Đăng ký Đăng nhập
Trang chủ Các bất đẳng thức kiểu hardy một chiều...

Tài liệu Các bất đẳng thức kiểu hardy một chiều

.PDF
99
239
104

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN VŨ CÔNG VIÊN CÁC BẤT ĐẲNG THỨC KIỂU HARDY MỘT CHIỀU LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - Năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN VŨ CÔNG VIÊN CÁC BẤT ĐẲNG THỨC KIỂU HARDY MỘT CHIỀU Chuyên ngành: TOÁN GIẢI TÍCH Mã số : 60 46 01 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. ĐẶNG ANH TUẤN Hà Nội - Năm 2012 Danh mục các kí hiệu 2 Danh mục các kí hiệu I gian trong R µ∗ (I) độ đo ngoài Lebesgue của I µ(I) độ đo Lebesgue của I p L (I) gian các hàm có lũy thừa bậc p của modun khả tích trong I Lploc (I) không gian các hàm có lũy thừa bậc p của modun khả tích địa phương trong I V arI u biến phân của hàm u trong I BP V (I) không gian các hàm có biến phân bị chặn trong I BP Vloc (I) không gian các hàm có biến phân bị chặn địa phương trong I AC(I) không gian các hàm liên tục tuyệt đối trong I ACloc (I) không gian các hàm liên tục tuyệt đối địa phương trong I   = u ∈ ACloc ((a, b)) : lim+ u(x) = 0 x→a   = u ∈ ACloc ((a, b)) : lim− u(x) = 0 ACL ((a, b)) ACR ((a, b)) ACLR ((a, b)) (HL f ) (x) x→b = ACL ((a, b)) ∩ ACR ((a, b)) Rx = f (t)dt a (HR f ) (x) = Rb f (t)dt x W(I) tập các hàm trọng trong I M + (I) tập các hàm đo được không âm h.k.n trong I  kết thúc chứng minh hoặc ví dụ. Mục lục Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Danh mục các kí hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Các kiến thức chuẩn bị 5 1.1 Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue . . . . . . 5 1.2 Hàm đơn điệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Hàm có biến phân bị chặn . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4 Hàm liên tục tuyệt đối . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Các bất đẳng thức kiểu Hardy một chiều 59 2.1 Bất đẳng thức Hardy gốc trong không gian một chiều . . . . . . . . . . 59 2.2 Các bất đẳng thức kiểu Hardy một chiều . . . . . . . . . . . . . . . . . 70 2.3 Một số ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3 Lời nói đầu 4 Lời nói đầu Bất đẳng thức liên quan đến tích phân của một hàm và đạo hàm của hàm đó xuất hiện thường xuyên trong các ngành khác nhau của toán học và đó có thể coi là một công cụ hữu ích trong toán học, ví dụ trong lý thuyết và bài tập của phương trình vi phân, trong lý thuyết xấp xỉ, trong xác suất,. . . Trong những thập kỷ qua, chủ đề này tiếp tục được mở rộng. Một trong những bất đẳng thức liên quan đến tích phân quan trọng đó là: Bất đẳng thức Hardy. Năm 1920, G.H.Hardy đã chứng minh được bất đẳng thức Hardy ở dạng cơ bản trong không gian một chiều. Nhưng chứng minh của ông chưa được đầy đủ vì chưa tìm ra được hằng số tốt nhất trong bất đẳng thức. Năm 1926, E.Landau đã chỉ ra được giá trị tốt nhất của hằng số trong bất đẳng thức. Những năm sau đó nhiều nhà toán học đã nghiên cứu độc lập và tìm cách mở rộng bất đẳng thức Hardy cổ điển. Trong các hướng mở rộng có hướng mở rộng lớp hàm trọng, nghĩa là các hàm đo được và dương hầu khắp nơi. Luận văn của tôi tìm hiểu về bất đẳng thức Hardy trong không gian một chiều và một số bất đẳng thức kiểu Hardy khi mở rộng theo hướng thêm các “hàm trọng”. Luận văn được chia làm hai chương. Chương 1: Cơ sở lý thuyết. Trong chương này, tôi trình bày các kết quả liên quan đến sự khả vi, khả tích Lebesgue của các hàm đơn điệu dựa trên tài liệu tham khảo [1] của Hoàng Tụy, Định lý Funini về việc chuyển dấu đạo hàm qua dấu tổng dựa trên tài liệu [2] của Ralph Howard, hàm có biến phân bị chặn và hàm liên tục tuyệt đối dựa trên tài liệu tham khảo [3] của Giovanni Leoni. Phần cuối của chương này đã chứng minh được kết quả quan trọng, đó là định lý cơ bản của phép tính vi tích phân đối với tích phân Lebesgue. Chương 2: Các bất đẳng thức kiểu Hardy một chiều. Trong chương này, tôi trình bày chứng minh bất đẳng thức Hardy gốc dựa trên tài liệu tham khảo [5] của D.T.Shum. Sau đó trình bày sự mở rộng của bất đẳng thức Hardy khi bổ sung thêm các hàm trọng, và đã chứng minh được các điều kiện ràng buộc để các kiểu mở rộng là đúng dựa trên tài liệu tham khảo [4] của B Opic and A Kufner. Vì trình độ còn hạn chế nên luận văn không thể tránh khỏi những sai sót, tác giả hy vọng sẽ nhận được nhiều ý kiến đóng góp từ các thầy cô giáo và bạn đọc để luận văn được hoàn chỉnh hơn. Chương 1 Các kiến thức chuẩn bị Trong chương này tôi sẽ đề cập đến một số tính chất của các hàm đơn điệu, các hàm có biến phân bị chặn và các hàm liên tục tuyệt đối. Các hàm này có vai trò quan trọng để chúng ta nghiên cứu về bất đẳng thức Hardy cũng như các bất đẳng thức kiểu Hardy. 1.1 Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue Định nghĩa 1.1.1. [1](Độ đo ngoài Lebesgue) Cho hàm µ∗ (A) : R → [0;+∞] µ∗ (A) = inf { +∞ P |∆i |: i=1 +∞ S ∆i ⊃ A, ∆i là gian, i = 1, 2, ..}, i=1 được gọi là độ đo ngoài Lebesgue trên R. Hàm tập µ∗ là một độ đo ngoài trên R như vậy ta có thể áp dụng định lý Caratheodory để xây dựng một độ đo trên R, đó chính là độ đo Lebesgue. Định nghĩa 1.1.2. [1](Độ đo Lebesgue) Cho hàm µ∗ : L → [0,∞] trong đó L là lớp tất cả các tập con A của R sao cho µ∗ (E) = µ∗ (E ∩ A) + µ∗ (E\A) với mọi E ⊂ R, là độ đo Lebesgue trên R, ký hiệu là µ và A được gọi là tập đo được Lebesgue. Theo định lí Caratheodory thì lớp các tập đo được Lebesgue L là một σ- đại số . Chú ý 1.1.1. Định nghĩa 1.1.1 có thể thay bằng µ∗ (A) = inf{ ∞ P i=1 |∆i | : ∞ S ∆i ⊃ A, ∆i là khoảng mở, i = 1, 2, ...}. i=1 5 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue Khi đó với mọi ε > 0 thì tồn tại các khoảng mở ∆i , i = 1, 2, . . . sao cho 6 ∞ S ∆i ⊃ A và i=1 ∞ X |∆i | < µ∗ (A) + ε. i=1 Đặt G = ∞ S ∆i , thì ta có G là tập mở, G ⊃ A và i=1 µ(G) ≤ ∞ X |∆i | < µ∗ (A) + ε. i=1 Như vậy với mọi ε > 0 luôn tồn tại tập mở G ⊃ A sao cho µ(G) < µ∗ (A) + ε. Định nghĩa 1.1.3. [1](Tập mở) Một tập hợp G trong không gian mêtric X được gọi là tập hợp mở nếu mỗi điểm a ∈ G đều có một lân cận V của điểm a sao cho V ⊂ G, điều này tương đương với điều kiện: với mọi a ∈ G tồn tại r > 0 sao cho hình cầu mở B(a, r) ⊂ G. Định nghĩa 1.1.4. [1](Tập đóng) Tập F trong không gian mêtric X được gọi là tập đóng nếu F c = X\F là tập mở. Định nghĩa 1.1.5. [1](Phần trong) Cho một tập hợp A trong không gian mêtric X. Điểm x ∈ X được gọi là điểm trong của tập của tập hợp A nếu tồn tại một lân cận V của x sao cho x ∈ V ⊂ A; điều này tương đương với điều kiện tồn tại một số r > 0 sao cho hình cầu B(x, r) ⊂ A. Tập hợp tất cả các điểm trong của A ký hiệu A0 hoặc intA. Định nghĩa 1.1.6. [1](Tập compact): Một tập hợp A ⊂ Rn gọi là tập compact nếu mọi dãy điểm {xk }k ⊂ A đều có một dãy con {xkl }l hội tụ đến một giới hạn thuộc A. Định nghĩa 1.1.7. [1](Tập Borel) σ−đại số nhỏ nhất bao hàm lớp các tập mở trong không gian R được gọi là σ−đại số Borel của không gian R và những tập thuộc σ−đại số này được gọi là tập Borel trong không gian R. Tập Borel là những tập xuất phát từ tập mở và thực hiện một số hữu hạn hay đếm được phép toán hợp, giao trên các tập đó. Mệnh đề 1.1.1. [1]Mọi tập Borel đều đo được Lebesgue. Chứng minh: xem [1]. 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 7 Định lý 1.1.1. [1]Cho µ : L → [0,∞] là độ đo, Ai , i = 1, 2, ... là các tập đo được, ∞ S A1 ⊂ A2 ⊂ ... và Ai là tập đo được. Khi đó i=1 µ ∞ [ ! Ai i=1 = lim µ(Ai ). i→∞ Chứng minh: xem [1]. Định lý 1.1.2. [1]Đối với một tập A trên R ba điều kiện sau là tương đương : i) A đo được Lebesgue . ii) Với mỗi ε > 0 có thể tìm được tập mở G ⊃ A sao cho µ∗ (G\A) < ε. iii) Với mỗi ε > 0 có thể tìm được tập đóng F ⊂ A sao cho µ∗ (A\F ) < ε. Chứng minh: xem [1]. Chú ý 1.1.2. Với mỗi tập A đo được ta có thể viết thành [ A = E0 ∪ Kn , n với Kn là các tập compact, Kn ⊂ Kn+1 , n = 1, 2, ... và µ(E0 ) = 0. Thật vậy. Với mỗi n ∈ N, lấy ε = n1 . Khi đó theo Định lý 1.1.2 thì tồn tại tập đóng Fn ⊂ A sao cho µ(A\Fn ) ≤ n1 . ∞ S Ta có A\ Fn ⊂ A\Fn do đó n=1 0 ≤ µ A\ ∞ [ ! Fn ≤ µ (A\Fn ) ≤ n=1  Do đó µ A\ ∞ S  Fn n=1 Khi đó ta có E0 = A\ = 0. ∞ S Fn . n=1 Đặt Fnk = Fn ∩ [−k, k]. ∞ S Ta có Fn = Fnk . k=1 Với mỗi N ∈ N ta lấy KN = N [ N [ Fnk n=1 k=1 là hợp hữu hạn các tập compact nên là compact. Lại có KN ⊂ KN +1 và ∞ ∞ S ∞ S S KN = Fnk = A. N =1 n=1 k=1 1 , ∀n ∈ N. n 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 8 Trong trường hợp đặc biệt A là các gian thì E0 = ∅ và ta có thể viết như sau: Cho a, b là hữu hạn, a < b.  ∞  [ b−a b−a ,b − , (a, b) = a+ 2n 2n n=1  ∞  [ b−a (−∞, b) = −n, b − , 2n n=1  ∞  [ b−a [a, b) = a, b − , 2n n=1 [ [a, +∞) = [a, n], (a, +∞) = ∞  [ n=1  b−a a+ ,n , 2n (−∞, +∞) = ∞ [ [−n, n], n=1 ∞  [  b−a (a, b] = a+ ,b , 2n n=1 [ (−∞, b] = [−n, b]. n∈N n>a n∈N n>−b Định nghĩa 1.1.8. [1](Hàm đo được Lebesgue) Hàm số f : A → [-∞, +∞] được gọi là đo được trên A với một tập đo được Lebesgue nếu ∀a ∈ R, E1 = {x ∈ A:f(x) 0 lim µ({x ∈ A: |fn (x) − f (x)| ≥ ε}) = 0. n→+∞ Nói cách khác với mọi ε > 0, với mọi δ > 0, tồn tại n0 ∈ N sao cho ∀n ∈ N : n > n0 thì µ({x ∈ A: |fn (x) − f (x)| ≥ ε}) < δ. Định nghĩa 1.1.11. [1](Tích phân của hàm đơn giản) Cho hàm A là tập đo được, f : A → [-∞, +∞] là hàm đơn giản, đo được trên A. Gọi f1 , f2 , ...fn là các giá trị khác nhau đôi một của f (x). Đặt Ak = {x ∈ A : f (x) = fk } , k = 1, ..., n. A= n S Ak và f (x) = k=1 n P fk χAk , ∀x ∈ A. k=1 Khi đó tích phân của hàm đơn giản f (x) trên A với độ đo µ là số Z n X fk µ(Ak ). f (x)dµ = A k=1 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 9 Định nghĩa 1.1.12. [1](Tích phân của hàm không âm) Cho A là tập đo được Lebesgue, hàm f : A → [0,+∞] là hàm đo được. Khi đó tồn tại dãy đơn điệu tăng các hàm đơn giản đo được fn (x) ≥ 0 hội tụ h.k.n về f (x) trên A . Tích phân của hàm f (x) trên A đối với độ đo µ là Z Z fn (x)dµ. f (x)dµ = lim n→+∞ A A Định nghĩa 1.1.13. [1](Tích phân của hàm có dấu bất kỳ) Cho A là tập đo được Lebesgue, hàm f : A → R là hàm đo được trên A. Khi đó ta có f (x) = f + (x) − f − (x) với f + (x), f − (x) ≥ 0. Các hàm số f + (x), f − (x) có tích phân tương ứng trên A với độ đo µ là Z Z + f (x)dµ, f − (x)dµ. A Nếu R f + (x)dµ − A R A f − (x)dµ có nghĩa thì tích phân của hàm đo được f (x) trên A với A độ đo µ là Z Z f (x)dµ − f (x)dµ = A Z + A f − (x)dµ. A Định lý 1.1.3. [1](Hội tụ đơn điệu Beppo Levi) Nếu fn (x) ≥ 0 và fn (x) đơn điệu tăng đến f (x) trên A thì Z Z lim fn (x)dµ = n→∞ A f (x)dµ. A Chứng minh: xem [1]. Định lý 1.1.4. [1](Bổ đề Fatou) Nếu fn (x) ≥ 0 trên A thì Z Z lim fn (x)dµ ≤ lim fn (x)dµ. n→∞ n→∞ A A Chứng minh: xem [1]. Định lý 1.1.5. [1](Hội tụ chặn Lebesgue) Nếu |fn (x)| ≤ g(x), g(x) khả tích và fn (x) → f (x) (h.k.n hay theo độ đo) trên A thì R A Chứng minh: xem [1]. fn (x)dµ → R A f (x)dµ khi n → ∞. 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 10 Định nghĩa 1.1.14. [1](Không gian Lp (E), (1 ≤ p < ∞))Cho không gian R, E là tập đo được Lebesgue và một độ đo µ. Họ các hàm số f (x) có lũy thừa bậc p (1 ≤ p < ∞) của modun khả tích trên E, tức là sao cho Z |f (x)|p dµ < ∞ E gọi là không gian Lp (E). Hàm số f (x) đo được trên E gọi là bị chặn cốt yếu nếu tồn tại một tập hợp P có độ đo 0, sao cho f (x) bị chặn trên tập hợp E\P , tức là tồn tại số K sao cho |f (x)| ≤ K với mọi x ∈ E\P . Cận dưới đúng của tập hợp tất cả các số K thỏa mãn bất đẳng thức trên gọi là cận trên đúng cốt yếu của hàm f (x), được kí hiệu là esssup |f (x)|. E Định nghĩa 1.1.15. [1](Không gian L∞ (E))Họ tất cả các hàm f (x) bị chặn cốt yếu trên E được gọi là không gian L∞ (E). Mệnh đề 1.1.2. [1]Nếu hàm f (x) ∈ L∞ (E) thì f (x) ≤ esssup |f (x)| h.k.n trên E. E Chứng minh: xem [1]. Định lý 1.1.6. [1](Bất đẳng thức Holder ) Nếu f (x), g(x) đo được, xác định trên một tập đo được E và p, q là hai số thực sao cho 1 < p < ∞ và  p1   Z Z |f (x).g(x)|dµ ≤  E |f (x)p | dµ  E 1 p + 1 q = 1 thì  1q Z |g(x)q | dµ . E Chứng minh: xem [1]. Định lý 1.1.7. [1](Bất đẳng thức Minkowski) Cho hàm đo được dương K(x, y) xác định trên (a, b) × (c, d) và r ≥ 1 thì  Zb  a   r1  d r  r1 Zd Zb Z  K(x, y)dy  dx ≤  K r (x, y)dx dy. c c a 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 11 Chứng minh: xem [1]. Chú ý 1.1.3.Bất đẳng thức Minkowski còn có thể viết dưới dạng:   Zb a  r1  Zb ϕ(y)dy  dx ≤ f (x)   r Zx ϕ(y)  a a  r1 Zb f (x)dx dy y với f (x), ϕ(y) là các hàm đo được không âm h.k.n trên [a, b]. Thật vây. Chọn 1 K(x, y) = ϕ(y)χ[a,x] (y)f r (x). Theo bất đẳng thức Minkowski ta có  Zb   r1 Zb 1 ϕ(y)χ[a,x] (y)f r (x)dy  dx ≤   r Zb a a    r1 ϕr (y)χ[a,x] (y)f (x)dx dy a a  Zb =  r1 Zb χ[a,x] (y)f (x)dx dy. ϕ(y) (1.1.1) a a Ta có Zb   1 khi a ≤ y ≤ x ≤ b χ[a,x] (y) = .  0 khi y ∈ / [a, x] và   1 khi y ≤ x ≤ b . χ[y,b] (x) =  0 khi x ∈ / [y, b] nên χ[a,x] (y) = χ[y,b] (x). Do đó  Zb Zb ϕ(y) a  r1 Zb χ[a,x] (y)f (x)dx dy = a  χ[y,b] (x)f (x)dx dy ϕ(y) a Zb = a  Zb ϕ(y) a  r1 Zb  r1 f (x)dx dy. (1.1.2) y Lại có  b b r  r1  b  x r  r1 Z Z Z Z   ϕ(y)χ[a,x] f r1 (x)dy  dx =  f (x)  ϕ(y)dy  dx . a a a a (1.1.3) 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 12 Kết hợp (1.1.1), (1.1.2) và (1.1.3) ta có  Zb  a  r1  Zb ϕ(y)dy  dx ≤ f (x)   r Zx ϕ(y)  a a Zb  r1 f (x)dx dy. y Định nghĩa 1.1.16. [3]Cho E ⊂ R, E là tập đo được Lebesgue và v : E → R là một hàm đo được Lebesgue. Khi đó v là khả tích đều (equi-integrable) nếu với mọi ε > 0 tồn tại δ > 0 sao cho với mọi F ⊂ E, F là tập đo được Lebesgue, và µ (F ) ≤ δ thì Z |v(x)| dx ≤ ε. F Ví dụ 1.1.1. Các hàm u khả tích Riemann trong đoạn [a, b] thì u khả tích đều trong [a, b] . Mệnh đề 1.1.3. [3]Cho E ⊂ R, E là tập đo được Lebesgue và v ∈ Lp (E), 1 ≤ p ≤ ∞. Khi đó v là khả tích đều (equi-integrable). Nếu chỉ giả sử v ∈ L1loc (E) thì kết quả không còn đúng. Chứng minh. a) Cho v ∈ Lp (E), 1 ≤ p ≤ ∞, chứng minh rằng v là khả tích đều (equiintegrable). Trước tiên ta chứng minh với p = 1. Ta có v ∈ L1 (E). Giả sử v không khả tích đều, nghĩa là: Tồn tại ε > 0 để với mọi n > 0, tồn tại tập đo R được Lebesgue Fn ⊂ E mà µ (Fn ) ≤ 21n và |v(x)| dx > ε. Fn Đặt vn (x) = χFn (x).v (x). Ta có |vn (x)| ≤ |v(x)| , ∀x ∈ E. Do v ∈ L1 (E) nên |v(x)| khả tích trên E. Gọi An = {x ∈ E : vn (x) 6= 0} ⊂ Fn . Ta có 1 → 0 khi n → ∞. 2n Do đó lim µ(An ) = 0. Ta sẽ chứng minh vn (x) → 0 h.k.n trong E, tức là tồn tại tập 0 ≤ µ(An ) ≤ µ(Fn ) ≤ n→∞ A ⊂ E và µ(A) = 0 để vn (x) → 0, ∀x ∈ E\A . ∞ S ∞ T Gọi A = An+k . n=1 k=1 Khi đó với mọi n ∈ N∗ ta có ∞ X ∞ ∞ X 1 1 X 1 1 0 ≤ µ(A) ≤ µ(An+k ) ≤ = n = n, n+k k 2 2 k=1 2 2 k=1 k=1 1.1. Nhắc lại một vài kết quả trong độ đo và tích phân Lebesgue 13 do đó µ(A) = 0. ∞ S ∞ T Lấy x ∈ E\A tức là x ∈ / hay tồn tại n0 để x ∈ / ∞ S An+k , n=1 k=1 An0 +k . k=1 Do đó tồn tại n0 để với mọi k ≥ 1 thì x ∈ / An0 +k , nghĩa là vn (x) = 0, ∀n ≥ n0 + 1. Khi đó lim vn (x) = 0, ∀x ∈ E\A. n→∞ Hay |vn (x)| → 0 h.k.n trong E. Áp dụng định lí hội tụ chặn Lebesgue ta có Z |vn (x)|dx → 0 khi n → ∞. (1.1.4) E Lại có Z Z |vn (x)|dx = E Z |χFn (x).v(x)|dx = E |v(x)|dx, ∀n ≥ 1. (1.1.5) Fn Kết hợp (1.1.4) và (1.1.5) ta có Z |v(x)|dx → 0 khi n → ∞. Fn Điều này trái với điều giả sử là tồn tại ε > 0 để R |v(x)| dx > ε, nên điều giả sử là sai. Fn Vậy v là khả tích đều trong trường hợp p = 1. Khi đó ta phải chứng minh với 1 < p ≤ ∞. Nếu v(x) = 0 h.k.n trên E. Khi đó điều phải chứng minh luôn đúng. Nếu v 6= 0 h.k.n trên E. Ta chứng minh với 1 < p < ∞. Lấy bất kì ε > 0 và F ⊂ E với F là tập đo được. Theo bất đẳng thức Holder ta có:  Z Z |v(x)|dx ≤  F p  p1  Z |v(x)| dx  F q  1q |1| dx , F với p, q là hai số thực sao cho p1 + 1q = 1. R p Do v ∈ Lp (E) nên |v(x)| dx là hữu hạn. F R R p p Do |v(x)| dx dương thì tồn tại số K để 0 < K < |v(x)| dx < ∞. F F 1.2. Hàm đơn điệu Chọn δ = εq q Kp 14 . Khi đó với tập F ⊂ E, F là tập đo được Lebesgue và µ (F ) ≤ δ thì sẽ có   p1   1q Z Z Z p q |v(x)|dx ≤  |v(x)| dx  |1| dx F F F   p1  q  1q Z p 1 1 ε q   p ≤ |v(x)| dx (µ(F )) ≤ K ≤ ε. q Kp F Vậy có điều phải chứng minh v là khả tích đều với 1 < p < ∞ . Ta chứng minh với p = ∞. Do v ∈ L∞ (E) nên |v(x)| ≤ esssup |v(x)| h.k.n trên E. E Với mỗi ε > 0 bất kì, ta chọn δ = ε . esssup |v(x)| Khi đó với tập F ⊂ E, F là tập đo được E Lebesgue và µ (F ) ≤ δ thì có Z Z |v(x)|dx ≤ esssup |v(x)| dx = esssup |v(x)| .µ(F ) ≤ ε. E F E F Vậy có điều phải chứng minh v là khả tích đều với p = ∞. b) Nếu v ∈ L1loc (E) thì kết quả không còn đúng. Lấy v(x) = x1 và E = (0, 1) thì ta có v ∈ L1loc (E).   Đặt Fn = n1 , n2 ta có   1 1 2 , = . µ(Fn ) = µ n n n Khi đó tồn tại ε = mà µ(Fn ) ≤ 1 n 1 2 để với mọi n > 0, tồn tại tập đo được Lebesgue Fn = 1 ,2 n n  ⊂E và có 2 Z Zn 1 1 |v(x)|dx = dx = ln 2 > . x 2 Fn 1 n Vậy v không là khả tích đều. 1.2 Hàm đơn điệu Trong giải tích thì lý thuyết về các hàm đơn điệu được nghiên cứu từ rất lâu và các tính chất của nó khá nhiều và quan trọng trong giải tích. Sau đây tôi xin đưa ra một số các tính chất liên quan đến tính khả vi và khả tích Lebesgue của các hàm đơn điệu. Ở đây tôi chỉ xét với các hàm đơn điệu tăng còn với các hàm đơn điệu giảm tương tự. 1.2. Hàm đơn điệu 15 Định nghĩa 1.2.1. [1]Cho E ⊂ R. Một hàm u : E → R được gọi là i) tăng nếu u(x) ≥ u(y), ∀x, y ∈ E với x > y, ii) tăng chặt nếu u(x) > u(y), ∀x, y ∈ E với x > y, iii) giảm nếu u(x) ≤ u(y), ∀x, y ∈ E với x > y, iv) giảm chặt nếu u(x) < u(y), ∀x, y ∈ E với x > y, v) đơn điệu nếu bất kỳ một tính chất ở trên đúng. Định lý 1.2.1. [1]Hàm số u(x) đơn điệu tăng trong [a, b] thì có đạo hàm hầu khắp nơi trên đoạn ấy. Để chứng minh Định lý 1.2.1 ta đi chứng minh các bổ đề sau. Bổ đề 1.2.1. [1]Cho tập bất kì A ⊂ (a, b), Ω là một lớp khoảng, sao cho mỗi điểm x ∈ A đều là đầu mút trái của ít nhất một khoảng ∆ = (x, x+hx ) ∈ Ω. Khi đó cho trước ε > 0 tùy ý thì ta xây dựng được một số hữu hạn khoảng rời nhau ∆1 , ∆2 , ..., ∆s ∈ Ω phủ lên một tập con A0 của A, với µ∗ (A0 ) > µ∗ (A) − ε. Chứng minh. Đặt An ={x ∈ A : ∃hx > ∞ S Khi đó A = 1 n sao cho (x, x + hx ) ∈ Ω}. An . Thật vậy. n=1 Ta luôn có An ⊂ A, n = 1, 2, ... nên Ta chứng minh A ⊂ ∞ S An ⊂ A . n=1 ∞ S An . n=1 Lấy x ∈ A khi h iđó tồn tại hx để (x, x + hx ) ∈ Ω. Chọn n0 = h1x + 1 thì hx > n10 . Do đó x ∈ An0 . ∞ ∞ S S Khi đó x ∈ An nên A ⊂ An . n=1 n=1 Lại có An ⊂ An+1 , n = 1, 2, ... vì: với bất kì x ∈ An thì x ∈ A có hx > 1 n > 1 n+1 sao cho (x, x + hx ) ∈ Ω. Do đó x ∈ An+1 . Với mỗi n ∈ N, lấy η = n1 . Khi đó theo Chú ý 1.1.1 về độ đo ngoài của An thì tồn tại một tập mở Gn ⊃ An sao cho µ(Gn ) ≤ µ∗ (An ) + Đặt En = ∞ T p=n Gp , E = ∞ S 1 . n En . n=1 Do Gp là các tập mở nên Gp là các tập đo được với p = n, n + 1, ... Do đó En là các tập đo được, E đo được. 1.2. Hàm đơn điệu  Do En = Gn ∩ 16 ∞ T  Gp = Gn ∩ En+1 nên En ⊂ En+1 , n = 1, 2, ... p=n+1 Ta có En là các tập đo được, E là tập đo được và En ⊂ En+1 với n = 1, 2, ... nên theo Định lý 1.1.1 ta có µ(E) = lim µ(En ). n→∞ Do An ⊂ Gn và An ⊂ An+i ⊂ Gn+i , i = 1, 2, ... nên An ⊂ ∞ T Gp = En . p=n Khi đó ta có An ⊂ En ⊂ Gn nên µ∗ (An ) ≤ µ∗ (En ) = µ(En ) ≤ µ(Gn ) ≤ µ∗ (An ) + 1 n hay µ(En ) − 1 ≤ µ∗ (An ) ≤ µ(En ). n Khi đó cho n → ∞ thì ta có lim µ∗ (An ) = lim µ(En ) = µ(E). n→∞ n→∞ Do En ⊃ An , n = 1, 2, ... nên E ⊃ A. Do đó µ(E) ≥ µ∗ (A). Do lim µ∗ (An ) = µ(E) ≥ µ∗ (A) nên khi chọn n đủ lớn thì ta sẽ có n→∞ ε µ∗ (An ) > µ∗ (A) − . 2 (1.2.1) Gọi a1 = infAn , b1 = sup An và l = b1 − a1 . Chọn δ = ε . 2(nl+1) Vì a1 là cận dưới đúng của An nên có x1 ∈ An với a ≤ x1 < a1 + δ, và một khoảng ∆1 = (x1 , x1 + h1 ) ∈ Ω có h1 > 1 n (khoảng này tồn tại theo định nghĩa An ). Đặt B1 = {x ∈ An : x1 + h1 < x}. Nếu B1 = ∅ thì dừng lại. Nếu B1 6= ∅ thì gọi a2 = inf B1 . Vì a2 là cận dưới đúng của B1 nên có x2 ∈ B1 ⊂ An sao cho a2 ≤ x2 < a2 + δ. Khi đó có một khoảng ∆2 = (x2 , x2 + h2 ) ∈ Ω có độ dài h2 > n1 . Cứ thế tiếp tục mãi thì ta sẽ đạt tới b1 sau một số s bước với s < nl + 1, vì đoạn [a1 , b1 ] có độ dài là l mà mỗi bước ta nhích lại gần b1 một khoảng lớn hơn 1 n nên sau s bước thì tập Bs = ∅ và khi đó ta dừng lại . Khi đó ta có được các khoảng ∆1 , ..., ∆s . s S Đặt A0 = An ∩ ∆i , có các khoảng ∆1 , ..., ∆s phủ lên A0 . 0 i=1 s S Lại có An \A ⊂ [xi − δ, xi ] nên i=1 µ∗ (An \A0 ) ≤ sδ < (nl + 1). ε ε = . 2(nl + 1) 2 1.2. Hàm đơn điệu 17 Do đó ε µ∗ (An ) ≤ µ∗ (A0 ) + µ∗ (An \A0 ) < µ∗ (A0 ) + , 2 hay ε µ∗ (A0 ) ≥ µ∗ (An ) − . 2 (1.2.2) Kết hợp (1.2.1) và (1.2.2) ta có µ∗ (A0 ) ≥ µ∗ (A) − ε. Bổ đề 1.2.2. [1]Cho tập bất kì A ⊂ (a, b) và Ω là một lớp khoảng sao cho với mọi số η > 0 nhỏ tùy ý, mỗi điểm x ∈ A đều là đầu mút trái của ít nhất một khoảng ∆ = (x, x + hx ) ∈ Ω với hx < η. Khi ấy với một tập mở bất kỳ G ⊃ A và ε > 0 tùy ý cho trước, ta có thể chọn được một số hữu hạn khoảng rời nhau ∆1 , ∆2 , ..., ∆s nằm trọn trong G, và phủ lên một tập con A0 ⊂ A với µ∗ (A0 ) > µ∗ (A) − ε. Chứng minh. Gọi Ω1 = {(x, x + hx ) ∈ Ω : (x, x + hx ) ⊂ G} . Lấy x ∈ A bất kỳ. Do G là tập mở và G ⊃ A nên tồn tại η1 > 0 sao cho (x − η1 , x + η1 ) ⊂ G. Với x ∈ A, η1 > 0 thì theo giả thiết về Ω tồn tại hx ∈ (0, η1 ) sao cho (x, x + hx ) ∈ Ω. Lại có (x, x + hx ) ⊂ (x − η1 , x + η1 ) nên (x, x + hx ) ∈ Ω1 . Áp dụng Bổ đề 1.2.1 cho lớp Ω1 thì ta có điều phải chứng minh. Tương tự như Bổ đề 1.2.2 ta cũng có bổ đề sau Bổ đề 1.2.3. [1]Cho tập bất kì A ⊂ (a, b) và Ω là một lớp khoảng sao cho với mọi số η > 0 nhỏ tùy ý, mỗi điểm x ∈ A đều là đầu mút phải của ít nhất một khoảng ∆ = (x − hx , x) ∈ Ω với hx < η. Khi ấy với một tập mở bất kỳ G ⊃ A và ε > 0 tùy ý cho trước, ta có thể chọn được một số hữu hạn khoảng rời nhau ∆1 , ∆2 , ..., ∆s nằm trọn trong G, và phủ lên một tập con A0 ⊂ A với µ∗ (A0 ) > µ∗ (A) − ε. Chứng minh Định lý 1.2.1. 1.2. Hàm đơn điệu 18 Chứng minh. Đặt D+ (x) = lim h→0+ u(x + h) − u(x) , h u(x + h) − u(x) , h→0 h u(x + h) − u(x) , D− (x) = lim h h→0− D+ (x) = lim+ D− (x) = lim− h→0 u(x + h) − u(x) . h Ta có  u(x + k) − u(x) :00   u(x + k) − u(x) :00 k  + Khi đó D+ (x) ≤ D+ (x). Tương tự ta có D− (x) ≤ D− (x). Giới hạn lim+ h→0 u(x+h)−u(x) h tồn tại khi và chỉ khi D+ (x) = D+ (x), và giới hạn lim− h→0 u(x+h)−u(x) h tồn tại khi và chỉ khi D− (x) = D− (x). Điều kiện cần và đủ để có đạo hàm u0 (x) tại điểm x là D+ (x) = D+ (x) = D− (x) = D− (x). Đặt A = {x ∈ [a, b] : D+ (x) < D+ (x)}, ta chứng minh µ∗ (A) = 0. Cho p, q là hai số hữu tỉ (p < q) và đặt  Apq = x ∈ [a, b] : D+ (x) < p < q < D+ (x) . S Ta chứng minh A = Apq . Thật vậy p,q∈Q S Apq ⊂ A. Ta luôn có p,q∈Q S Ta cần chứng minh A ⊂ Apq , nghĩa là với bất kỳ x ∈ A thì cần chứng minh là tồn p,q∈Q tại p0 , q0 ∈ Q sao cho D+ (x) < p0 < q0 < D+ (x). Do x ∈ A nên D+ (x) < D+ (x). 1.2. Hàm đơn điệu 19 Do tính trù mật của tập Q nên tồn tại p0 ∈ Q để D+ (x) < p0 < D+ (x). Lại có p0 < D+ (x) nên tồn tại q0 ∈ Q để p0 < q0 < D+ (x). Khi đó tồn tại p0 , q0 ∈ Q để D+ (x) < p0 < q0 < D+ (x) nên x ∈ Ap0 q0 . S S Do đó x ∈ Apq , hay ta có A ⊂ Apq . p,q∈Q p,q∈Q S Do A = Apq là hợp đếm được của các tập Apq nên để chứng minh µ∗ (A) = 0 ta sẽ p,q∈Q chứng minh µ∗ (Apq ) = 0 với mỗi p, q ∈ Q. Giả sử ngược lại rằng có một tập Apq có µ∗ (Apq ) = α > 0. Lấy một số ε > 0 bất kỳ. Khi đó theo Chú ý 1.1.1 sẽ tồn tại một tập mở G ⊃ Apq sao cho µ(G) < µ∗ (Apq ) + ε = α + ε. Lấy x ∈ Apq thì ta có D+ (x) < p, hay   u(x + k) − u(x) : 0 < k < h < p. sup inf k k h Do đó với mọi h > 0 ta có  inf k  u(x + k) − u(x) : 0 < k < h < p. k Khi đó với mỗi h > 0 đều có k = k(x, h) ∈ (0, h) để u(x + k) − u(x)

0, x ∈ Apq } . Áp dụng bổ đề 1.2.2 cho tập Ω, tập mở G và ε > 0 thì có một số hữu hạn khoảng rời nhau (xi , xi + k(xi , hi )) với i = 1, ..., r nằm trọn trong G, và phủ lên một tập con A0 ⊂ Apq với µ∗ (A0 ) > α − ε. Ta có r X k(xi , hi ) < µ(G) < α + ε, i=1 và r X i=1 (u(xi + k(xi , hi )) − u(xi )) < p r X i=1 k(xi , hi ) < p(α + ε). (1.2.3)

- Xem thêm -

Tài liệu liên quan