Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Chế tạo và nghiên cứu các đặc tính của dây nano si...

Tài liệu Chế tạo và nghiên cứu các đặc tính của dây nano si

.PDF
136
526
92

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THỊ THÚY CHẾ TẠO VÀ NGHIÊN CỨU CÁC ĐẶC TÍNH CỦA DÂY NANO Si LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội - 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THỊ THÚY CHẾ TẠO VÀ NGHIÊN CỨU CÁC ĐẶC TÍNH CỦA DÂY NANO Si Chuyên ngành: Vật liệu điện tử Mã số: 62440123 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. GS. TS. Nguyễn Đức Chiến 2. PGS.TS. Nguyễn Hữu Lâm Hà Nội - 2017 LỜI CẢM ƠN Trong suốt thời gian thực hiện luận án tại bộ môn Vật liệu Điện tử - Viện Vật lí Kỹ thuật, Trường Đại học Bách khoa Hà Nội, ngoài sự nỗ lực của bản thân, tác giả còn nhận được nhiều sự giúp đỡ quý báu cả về vật chất lẫn tinh thần. Trước hết, tác giả xin bày tỏ tình cảm biết ơn sâu sắc nhất đến tập thể cán bộ hướng dẫn: GS.TS Nguyễn Đức Chiến và PGS.TS Nguyễn Hữu Lâm, những người thầy đã định hướng, giám sát khuyến khích, cung cấp tài liệu cần thiết và tạo điều kiện thuận lợi trong suốt quá trình học tập và nghiên cứu để hoàn thành luận án tiến sỹ và chương trình đào tạo. Toàn bộ số liệu thí nghiệm trong luận án được tiến hành tại các phòng thí nghiệm của bộ môn Vật liệu Điện tử, phòng thí nghiệm trọng điểm Quốc gia về Vật liệu và Linh kiện Điện tử, Viện AIST, Vệ Sinh dịch tễ, Khoa Vật lí trường Đại học KHTN - Đại học Quốc gia Hà Nội, với sự giúp đỡ của các cán bộ phòng thí nghiệm tác giả đã thực hiện các phép đo khảo sát ảnh vi hình thái SEM, HRTEM, phổ nhiễu xạ tia X, phổ tán xạ Raman, phổ EDX, phổ huỳnh quang. Tác giả cám ơn tất cả các cán bộ cũng như các lãnh đạo tại các phòng thí nghiệm đã giúp đỡ và tạo điều kiện thuận lợi cho tác giả trong suốt thời gian làm các thí nghiệm. Tác giả xin cảm ơn tới lãnh đạo của Trường Đại học Sư phạm kỹ thuật Hưng Yên cử đi học tập cũng như cơ sở đào tạo đã tạo điều kiện thuận lợi làm luận án nghiên cứu sinh. Nhân dịp này, tác giả xin dành những tình cảm chân thành và sâu sắc nhất tới gia đình đã chia sẻ những khó khăn, thông cảm, động viên. Tác giả Nguyễn Thị Thúy LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, các kết quả nghiên cứu được trình bày trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tôi xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện luận án đã được cám ơn, các thông tin trích dẫn trong luận án này đều được chỉ rõ nguồn gốc. Hà Nội, ngày ……. tháng 4 năm 2017 Tập thể hướng dẫn Tác giả luận án GS.TS. Nguyễn Đức Chiến Nguyễn Thị Thúy PGS.TS. Nguyễn Hữu Lâm MỤC LỤC MỞ ĐẦU ................................................................................................................. 1 CHƯƠNG 1: TỔNG QUAN VỀ CẤU TRÚC MỘT CHIỀU TRÊN CƠ SỞ VẬT LIỆU Si ......................................................................................................... 7 1.1. Cơ sở về vật liệu có cấu trúc nanô ........................................................ 7 1.1.1. Khái niệm về vật liệu và công nghệ nanô .......................................... 7 1.1.2. Xu hướng chế tạo vật liệu nanô ......................................................... 7 1.2. Vật liệu silic ......................................................................................... 9 1.2.1. Cấu trúc tinh thể silic ........................................................................ 9 1.2.2. Cấu trúc vùng năng lượng của silic.................................................. 11 1.3. Đặc tính của dây nanô silic ................................................................. 14 1.3.1. Tính chất quang của dây nanô silic .................................................. 15 1.3.1.1. Phổ Raman của dây nanô silic ......................................................... 15 1.3.1.2. Phổ hấp thụ của dây nanô silic ........................................................ 16 1.3.1.3. Phổ huỳnh quang của dây nanô silic ............................................... 17 1.3.2. Tính chất nhiệt của dây nanô silic ................................................... 18 1.3.3. Tính chất cơ của dây nanô silic ....................................................... 19 1.3.4. Tính chất điện tử của dây nanô silic ................................................ 20 1.4. Một số ứng dụng của dây nanô silic ................................................... 21 1.4.1. Pin mặt trời ..................................................................................... 21 1.4.2. Pin lithium sử dụng dây nanô silic ................................................... 22 1.4.3. Cải thiện hiệu suất của cấu trúc FET ............................................... 23 1.4.4. Cảm biến trên cơ sở dây nanô silic .................................................. 24 1.5. Các phương pháp chế tạo ................................................................... 26 1.5.1. Phương pháp hoá học ...................................................................... 26 1.5.2. Phương pháp laser ........................................................................... 28 1.5.3. Phương pháp epitaxy chùm phân tử ................................................. 29 1.5.4. Phương pháp phún xạ RF ................................................................ 30 1.5.5. Phương pháp bốc bay nhiệt từ nguồn rắn ......................................... 31 1.6. Kết luận chương 1 .............................................................................. 32 CHƯƠNG 2: NGHIÊN CỨU CHẾ TẠO SiNW BẰNG PHƯƠNG PHÁP BỐC BAY NHIỆT TỪ NGUỒN RẮN ............................................................... 33 2.1. Cơ chế hình thành VLS ...................................................................... 33 2.2 Quy trình chế tạo SiNW trên đế Si bằng phương pháp bốc bay nhiệt từ nguồn rắn .................................................................................................. 35 2.3. Hệ thiết bị thí nghiệm và vật liệu hóa chất.......................................... 35 2.4. Khảo sát hình thái của SiNW bằng kính hiển vi điện tử quét .............. 37 2.5. Lựa chọn kim loại xúc tác .................................................................. 39 2.6. Ảnh hưởng của các điều kiện chế tạo lên cấu trúc của SiNW trên đế Si .... 45 2.6.1. Vai trò hạt kim loại xúc tác ............................................................. 47 2.6.2. Ảnh hưởng của nhiệt độ lên cấu trúc của SiNW .............................. 49 2.6.3. Ảnh hưởng của thời gian tổng hợp lên cấu trúc của SiNW .............. 54 2.6.4. Ảnh hưởng của lưu lượng khí .......................................................... 55 2.6.5. Vai trò của nguồn rắn ...................................................................... 58 2.7. Kết luận chương 2 .............................................................................. 62 CHƯƠNG 3: NGHIÊN CỨU TÍNH CHẤT HUỲNH QUANG, CẤU TRÚC CỦA SiNW ...................................................................................................... 63 3.1. Khảo sát hình thái và kích thước của SiNW bằng kính hiển vi điện tử truyền qua (TEM) ..................................................................................... 63 3.2. Huỳnh quang của SiNW ..................................................................... 69 3.2.1. Phương pháp phân tích huỳnh quang ............................................... 69 3.2.2. Hiệu ứng lượng tử, các sai hỏng và trạng thái bề mặt của SiNW ..... 70 3.2.3. Ảnh hưởng của nhiệt độ tổng hợp SiNW lên phổ huỳnh quang ........ 72 3.2.4. Ảnh hưởng của thời gian tổng hợp lên phổ huỳnh quang ................. 74 3.2.5. Ảnh hưởng của lưu lượng khí lên phổ huỳnh quang ........................ 76 3.2.6. Ảnh hưởng của nguồn vật liệu lên phổ huỳnh quang ....................... 77 3.2.7. Ảnh hưởng của độ dày lớp xúc tác kim loại Au lên phổ huỳnh quang.... 79 3.3. Phổ tán xạ Raman ............................................................................... 80 3.4. Cấu trúc tinh thể và thành phần pha của SiNW ................................... 84 3.5. Kết luận chương 3 .............................................................................. 88 CHƯƠNG 4: NGHIÊN CỨU CHẾ TẠO SiNW BẰNG PHƯƠNG PHÁP PHÚN XẠ ....................................................................................................... 89 4.1. Cơ chế phún xạ................................................................................... 90 4.2. Ưu điểm và nhược điểm của phương pháp phún xạ ............................ 91 4.3. Những yếu tố ảnh hưởng tới quá trình phún xạ ................................... 92 4.3.1. Hiệu suất phún xạ ............................................................................ 92 4.3.2. Dòng và thế ..................................................................................... 94 4.3.3. Áp suất ............................................................................................ 95 4.3.4. Nhiệt độ đế ...................................................................................... 96 4.3.5. Công suất nguồn phún xạ ................................................................ 97 4.3.6. Lưu lượng khí trơ đưa vào buồng phún xạ ....................................... 97 4.4. Kim loại xúc tác ................................................................................. 97 4.5. Khảo sát hình thái, kích thước của SiNW bằng kính hiển vi điện tử . 99 4.6. Phổ huỳnh quang của SiNW ............................................................. 103 4.7. Kết luận chương 4 ............................................................................ 104 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 105 TÀI LIỆU THAM KHẢO ................................................................................. 107 DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ CỦA LUẬN ÁN .................. 123 DANH MỤC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu MBE Tiếng Anh Molecular Beam Epitaxy Tiếng Việt Epitaxy chùm phân tử AFM FET IC Atomic Force Microscope Field Effect Transistor Integrated Circuit Kính hiển vi lực nguyên tử Transistor hiệu ứng trường Vi mạch-Mạch tích hợp IT Information Technology Công nghệ thông tin DNA DeoxyriboNucleic Acid ADN FESEM Field Emision Scanning Hiển vi điện tử quét phát xạ trường Electron Microscopy EDX/EDS Energy-dispertive X-ray spectroscopy Phổ tán xạ năng lượng tia X CVD Chemical Vapor Deposition Lắng đọng hóa học từ pha hơi VLS Vapor Liquid Solid Hơi - Lỏng - Rắn SLS VS Solid- Liquid- Solid Vapor – Solid Rắn - Lỏng - Rắn Hơi - Rắn TEM PL PLE Blueshift PLD Transmision electron microscope Photoluminescence Photoluminescence excitation Blueshift Pulsed laser deposition Kính hiển vi điện tử truyền qua Quang huỳnh quang Phổ kích thích huỳnh quang Dịch về phía sóng ngắn Lắng đọng trong chân không bằng MEMS FWHM Micro Electro Mechanical system Full width at half maximum Laser xung Hệ vi cơ điện tử Độ bán rộng vạch phổ SiNW OAG XRD QCM LED GFC STM PECVD Silicon nanowire Oxide Assisted Growth X-ray diffraction Quartz Crystal Microbalance Light Emitting Diode Gas Mass Flow Controller Scanning Tunneling Microscopy Plasma enhanced chemical Dây nanô silic Mọc với sự hỗ trợ của ôxít Nhiễu xạ tia X Vi cân tinh thể thạch anh Điốt phát quang Bộ điều khiển dòng khí Kính hiển vi quét xuyên hầm Lắng đọng hoá học từ pha hơi có sự vapor deposition tăng cường của plasma DANH MỤC CÁC BẢNG Bảng 1.1 Các tính chất của bề mặt Si [110] ........................................................ 11 Bảng 1.2 So sánh các thông số của FET sử dụng SiNW và SOI-FET [120] ...... 24 Bảng 2.1 Danh mục hóa chất dùng trong thực nghiệm ....................................... 37 Bảng 2.2 Bảng tổng hợp kim loại xúc tác sử dụng chế tạo SiNW [71] .............. 40 Bảng 2.3 Các thông số của quá trình chế tạo mẫu với nhiệt độ khác nhau ......... 50 Bảng 2.4 Các thông số của quá trình chế tạo mẫu với lưu lượng khí khác nhau 56 Bảng 2.5 Các thông số của quá trình chế tạo mẫu với nguồn rắn xúc tác khác nhau 59 Bảng 2.6 Hệ thống các yếu tố ảnh hưởng quá trình tổng hợp SiNW .................. 61 DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Cấu trúc tinh thể của silic. .................................................................... 10 Hình 1.2 Sơ đồ vùng năng lượng của Si. ............................................................ 12 Hình 1.3 Mô hình cấu trúc vùng năng lượng của SiNW [156]. .......................... 12 Hình 1.4 Cấu trúc vùng năng lượng của SiNW có đường kính khoảng 2 nm theo định hướng (100), (110) và (111) [35]. .................................................................... 13 Hình 1.5 Sự thay đổi bề rộng vùng cấm theo đường kính SiNW theo các phương (111), (100) và (110) [9]. .......................................................................................... 14 Hình 1.6 Phổ Raman của SiNWs và c-Si đo ở nhiệt độ phòng [61]. .................. 15 Hình 1.7 Phổ hấp thụ của SiNW với đường kính khác nhau [136]. ................... 16 Hình 1.8 Phổ huỳnh quang của SiNW ở các nhiệt độ khác nhau [92]................ 17 Hình 1.9 Sự phụ thuộc độ dẫn nhiệt vào nhiệt độ của SiNW với đường kính khác nhau [63]. ................................................................................................................. 18 Hình 1.10 Quá trình xác định đặc tính cơ học của SiNW [40]. ............................ 20 Hình 1.11 Sơ đồ của SiNW FET [21]. .................................................................. 20 Hình 1.12 Pin mặt trời ứng dụng SiNW [115]. ..................................................... 22 Hình 1.13 SiNW làm điện cực anốt trong pin Li [120]. ....................................... 23 Hình 1.14 Giản đồ cấu trúc FET sử dụng SiNW [120]......................................... 23 Hình 1.15 Sử dụng cảm biến sinh học kích thước nanô để phát hiện DNA [147]. ... 24 Hình 1.16 Cảm biến đo độ ẩm tương đối của không khí [24]. ............................. 25 Hình 1.17 Sơ đồ minh họa của hệ CVD tổng hợp SiNW [103]. ........................... 27 Hình 1.18 Sơ đồ hệ chế tạo SiNW bằng phương pháp laser [30]. ........................ 28 Hình 1.19 SiNW mọc bằng epitaxy chùm phân tử [103]...................................... 29 Hình 1.20 Sơ đồ hệ bốc bay nhiệt tổng hợp dây nanô [125]................................. 31 Hình 2.1 Sơ đồ mô tả cơ chế VLS mọc SiNW. .................................................. 34 Hình 2.2 Quy trình chế tạo SiNW trên đế Si bằng phương pháp bốc bay nhiệt từ nguồn rắn. ................................................................................................................. 35 Hình 2.3 Hệ thống bốc bay bằng chùm điện tử trong chân không. .................... 36 Hình 2.4 Hệ lò ngang để chế tạo SiNW. ............................................................. 37 Hình 2.5 Sơ đồ khối của kính hiển vi điện tử quét.............................................. 38 Hình 2.6 Giản đồ pha của hợp kim Au-Si [65]. .................................................. 41 Hình 2.7 Phiến silic. ............................................................................................ 42 Hình 2.8 Hình thái bề mặt của hạt Au trên đế Si(111) với độ dày lớp xúc tác Au: 1 nm (a), 2 nm (b) và 4 nm (c) sau khi ủ nhiệt ở 1100 oC trong thời gian 15 phút. ................. 43 Hình 2.9 Hình thái bề mặt hạt Au trên đế Si sau khi ủ nhiệt ở 1100 oC, thời gian ủ khác nhau. .............................................................................................................. 44 Hình 2.10 Hình thái bề mặt hạt Au trên đế Si sau khi ủ nhiệt tại các nhiệt độ khác nhau, thời gian ủ 15 phút. ......................................................................................... 45 Hình 2.11 Quy trình nâng nhiệt trong quá trình chế tạo SiNW. ........................... 46 Hình 2.12 Đế silic và mẫu dây silic sau khi tổng hợp........................................... 47 Hình 2.13 Hình thái bề mặt của SiNW tổng hợp tại 1100 oC thời gian 60 phút, lưu lượng khí 150 sccm, tỷ lệ Si:C (4:1), độ dày Au trên đế Si: a) 1 nm, b) 2 nm, c) 4 nm .............. 48 Hình 2.14 Hình thái bề mặt của SiNW tổng hợp tại 1100 oC, thời gian 60 phút, lưu lượng khí 150 sccm, tỷ lệ Si:C (4:1) với: a) Không xúc tác, b) xúc tác Au. ............ 49 Hình 2.15 Hình thái bề mặt của SiNW tổng hợp tại các nhiệt độ khác nhau trong khoảng thời gan 60 phút, lưu lượng khí 150 sccm và tỷ lệ Si:C (4:1). .................... 51 Hình 2.16 Quy trình nâng nhiệt nhanh không qua giai đoạn ổn nhiệt trong quá trình chế tạo SiNW. ........................................................................................................... 52 Hình 2.17 Hình thái bề mặt của SiNW dạng bạch tuộc tổng hợp tại nhiệt độ 1100 oC, thời gian 60 phút, lưu lượng khí 150 sccm, tỷ lệ Si:C (4:1): a) chưa khử Au, b) khử Au.............. 53 Hình 2.18 Hình thái bề mặt SiNW tổng hợp tại 1100 oC, lưu lượng khí 150 sccm, tỷ lệ Si:C (4:1) với thời gian lắng đọng: a) 15, b) 30, c) 60 và d) 120 phút. ............ 54 Hình 2.19 Hình thái bề mặt SiNW tổng hợp tại 1100 oC, thời gian 60 phút, tỷ lệ Si:C (4:1) với lưu lượng khí: a) 50, b) 100, c) 150 và d) 300 sccm. ........................ 57 Hình 2.20 Hình thái bề mặt SiNW tổng hợp tại 1100 oC, lưu lượng khí 150 sccm, thời gian 60 phút với tỷ lệ Si:C: Si 100% (a), 4:0,5 (b), 4:1 (c). .............................. 60 Hình 2.21 Hình thái bề mặt của SiNW tổng hợp ở 1100 o C, 60 phút, 150 sccm, Au-Si=2 nm, Si:C (4:1). ............................................................................. 62 Hình 3.1 Giản đồ minh họa của cơ chế mọc SiNW [54]. ................................... 64 Hình 3.2 Mặt cắt ngang và mặt cắt dọc của một phần dây nanô [54]. ................ 65 Hình 3.3 Ảnh TEM của đơn dây nanô silic......................................................... 66 Hình 3.4 Ảnh TEM của một số SiNW được tổng hợp với nhiệt độ 1100 oC, thời gian 60 phút, lưu lượng khí 150 sccm, tỷ lệ Si:C (4:1). ........................................... 67 Hình 3.5 Ảnh TEM của đơn dây nanô silic......................................................... 68 Hình 3.6 Sơ đồ khối hệ đo quang huỳnh quang. ................................................. 70 Hình 3.7 Mô tả mật độ trạng thái của các tinh thể Si bị ôxi hoá [40]. ............... 71 Hình 3.8 Sơ đồ năng lượng phát xạ huỳnh quang [17]. ...................................... 71 Hình 3.9 Phổ huỳnh quang của SiNW tổng hợp tại nhiệt độ khác nhau với thời gian mọc 60 phút, 150 sccm, Si:C (4:1). .................................................................. 73 Hình 3.10 Phổ huỳnh quang của SiNW tổng hợp 1100 oC, 150 sccm, Si:C (4:1) với thời gian mọc khác nhau. .......................................................................................... 75 Hình 3.11 Phổ huỳnh quang của SiNW tổng hợp tại 1100 oC, thời gian 60 phút, tỷ lệ Si:C (4:1) với lưu lượng khí khác nhau. ............................................................... 76 Hình 3.12 Phổ huỳnh quang của SiNW với lưu lượng khí 300 sccm. .................. 77 Hình 3.13 Phổ huỳnh quang của SiNW tổng hợp tại 1100 oC, thời gian 60 phút, lưu lượng khí 150 sccm với tỷ lệ Si:C tương ứng a) 4:0,5; b) 4:1.................................. 78 Hình 3.14 Phổ huỳnh quang của SiNW tổng hợp tại 1100 oC, thời gian 60 phút, lưu lượng khí 150 sccm với độ dày Au trên đế Si: 1, 2 và 4 nm. ................................... 79 Hình 3.15 Sơ đồ biểu diễn tán xạ Raman và tán xạ Rayleigh: (a) sơ đồ năng lượng của các quá trình tán xạ; (b) Phổ tán xạ Raman và tán xạ Rayleigh. ....................... 81 Hình 3.16 Sơ đồ nguyên lí của thiết bị đo phổ tán xạ Raman............................... 82 Hình 3.17 Phổ Raman đo ở nhiệt độ phòng: a) đế Si, b) SiNW. .......................... 82 Hình 3.18 Phổ Raman đo ở nhiệt độ phòng của SiNW sau khi ủ. ........................ 83 Hình 3.19 Giản đồ XRD: a) Đế Si, b) SiNW đo ở nhiệt độ phòng. ...................... 86 Hình 3.20 Kết quả phân tích EDS của mẫu SiNW. .............................................. 87 Hình 4.1 Hệ phún xạ. .......................................................................................... 89 Hình 4.2 Hiện tượng bắn phá bia trong phóng điện phún xạ: Ion được gia tốc trong lớp bao bọc catốt, va chạm với nguyên tử trong bia và làm bật nguyên tử khỏi bia. Trong đó  là góc bắn phá (góc tới),  -góc phát xạ của nguyên tử [1]................... 91 Hình 4.3 Hiệu suất bắn phá ion đối với một số bia đơn chất phụ thuộc vào năng lượng của ion trong phún xạ [1]. .............................................................................. 93 Hình 4.4 Tốc độ lắng đọng phụ thuộc vào dòng nhiều hơn là vào điện thế trên bia trong phún xạ [1]. ..................................................................................................... 94 Hình 4.5 Vai trò của nhiệt độ đế đối với tốc độ lắng đọng thể hiện không rõ rệt trong phún xạ [1]. ..................................................................................................... 96 Hình 4.6 Hình thái bề mặt của hạt Au trên đế Si(111) với độ dày lớp xúc tác Au: 0,5 nm (a), 1 nm (b) và 2 nm (c) sau khi ủ nhiệt ở 600 oC, thời gian 15 phút, p10-5 mbar. ......... 98 Hình 4.7 Hình thái bề mặt của SiNW mọc trên đế Si (111) với độ dày lớp xúc tác Au: 0,5 nm (a), 1 nm ( b) và 2 nm ( c ) tại nhiệt độ 600 oC, thời gian 120 phút, công suất nguồn RF 85 W. .............................................................................................. 100 Hình 4.8 Hình thái bề mặt của một cấu trúc đơn SiNW. .................................. 101 Hình 4.9 Hình thái bề mặt của SiNW với độ dày Au 1 nm, nhiệt độ 450 oC, thời gian 120 phút. ......................................................................................................... 102 Hình 4.10 Phổ huỳnh quang của SiNW chế tạo bằng phương pháp phún xạ. .... 103 MỞ ĐẦU Cho đến nay vật liệu Silic (Si) đã trở nên vô cùng phổ biến, có mặt trong hầu hết các thiết bị điện tử hiện đại.Vì vậy mà đã có rất nhiều nghiên cứu về loại vật liệu này trên cả phương diện lý thuyết lẫn thực nghiệm. Nhu cầu của con người về các thiết bị tích hợp và di động ngày càng cao đã và đang thúc đẩy quá trình thu nhỏ của các thiết bị điện tử nói chung và các linh kiện làm từ Si nói riêng. Trong vài thập kỷ gần đây, những nghiên cứu các tính chất của vật liệu Si ở kích thước ngày càng nhỏ đã trở thành mục tiêu của nhiều phòng thí nghiệm trên thế giới. Ngày nay, vật liệu nanô với những tính chất quang, tính chất điện với các đặc tính mới so với vật liệu khối đã và đang được các nhà khoa học nghiên cứu, phát triển với nhiều ứng dụng rộng rãi trong y học, quân sự, các ngành công nghiệp. Các hình thái của cấu trúc có kích thước nanô bao gồm: dạng hạt nanô (cấu trúc không chiều), dạng dây nanô (cấu trúc một chiều) và dạng màng mỏng (cấu trúc hai chiều). Tuỳ thuộc vào các ứng dụng cụ thể, các nhóm nghiên cứu trong nước và thế giới tìm hiểu theo định hướng cấu trúc để khai thác hiệu quả tính chất mới của vật liệu. Với kích thước nanô, vật liệu Si thể hiện các tính chất đặc biệt do hiệu ứng giam giữ lượng tử và hiệu ứng bề mặt. Vào năm 1990, Canham [11] đã nghiên cứu sự phát quang mạnh trong vùng nhìn thấy của vật liệu Si xốp với mong muốn ứng dụng vật liệu quang điện tử trong cuộc sống. Cấu trúc Si dạng khối phát huỳnh quang trong vùng phổ có năng lượng khoảng 1,12 eV ở nhiệt độ phòng trong khi đó phổ huỳnh quang của các cấu trúc nanô Si như: Si xốp, dây nanô silic (SiNW) hoặc chấm lượng tử lại dịch chuyển về phía năng lượng cao khi thu nhỏ kích thước. Ở các hình thái khác nhau cấu trúc của Si với kích thước nanô (màng, hạt, thanh hoặc dây) xuất hiện thêm nhiều tính chất vật lý và hóa học mới, thu hút sự quan tâm của nhiều nhóm nghiên cứu. Do vậy nhiều công trình khoa học đã tập trung nghiên cứu các hạt nanô cũng như các sợi nanô nhằm giải thích nguồn gốc của sự xuất hiện dịch chuyển phổ huỳnh quang cũng như tiềm năng ứng dụng trong khoa học và đời sống. Silic là vật liệu truyền thống đã được nghiên cứu và ứng dụng trong công nghiệp bán dẫn và vi điện tử. Hầu hết các linh kiện vi điện tử, chíp bán dẫn đều được chế tạo dựa trên cơ sở vật liệu Si. Tuy nhiên, do silic có độ rộng vùng cấm hẹp (Eg1,12 eV tại nhiệt độ phòng), cấu trúc vùng cấm xiên, hiệu suất quang lượng tử 1 thấp (10-6) dẫn tới hạn chế khả năng ứng dụng vật liệu silic trong một số linh kiện quang điện tử như điốt phát quang, laser bán dẫn,…. Thế kỷ XXI và thời đại của vật liệu có kích thước nanô, với công nghệ nanô ngày càng phát triển, vật liệu Si có cấu trúc thấp chiều như thanh, dây và đai nanô Si được quan tâm nghiên cứu. Với các ưu điểm như sử dụng vật liệu ít, định hướng tinh thể cao, diện tích bề mặt lớn, độ rộng vùng cấm thay đổi được (bằng cách thay đổi đường kính các cấu trúc nanô một chiều), các cấu trúc nanô Si một chiều được đánh giá là có nhiều tiềm năng đầy hứa hẹn cho các ứng dụng trong lĩnh vực như chế tạo pin mặt trời, cảm biến sinh học, thiết bị quang điện tử,…. Tại Việt Nam đã có một số nhóm nghiên cứu màng silic, silic xốp hoặc SiNW và các tính chất của chúng bằng các phương pháp khác nhau như: màng silic, silic xốp pha tạp ecbi bằng điện hoá và các đặc tính quang huỳnh quang của chúng. Nghiên cứu huỳnh quang trong vùng nhìn thấy của silic xốp và huỳnh quang trong vùng hồng ngoại của Si xốp pha tạp ecbi [43, 44]. Hoặc nhóm nghiên cứu Đào Trần Cao-Viện Khoa học Vật liệu-Viện Hàn lâm Khoa học và Công nghệ Việt Nam, nghiên cứu tính chất quang và định hướng ứng dụng trong tán xạ Raman tăng cường bề mặt của các hệ dây nanô silic xếp thẳng hàng (ASiNW) trên đế Si bằng phương pháp ăn mòn hóa học có sự trợ giúp của kim loại (metal-assisted chemical etching - MACE) và phương pháp ăn mòn điện hóa có sự trợ giúp của kim loại (metal-assisted electrochemical etching - MAECE) [2]. Bằng phương pháp bốc bay nhiệt nhóm nghiên cứu của Phạm Thành Huy nghiên cứu chế tạo và một số tính chất của dây nano Si và Si:Er3+ [3],…. Trên cơ sở tình hình nghiên cứu trong nước và thế giới, nhiều vấn đề cần được tìm hiểu và nghiên cứu sâu hơn về dây nanô Si được tổng hợp theo cơ chế VLS, như khi thay đổi công nghệ chế tạo thì cấu trúc, tính chất của SiNW thay đổi như thế nào? Chính vì vậy, trong việc nghiên cứu về dây nanô Si, tác giả quyết định chọn vật liệu này làm đối tượng nghiên cứu trong công trình của mình. Trên cơ sở trang thiết bị sẵn có tại bộ môn Vật liệu Điện tử - Viện Vật lí Kỹ thuật, Trường Đại học Bách Khoa Hà Nội, nhằm đóng góp một phần hiểu biết chung về công nghệ chế tạo và các tính chất của vật liệu nanô Si nghiên cứu sinh đã thực hiện nội dung của luận án “Chế tạo và nghiên cứu các đặc tính của dây nano Si”. 2 - Mục tiêu nghiên cứu của luận án: Tổng hợp được các SiNW trên đế Si bằng hai phương pháp phún xạ catốt RF và bốc bay nhiệt từ nguồn rắn; Làm rõ ảnh hưởng của các thông số chế tạo lên hình thái, cấu trúc, tính chất của SiNW; Tìm hiểu nguồn gốc, cơ chế phát huỳnh quang của SiNW và sự ảnh hưởng của các thông số chế tạo lên tính chất phát xạ huỳnh quang. Nhằm đạt được một số mục đích trên, một số nội dung nghiên cứu cụ thể sau đã được thực hiện: - Đối tượng nghiên cứu: Các SiNW chế tạo bằng hai phương pháp bốc bay nhiệt từ nguồn rắn và phún xạ theo cơ chế VLS. - Phương pháp nghiên cứu: Phương pháp nghiên cứu của luận án là phương pháp thực nghiệm. Với từng nội dung nghiên cứu, phương pháp thực nghiệm đã được lựa chọn phù hợp. Các phương pháp chế tạo vật liệu: * SiNW được chế tạo bằng phương pháp bốc bay nhiệt từ nguồn rắn với nguồn vật liệu hỗn hợp Si+C. * SiNW được chế tạo bằng phương pháp phún xạ catốt. Các phương pháp phân tích tính chất của vật liệu: * Hình thái bề mặt, thành phần pha tinh thể, thành phần hoá học của các mẫu chế tạo được trong luận án đã được khảo sát sử dụng nhiều các phép đo và thiết bị đo hiện đại như: kính hiển vi điện tử quét (SEM) tích hợp với với thiết bị đo phổ tán sắc năng lượng tia X (EDS), hiển vi điện tử truyền qua (TEM), phổ nhiễu xạ tia X và phổ tán xạ Raman. * Tính chất quang huỳnh quang của SiNW đã được khảo sát bằng các phép đo phổ huỳnh quang trong vùng nhìn thấy và vùng hồng ngoại gần. Ngoài ra, cơ chế phát quang được đề xuất trong luận án dựa trên các tài liệu công bố. - Ý nghĩa lí luận và thực tiễn của luận án: Về lý luận, những kết quả của luận án đã góp phần làm sáng tỏ cơ chế phát quang của SiNW nói riêng và của các cấu trúc nanô silic nói chung. Luận án cũng 3 chứng minh có thể điều khiển hình thái, cấu trúc và các tính chất của SiNW bằng cách thay đổi chế độ công nghệ tương đối đơn giản. - Những đóng góp mới của luận án: Việc tổng hợp SiNW bằng phương pháp bốc bay nhiệt đã được nghiên cứu một cách tương đối có hệ thống. Cụ thể, đã lần lượt khảo sát ảnh hưởng của chiều dày lớp kim loại xúc tác, nhiệt độ tổng hợp, thời gian tổng hợp, lưu lượng khí mang, thành phần nguồn rắn đến hình thái, cấu trúc và tính chất của dây nanô silic. Trên cơ sở đó, có thể chọn chế độ công nghệ thích hợp cho sản phẩm dây nanô silic với đặc tính nhất định. Về lý luận, những kết quả của luận án đã góp phần làm sáng tỏ cơ chế phát quang của SiNW nói riêng và của các cấu trúc nanô silic nói chung. Các đỉnh phổ ở vùng bước sóng ngắn từ 400÷650 nm có liên quan đến các sai hỏng, các exciton tự bẫy và có sai hỏng do nút khuyết ôxi. Trong khi đó, sự phát xạ ở vùng bước sóng dài có thể liên quan đến hiện tượng giam giữ lượng tử trong lõi Si cho các trường hợp SiNW có đường kính nhỏ hoặc/và liên quan đến các cụm nanô silic trong mạng nền SiOx. Từ đó đã thấy rằng sự phát quang này liên quan chặt chẽ với lớp ôxít silic được hình thành trên bề mặt mẫu do quá trình ôxi hóa trong quá trình tổng hợp. Góp phần hiểu biết sâu sắc hơn về vật liệu silic cấu trúc nanô. Bước đầu đã chế tạo được các SiNW bằng phương pháp phún xạ. - Cấu trúc luận án: Luận án bao gồm 123 trang với 08 bảng, 71 hình vẽ và đồ thị. Ngoài phần mở đầu trình bày lý do chọn vấn đề nghiên cứu và kết luận về những kết quả đã đạt được cũng như một số vấn đề có thể tiếp tục nghiên cứu, luận án được cấu trúc trong 4 chương: Chương 1: Tổng quan về cấu trúc một chiều trên cơ sở vật liệu silic Trong chương này, tác giả trình bày tổng quan về vật liệu bán dẫn Si, một số phương pháp chế tạo và các tính chất cũng như ứng dụng của vật liệu đã được nghiên cứu phổ biến trong những năm gần đây. Những vấn đề khoa học được đề cập trong chương này cho thấy tiềm năng ứng dụng của vật liệu trong thực tiễn và cũng là cơ sở để so sánh, giải thích đồng thời cũng làm nổi bật các kết quả đạt được của luận án. Một số ứng dụng nổi bật của SiNW cũng được đưa ra trong chương này. Các quy 4 trình, những ưu điểm cũng như hạn chế của các phương pháp chế tạo SiNW cũng sẽ được trình bày khái quát trong chương này, từ đó định hướng nghiên cứu công nghệ chế tạo sẽ sử dụng trong luận án. Chương 2: Nghiên cứu chế tạo các SiNW bằng phương pháp bốc bay nhiệt từ nguồn rắn Dựa trên tổng quan về lý thuyết chúng tôi sẽ xây dựng quy trình chế tạo SiNW trên đế Si bằng phương pháp bốc bay nhiệt từ nguồn rắn. Nội dung chương này sẽ tập trung trình bày các kết quả thực nghiệm của chúng tôi về chế tạo SiNW trên đế Si bằng phương pháp bốc bay nhiệt từ nguồn rắn với ảnh hưởng của các điều kiện chế tạo. Các kết quả nghiên cứu sự phụ thuộc vào điều kiện công nghệ chế tạo mẫu, sẽ được trình bày một cách có hệ thống và được thảo luận chi tiết. Phương pháp bốc bay nhiệt từ nguồn rắn đã được sử dụng để tạo các cấu trúc nanô Si nói chung và các SiNW nói riêng trên các đế Si. Phương pháp này khá đơn giản, phù hợp với điều kiện nghiên cứu của Việt Nam nói chung và của nhóm nghiên cứu nói riêng nhưng vẫn tạo ra được SiNW với khả năng kiểm soát khá tốt các thông số cấu trúc khác nhau của SiNW chế tạo được. Chương 3: Nghiên cứu tính chất cấu trúc, huỳnh quang của SiNW Trong chương này trước tiên chúng tôi trình bày các kết quả thu được về huỳnh quang và ảnh hưởng của các điều kiện chế tạo lên huỳnh quang của các SiNW chế tạo được. Tiếp theo, chúng tôi sẽ thảo luận về nguồn gốc và cơ chế phát huỳnh quang của SiNW. Cấu trúc cũng như tính chất vật liệu (giản đồ nhiễu xạ tia X, phổ tán xạ Raman), các quá trình quang điện tử trong vật liệu được nghiên cứu bằng phương pháp phổ quang huỳnh quang được trình bày trong luận án. Trong phần này cấu trúc, tính chất của các SiNW chế tạo được sẽ được trình bày một cách có hệ thống và được thảo luận chi tiết. Các kết quả đo đạc thực nghiệm, các lý thuyết, các mô hình sẵn có, các tài liệu tham khảo,… được tác giả sử dụng để giải thích các kết quả thực nghiệm về cơ chế mọc SiNW, cấu trúc và hình thái của dây, nguồn gốc, cơ chế và các đặc điểm phát huỳnh quang của dây. Chương 4: Nghiên cứu chế tạo các SiNW bằng phương pháp phún xạ Chế tạo SiNW có rất nhiều phương pháp, tùy thuộc vào mục đích và nội dung nghiên cứu của các nhóm mà lựa chọn phương pháp cho phù hợp. Nội dung chính 5 mà chương này sẽ tập trung trình bày là các kết quả thực nghiệm của chúng tôi về chế tạo SiNW trên đế Si bằng phương pháp phún xạ. Các kết quả cũng như các thảo luận sẽ được trình bày chi tiết trong chương này, đồng thời là cơ sở để làm nổi bật ưu điểm của phương pháp bốc bay nhiệt. Kết luận và kiến nghị: Phần này, tác giả tóm tắt những kết quả đạt được và làm rõ hơn điểm mới của luận án đồng thời đưa ra những tồn tại và hướng phát triển tiếp theo có thể tiếp tục nghiên cứu. Phần cuối của luận án, danh sách những công trình đã công bố liên quan và danh mục các tài liệu tham khảo đã được liệt kê. Luận án được thực hiện tại bộ môn Vật liệu Điện tử-Viện Vật lí Kỹ thuật Đại học Bách khoa Hà Nội. Trong quá trình tác giả học tập và nghiên cứu tại bộ môn Vật liệu Điện tử Viện Vật lí Kỹ thuật - Đại học Bách khoa Hà Nội, luận án cũng đạt được những mục tiêu ban đầu đưa ra. Nên những ý kiến đóng góp, nhận xét và phản biện của các nhà khoa học, những người quan tâm là cơ sở để luận án của tác giả được hoàn thiện cũng như định hướng cho các nghiên cứu tiếp theo của nhóm. 6 CHƯƠNG 1: TỔNG QUAN VỀ CẤU TRÚC MỘT CHIỀU TRÊN CƠ SỞ VẬT LIỆU Si 1.1. Cơ sở về vật liệu có cấu trúc nanô 1.1.1. Khái niệm về vật liệu và công nghệ nanô Vật liệu nanô hay là vật liệu cấu trúc nanô thường được định nghĩa là vật liệu có ít nhất một chiều kích thước nhỏ hơn 100 nm. Có nhiều định nghĩa về công nghệ nanô, một trong số đó là: “Vật liệu nanô là vật liệu mà cấu trúc cơ bản cấu thành nên nó có kích thước nằm ở thang nanô-mét”. Hầu hết các tính chất của vật liệu nanô phụ thuộc vào tính chất của các quá trình vật lí xảy ra ở thang kích thước điển hình của nguyên tử và phân tử. Các tính chất đặc trưng cho bản chất của vật liệu như: hằng số điện môi, điểm nóng chảy, chiết suất cũng có thể bị thay đổi khi giảm kích thước xuống thang nanô. Ngoài ra, còn có nhiều tính chất đặc trưng khác của vật liệu như: hoạt tính bề mặt, diện tích bề mặt; các tính chất nhiệt, điện, từ, quang, cơ học, hóa học thậm chí cả sinh học,… của vật liệu cũng bị thay đổi khi giảm kích thước. Quá trình tổng hợp các cấu trúc nanô khác nhau như: hạt, thanh, dây, ống hay các cấu trúc nanô với sự đồng đều về kích thước, hình dạng và pha tinh thể đang được tập trung nghiên cứu. Theo đó, nhiều hệ vật liệu nanô mới với những mục đích ứng dụng khác nhau được tạo ra. Dựa vào số chiều trong đó electron chuyển động tự do mà phân loại các hệ thấp chiều: 0D (chấm lượng tử: cụm đám, nanô tinh thể), 1D (dây lượng tử, ống), 2D (giếng lượng tử). 1.1.2. Xu hướng chế tạo vật liệu nanô Hiện nay có hai cách chế tạo vật liệu nanô là chế tạo theo kiểu tiếp cận từ trên xuống và và tiếp cận từ dưới lên. Phương pháp từ trên xuống là phương pháp tạo hạt kích thước nanô từ các hạt có kích thước lớn hơn, phương pháp từ dưới lên là phương pháp hình thành hạt nanô từ các nguyên tử. So với cách thứ nhất chủ yếu sử dụng các phương pháp vật lí đã được thương mại hóa trong các ứng dụng công nghiệp với các thiết bị hiện đại, đắt tiền thì cách thứ hai chủ yếu sử dụng các phương pháp hóa học 7
- Xem thêm -

Tài liệu liên quan