..., m là một không gian con của V . Nó được gọi là tổng của m không gian con Wi đã cho và được ký hiệu bởi W1 +W2  ...  Wm hoặc m W. i i1 - Tập hợp U  m Wi là một không gian con của V và được gọi là giao của m i 1 không gian con Wi . 5 Định nghĩa 1.2.3 ( Không gian sinh bởi một hệ vectơ)   Giả sử A  1 , 2 ,...,1 là một hệ vectơ của K  không gian vectơ V .   Khi đó tập hợp: W  r11  r2  2  ...  rn  n | ri  K , i 1, 2,..., n là một không gian con của V . W được gọi là không gian sinh bởi hệ vectơ A, còn A được gọi là hệ sinh của W . 5 Định nghĩa 1.2.4: Giả sử E là một K  kgvt. F1 , F2 là hai không gian con của E. Ta nói rằng F1 , F2 có tổng trực tiếp khi và chỉ khi F1  F2  0. Khi F1 và F2 có tổng trực tiếp, ta ký hiệu: F1  F2 .5 1.2.2 Ví dụ không gian con Ví dụ 1.2.1: Mỗi K  không gian vectơ V đều có hai không gian con hiển nhiên đó là V và không gian tầm thường 0. Ví dụ 1.2.2: Với mỗi số nguyên n  0. Ta đặt: 9 K n  x    f  K  x  : deg f  n Dễ thấy rằng Kn  x là một không gian con của không gian các đa thức ẩn x trên trường K . 1.3 Ánh xạ tuyến tính 1.3.1 Định nghĩa ánh xạ tuyến tính Định nghĩa 1.3.1: Giả sử V ,W là không gian vectơ trên trường số K . Ánh xạ f : V  W được gọi là ánh xạ tuyến tính ( hay K  đồng cấu) của không gian vectơ V vào không gian vectơ W nếu các điều kiện sau được thỏa mãn đối với mọi vectơ x, y thuộc V và mọi phần tử a thuộc trường K . a) f ( x  y )  f ( x)  f (y) b) f (a x)  af ( x) Nếu V  W thì f được gọi là toán tử tuyến tính hay tự đồng cấu.  2 Hệ quả: 1) Ánh xạ f : V  W là ánh xạ tuyến tính thì: i) f  0V   0W ii) f   x    f  x  Chứng minh: i) Ta có: 0V  0V  0V  f  0V   f  0V  0V   f  0V   f  0V   f  0V   f  0V   f  0V  *  f  0V   f  0V   0W ** Từ * , ** ta có f  0V   0W ii) Ta có 0 W  f  0V   f  x    x    f  x   f   x  2) Ánh xạ f : V  W là một ánh xạ tuyến tính khi và chỉ khi: f (a .x  b.y)  a. f ( x))  b. f ( y ); x, y V ;a, b  K 10 m Tổng quát: f ( m a x )  a i i i 1 i 1 i f ( xi ); xi V ,a i  K , i  1, m Định nghĩa 1.3.2: Nếu ánh xạ tuyến tính f là một đơn ánh thì gọi là đơn cấu. Nếu ánh xạ tuyến tính f là một toàn ánh thì gọi là toàn cấu. Một ánh xạ tuyến tính f vừa là đơn cấu vừa là toàn cấu thì gọi là đẳng cấu. Khi có một đẳng cấu f : V  W thì ta nói hai không gian vectơ V và W đẳng cấu với nhau và kí hiệu: V W .  2 Mệnh đề 1.3.1: Ánh xạ tuyến tính f : V  W là một đẳng cấu khi và chỉ khi tồn tại ánh một f 1 f  1V , f xạ tuyến f 1 : W  V tính sao cho f 1  1W.  2  Định lí 1.3.1: Giả sử V ,W là hai K  không gian vectơ,    1 ,  2 ,...,  n  là cơ sở của V và 1 ,  2 ,...,  n là n vectơ tùy ý của W . Khi đó tồn tại duy   nhất một ánh xạ tuyến tính f : V  W sao cho f  i   i với mọi i 1, 2,..., n.  2 1.3.2 Ví dụ ánh xạ tuyến tính Cho V , W là các không gian vectơ trên K . Ví dụ 1.3.1: Ánh xạ đồng nhất id :V  V trên V là một ánh xạ tuyến tính. Ví dụ 1.3.2: Một cách tổng quát nếu W  V thì ánh xạ f1 :W  V xác định bởi f1 ( x)  x, x W là một ánh xạ tuyến tính và được gọi là ánh xạ nhúng. Ví dụ 1.3.3: Ánh xạ 0 : V  W biến mọi vectơ của V thành vectơ 0 của W là một ánh xạ tuyến tính được gọi là ánh xạ không và ký hiệu là 0. Ví dụ 1.3.4: Ta xét ánh xạ  từ không gian bậc nhỏ hơn n vào không gian hơn n  1 xác định như sau: n1 n  x các đa thức hệ số thực có  x các đa thức hệ số thực với bậc nhỏ 11 Với mọi f ( x)  n  x ,  (( f ( x))  f ( x). Theo tính chất của đạo hàm ta có:  ( f ( x)  g ( x))  ( f ( x)  g ( x)) '  f '( x)  g '( x)  ( f ( x)  g ( x))  f ( x)  g ( x) Và  ( f ( x))  ( f ( x)) '   f '( x)  ( f ( x))  f ( x) Đối với mọi đa thức f ( x), g ( x)  n  x,  . Vậy  là một ánh xạ tuyến tính từ không gian n1  x . n  x vào không gian 12 Kết luận chương 1: Chương 1 trình bày một cách khái quát về không gian vectơ, ánh xạ tuyến tính bao gồm: Định nghĩa không gian vectơ, không gian con, ánh xạ tuyến tính. Trọng tâm là các kiến thức liên quan đến KGVT các đa thức trên một trường. Đồng thời đưa ra các ví dụ cụ thể đối với không gian các đa thức. 13 Chương 2: CƠ SỞ VÀ TỌA ĐỘ TRONG KHÔNG GIAN VECTƠ CÁC ĐA THỨC 2.1 Cơ sở và tọa độ trong không gian vectơ các đa thức một biến 2.1.1 Các khái niệm cơ bản Giả sử V là không gian vectơ trên trường số . Và 1 , 2 ,..., n  V . Định nghĩa 2.1.1: Tổ hợp tuyến tính: 1 1  2  2  ...  n  n  n    1 i 1 i i được gọi là không tầm thường nếu i  0, i  1, n . Nếu i  0, i thì tổ hợp tuyến tính 1 gọi là tổ hợp tuyến tính tầm thường.  2 Định nghĩa 2.1.2: Cho hệ m vectơ { 1 , 2 ,..., n } của không gian vectơ V trên trường  , n  1. 1. Hệ vectơ 1 , 2 ,..., n được gọi là phụ thuộc tuyến tính nếu tồn tại n phần tử 1 , 2 ,..., n  không đồng thời bằng 0 sao cho 1 1  2  2  ...  n  n  0. 2. Hệ vectơ 1 , 2 ,..., n được gọi là độc lập tuyến tính nếu nó không phụ thuộc tuyến tính, hay 1 1  2  2  ...  n  n  0 kéo theo 1  2  ...  n  0. 3. Tập W  V được gọi là độc lập tuyến tính nếu mọi hệ con hữu hạn { 1 , 2 ,..., n }  W ,  i   j , i  j đều độc lập tuyến tính.  2 Ví dụ 2.1.1: Trong  không gian vectơ Pn  x  các đa thức hệ số thực một biến gồm đa thức không và các đa thức bậc không vượt quá n , hệ các đa thức 1, x, x 2 ,..., x n là độc lập tuyến tính. Thật vậy, giả sử có a0  a1 x  a2 x 2  ...  an x n   với  là đa thức không trong Pn  x. Bằng cách đồng nhất hệ số ta được a0  a1  a2  ...  an  0. 14 Ví dụ 2.1.2: Cho V1  Tập đa thức chẵn, V2  Tập các đa thức lẻ. Khi đó ta có: K  X   V1  V2 (V1 ,V2 là   KGVT con, V1  V2   ) f  X     X  : f  X   f1  X   f 2  X   f  X   f  X  f  X   f  X   2 2   Ví dụ 2.1.3: V  K  X   K  XK  X   Cơ sở X , X 2 ,..., X n ,... Ta có dim V  dim W  . ( Trong đó W  XK  X  ). Ví dụ 2.1.4: Trong  không gian vectơ  X  các đa thức hệ số thực một biến. Hệ các đa thức: 1  t 2  2 t  1, 2  2t 2  t,3  3t  5 là hệ độc lập tuyến tính. Thật vậy: Xét đẳng thức: 11 (t )  22 (t )  33 (t )  0(t )  1 (t 2  2t  1)  2 (2t 2  2)  3 (3t  5)  0t 2  0t  0  (1  22 )t 2   21  2  33  t   1  53   0t 2  0t  0 1  22  0   21  2  33  0    5  0 3  1  1 2 0   1 2 0   1 2 0 A   2  1 3    0 3 3    0 3 3         1 0  5   1  2  5   0 0 9  Vậy r  A  3. Hệ có nghiệm tầm thường 1  2  ...  n  0. Vậy hệ trên ĐLTT trong P2 t  . Ví dụ 2.1.5: Xét hệ ba véc tơ 1  1, 2  x  2,3  2 x  1độc lập hay phụ thuộc tuyến tính trong  không gian  x các đa thức ẩn x. 15 Giải: Giả sử r1 , r2 , r3 là các số thực thỏa mãn đẳng thức: r1.1  r2  x  2   r3  2 x  1  0   r2  2r3  x   r1  2r2  r3   0 Vì đa thức bằng 0 khi và chỉ khi các hệ tử của nó bằng 0 nên: r2  2r3  0 r2  r3 r2  r3    r1  2r2  r3  0 r1  4r3  r3 r1  5r3 Với mỗi giá trị của r3 ta được những giá trị tương ứng của r1 và r2 chẳng hạn với r3  1 ta được r2  2, r1  5. Như vậy  5, 2, 1 là một nghiệm của hệ phương trình. Do đó hệ vectơ phụ thuộc tuyến tính. Tính chất 2.1.1: 1) Tập một vectơ {  } phụ thuộc tuyến tính khi và chỉ khi    . 2) Giả sử A, B là tập con của K  không gian vectơ P và A  B. Khi đó ta có: Nếu B ĐLTT thì A ĐLTT. Nếu tập A PTTT thì tập B PTTT. 3 Từ đó suy ra mỗi tập con chứa vectơ  là tập PTTT. Định lý 2.1.1: Hệ vectơ {1 , 2 ,..., n } , m  2 , thuộc K  không gian vectơ V là ĐLTT khi và chỉ khi không có vectơ biểu diễn tuyến tính qua các vectơ còn lại. 3 Chứng minh: Điều kiện cần: Giả sử hệ vectơ {1 , 2 ,..., n } , m  2 ĐLTT. Nếu có một vectơ chẳng hạn 1 biểu diễn tuyến tính qua các vectơ còn lại: 1  2  2  33  ...  m  m . Ta có 1  2  2  33  ...  m  m  0 trong đó 1  1  0. Trái với giả thiết hệ ĐLTT. 16 Điều kiện đủ: Giả sử hệ vectơ {1 , 2 ,..., n } thỏa mãn điều kiện không có vectơ nào biểu diễn tuyến tính qua các vectơ còn lại. Khi đó nếu có tổ hợp tuyến tính 11  2  2  33  ...  m  m  0 thì 1  2  ...  m . Vì nếu có i nào đó khác 0, chẳng hạn 1  0 ta có: 1    112  2  ...   11m  m . Vậy vectơ 1 biểu diễn tuyến tính qua các vectơ còn lại, trái với giả thiết. Do đó hệ độc lập tuyến tính. Định lý 2.1.2: Hệ vectơ (2) phụ thuộc tuyến tính khi và chỉ khi có ít nhất một vectơ của hệ đó là tổ hợp tuyến tính của các vectơ còn lại. 3 Chứng minh: 1. Giả sử 11  2  2  ...  n  n  0. Khi đó:  1   2   n1  1    2  ...    n1     n   n   n  n    11  2  2  ...  n1 n1  1   2   n1      ...   1   2   n1     n   n   n  2. Ngược lại từ biểu diễn:  n    11  2  2  ...  n1 n1 Ta suy ra rằng: 11   2  2  ...   n1 n1   1 n  0 Suy ra (2) là hệ phụ thuộc tuyến tính. Định lý 2.1.3: Giả sử trong không gian vectơ V cho  2  là ĐLTT. Nếu ta ghép thêm vào hệ (2) một vectơ  không biểu diễn tuyến tính được qua hệ (2) thì thu được hệ vectơ {1 ,  2 ,...,  n ,  }  4  cũng độc lập tuyến tính. 3 Chứng minh: Thật vậy, giả sử  4  phụ thuộc tuyến tính. Theo định lý 2, tồn tại một vectơ của hệ  4  biểu diễn tuyến tính được qua các vectơ còn lại. Theo giả thiết
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng