Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Vật lý Bồi dưỡng học sinh giỏi môn vật lý thpt chuyên đề nguyên lý thứ nhất (nguyên lý ...

Tài liệu Bồi dưỡng học sinh giỏi môn vật lý thpt chuyên đề nguyên lý thứ nhất (nguyên lý i) của nhiệt động lực học – áp dụng cho khí lý tưởng

.DOC
24
2903
142

Mô tả:

CHUYÊN ĐỀ: NGUYÊN LÝ THỨ NHẤT (NGUYÊN LÝ I) CỦA NHIỆT ĐỘNG LỰC HỌC – ÁP DỤNG CHO KHÍ LÝ TƯỞNG Phần thứ nhất: MỞ ĐẦU I. Lý do chọn chuyên đề Bộ môn Vật lý trong nhà trường phổ thông có nhiệm vụ trang bị cho học sinh những kiến thức Vật lý cơ bản và có tính hệ thống, với đầy đủ các nội dung: Cơ học, Nhiệt học, Điện - Từ học, Quang học, Vật lý hiện đại ... Chương trình Vật lý giảng dạy cho các lớp Chuyên và bồi dưỡng học sinh năng khiếu đòi hỏi phải ở mức độ cao hơn so với chương trình đại trà, trong đó có những vấn đề được cập nhật ở mức độ kiến thức chuyên sâu, tiếp cận cái mới của Vật lý học hiện đại. “Vật lý phân tử và nhiệt học” là một phần quan trọng trong chương trình Vật lý phổ thông và là một trong những nội dung trọng tâm của chương trình thi HSG phổ thông do Bộ Giáo dục và Đào tạo quy định. Phần này được bố trí giảng dạy ở cuối lớp 10 với những kiến thức rất cơ bản và chọn lọc. Tuy nhiên, những kiến thức giáo khoa đó chưa thể đáp ứng yêu cầu bồi dưỡng học sinh năng khiếu và phục vụ cho thi HSG. Là một giáo viên giảng dạy bộ môn Vật lý ở trường THPT Chuyên XYZ, tôi tự nhận thấy bản thân cần không ngừng tự học tập, bồi dưỡng nhằm nâng cao năng lực chuyên môn, dần dần đáp ứng được yêu cầu và mục tiêu đào tạo của nhà trường. Nghiên cứu tài liệu, chọn lọc và tập hợp những nội dung theo chủ đề dưới dạng một đề tài là một trong những hình thức tự học, tự bồi dưỡng có hiệu quả và thiết thực. Trong khuôn khổ của một chuyên đề tự nghiên cứu, tôi xin đề cập đến nội dung: “NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC VÀ ỨNG DỤNG”. II. Nhiệm vụ đặt ra Nguyên lý thứ nhất của nhiệt động lực học là sự vận dụng định luật Bảo toàn và chuyển hóa năng lượng vào các hiện tượng nhiệt. Sách giáo khoa Vật lý 10 Nâng cao trình bày nội dung hết sức tinh giản, phù hợp với chương trình phổ thông đại trà. Từ việc xét một hệ có trao đổi công và nhiệt lượng với các vật ngoài và chuyển từ trạng thái 1 sang trạng thái 2, áp dụng định luật bảo toàn năng lượng, SGK đã đưa ra hệ 22 thức U  Q  A và phát biểu: “Độ biến thiên nội năng của hệ bằng tổng đại số nhiệt lượng và công mà hệ nhận được.” với quy ước về dấu: U  0 : nội năng của hệ tăng. U  0 : nội năng của hệ giảm. Q > 0 : hệ nhận nhiệt lượng. Q < 0 : hệ nhả nhiệt lượng. A > 0 : hệ nhận công. A < 0 : hệ sinh công. Lưu ý rằng khi hệ nhận công A, đồng nghĩa với việc hệ thực hiện công A A . Cách phát biểu trên đây chưa làm sáng tỏ được rằng: Nhiệt lượng và công phụ thuộc vào quá trình biến đổi cụ thể, nhưng hiệu của chúng, tức là độ biến thiên nội năng của hệ không phụ thuộc quá trình. Việc vận dụng nguyên lý ở mức độ như vậy chỉ giúp học sinh giải quyết được một số bài toán giáo khoa đơn giản. Để đáp ứng phần nào yêu cầu bồi dưỡng học sinh giỏi, trong khuôn khổ của chuyên đề, tôi đã tự đề ra cho mình những mục tiêu, nhiệm vụ cụ thể: 1. Nghiên cứu các vấn đề lý thuyết về Nguyên lý thứ nhất của nhiệt động lực học. 2. Ứng dụng của nguyên lý thứ nhất cho các quá trình cân bằng của khí lý tưởng: đẳng áp, đẳng tích, đẳng áp, đẳng nhiệt và đoạn nhiệt. 3. Vận dụng Nguyên lý thứ nhất của nhiệt động lực học trong việc giải một số dạng bài tập nâng cao, tiếp cận với các kỳ thi HSG. Phần thứ hai: NỘI DUNG A. NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC I. Phương trình Menđêlêep – Clapâyron 1. Các thông số trạng thái 22 Ba đại lượng áp suất, nhiệt độ và thể tích đặc trưng cho tính chất vĩ mô của chất khí, chúng quy định trạng thái của một khối khí xác định. Vì vậy, chúng được gọi là các thông số trạng thái. Biết giá trị của ba thông số này, ta sẽ xác định được trạng thái của một khối khí. Ba thông số này biến thiên không độc lập với nhau, nghĩa là giữa chúng có mối liên hệ nhất định, một thông số thay đổi sẽ kéo theo sự thay đổi của hai thông số kia. 2. Phương trình trạng thái: Phương trình diễn tả mối liên hệ giữa ba thông số trạng thái được gọi là phương trình trạng thái của khí lý tưởng, nó có dạng: p  f  V, T   * Ta tìm dạng tường minh của (*). Từ phương trình cơ bản của thuyết động học phân tử: p  N 2 nw  nkT với mật độ phân tử khí n  , N là số phân tử khí có trong 3 V thể tích V, suy ra: p NkT hay pV = NkT V (**) Gọi m là khối lượng khí,  là khối lượng của một mol khí, N A là số Avôgađrô ( N A  6, 023.1023 mol1 ), ta có số mol khí:  m N   NA Thay vào (**), ta được: pV  N A k  N  NA m  m T.  23 23 Đặt R  N A k  6, 023.10 .1,38.10  8,31 J / molK  , gọi là hằng số khí lý tưởng (k là hằng số Bônzơman), ta được: pV  m RT  22  1 (1) được gọi là phương trình trạng thái của khí lý tưởng hay phương trình Menđêlêep – Clapâyron. II. Một số khái niệm: 1. Công và nhiệt lượng: Một hệ có thể trao đổi năng lượng với môi trường bên ngoài (các hệ khác) dưới hai dạng khác nhau: a. Công: Khi lực tác dụng có điểm đặt dời chỗ, không có biến đổi nhiệt độ. b. Nhiệt lượng: Hệ và môi trường đứng yên, có biến đổi nhiệt độ hoặc biến đổi trạng thái bên trong của hệ. 2. Trạng thái cân bằng, quá trình cân bằng và quá trình thuận nghịch: a. Trạng thái cân bằng: Một hệ ở trạng thái cân bằng nhiệt động lực học nếu áp suất p, nhiệt độ T và thể tích V (và các thông số nhiệt khác) có giá trị xác định và không có dòng vĩ mô trong hệ. b. Quá trình cân bằng: Là quá trình diễn biến qua các trạng thái cân bằng kế tiếp nhau, các thông số nhiệt (p, V, T, ...) của hệ biến đổi vô cùng chậm và luôn luôn có giá trị xác định. Quá trình cân bằng có thể được biểu diễn bằng các đường cong trên đồ thị. c. Quá trình thuận nghịch: Là quá trình có thể xảy ra theo cả chiều thuận lẫn chiều nghịch. Khi quá trình xảy ra theo chiều nghịch thì hệ trải qua các trạng thái trung gian đúng y như khi xảy ra theo chiều thuận (nhưng có thứ tự ngược lại). Ngoài ra, sau khi quá trình diễn biến theo chiều nghịch đã được thực hiện, hệ trở về trạng thái ban đầu, thì không có biến đổi gì cho môi trường xung quanh hệ. Các quá trình cân bằng có tính chất thuận nghịch. 3. Công sinh ra bởi một hệ Khi một hệ dãn ra hay co lại, tức là có thể tích thay đổi thì áp suất (mà hệ tác dụng lên môi trường) sẽ sinh công, gọi là công mà hệ sinh ra trong quá trình biến đổi. Nếu hệ dãn ra (thể tích tăng) thì công mà hệ sinh ra A’ là công dương (nhận công A 22 âm); nếu hệ co lại (thể tích giảm) thì công mà hệ sinh ra A’ là công âm (nhận công A dương). Công nguyên tố A A  p.dV là công mà hệ sinh ra trong một quá trình mà thể tích của hệ biến đổi một lượng dV rất nhỏ, áp suất p coi như không đổi. Xét một quá trình cân bằng hữu hạn, chuyển hệ từ trạng thái đầu I sang trạng thái cuối F, công A’ sinh ra sẽ là A  VF p  V  dV  2 VI Hàm dưới dấu tích phân p(V) chỉ rõ dạng của sự phụ thuộc của áp suất vào thể tích V của hệ trong quá trình biến đổi. Trên đồ thị p – V (hình 1), giá trị tuyệt đối của công A’ bằng diện tích hình thang cong V IIFVF (gạch chéo). Dấu của A’ là dương nếu chiều từ I đến F là chiều kim đồng hồ trên chu vi hình thang cong, dấu của A’ là âm nếu chiều từ I đến F ngược lại. Công A’ mà hệ sinh ra không chỉ phụ thuộc trạng thái đầu I và trạng thái cuối F, mà còn phụ thuộc � biểu diễn quá trình vào dạng của đường cong IF p trên đồ thị p – V, tức là phụ thuộc vào dạng của I hàm p(V) trong quá trình. Nếu trạng thái cuối F trùng với trạng thái F đầu I thì ta nói rằng hệ thực hiện một chu trình, đường biểu diễn một chu trình là một đường cong khép kín. Công A’ mà hệ sinh ra trong một chu trình có giá trị tuyệt đối bằng diện tích hình bao O VI VF V Hình 1 quang bởi đường biểu diễn chu trình, lấy dấu dương nếu chiều diễn biến của chu trình là chiều kim đồng hồ trên đường biểu diễn, lấy dấu âm nếu chiều diễn biến của chu trình ngược chiều kim đồng hồ. 4. Nhiệt lượng mà hệ nhận được: Khi hệ không trao đổi công với bên ngoài mà tăng nhiệt độ dT, ta nói hệ nhận một nhiệt lượng Q . 22 Thương số Q phụ thuộc vào bản thân hệ và điều kiện của quá trình, gọi là dT nhiệt dung của hệ. Nếu hệ là một đơn vị khối lượng của chất thì thương số trên gọi là nhiệt dung riêng, ký hiệu là c. Nếu hệ là một mol chất thì thương số trên gọi là nhiệt dung mol của chất, ký hiệu là C. Đối với chất khí, nhiệt dung mol phụ thuộc một cách rõ rệt vào quá trình biến đổi khi nhận nhiệt.  Q   3 Q  4 Nhiệt dung mol đẳng áp: C p     dT p   Nhiệt dung mol đẳng tích: Cp   dT   p III. Nguyên lý thứ nhất của nhiệt động lực học: 1. Phát biểu nguyên lý: Xét một hệ NĐLH tương tác với môi trường xung quanh và chuyển từ trạng thái ban đầu I tới trạng thái cuối F. Nhiệt lượng Q mà hệ trao đổi và công A mà hệ nhận được (công mà hệ sinh ra là A’ = - A) đều phụ thuộc vào quá trình biến đổi của hệ và đều có liên quan đến biến thiên nội năng U của hệ trong quá trình. Thực nghiệm đã chứng tỏ rằng: mặc dù Q và A phụ thuộc vào quá trình chuyển hệ từ trạng thái đầu sang trạng thái cuối nhưng tổng đại số của chúng lại không phụ thuộc vào quá trình diễn biến, chỉ phụ thuộc vào hai trạng thái đầu và cuối. Từ đó ta có nguyên lý thứ nhất nhiệt động lực học: Tổng đại số công A và nhiệt lượng Q mà hệ trao đổi với môi trường ngoài bằng độ biến nội năng U  U 2  U1 của hệ; độ biến thiên nội năng này không phụ thuộc vào quá trình cụ thể được thực hiện mà chỉ phụ thuộc vào trạng thái đầu (I) và trạng thái cuối (F) của quá trình. 2. Biểu thức của nguyên lý I Với quy ước về dấu giống như ở SGK (đã trình bày ở mục II, phần thứ nhất), ta viết biểu thức của nguyên lý I như sau: 22  5a  U  U 2  U1  Q  A  Q  A  Hoặc  5b  Q  U  A  U  A Đối với một quá trình nguyên tố, ta có: p dU  Q  A  Q  A  6a  2  6b  1 Hoặc Q  dU  A  dU  A Ở đây, dU là vi phân toàn phần (không phụ thuộc vào quá trình diễn biến), còn Q và A là O V0 các vi phân không toàn phần (phụ thuộc vào quá V Hình 2 trình diễn biến). ********************** B. ỨNG DỤNG NGUYÊN LÝ THỨ NHẤT CỦA NĐLH VÀO MỘT SỐ QUÁ TRÌNH I. Quá trình đẳng tích Quá trình đẳng tích là quá trình biến đổi của hệ diễn ra khi thể tích của hệ không đổi: V = const. Trên đồ thị p – V, quá trình đẳng tích biểu diễn bởi một đoạn thẳng song song với trục áp suất (hình 2). Biểu thức của nguyên lý I có dạng: dU  Q  7 vì A   p.dV  0 do dV = 0. Từ (7) ta thấy độ biến thiên nội năng trong quá trình đẳng tích bằng và cùng dấu với nhiệt lượng trao đổi. Mặt khác, nhiệt dung mol đẳng tích của quá trình được tính theo công thức: C V  Suy ra: Q dU  dT dT dU  C V dT   8 với  là số mol khí. m CV dT  22  9 Lấy tích phân (9), ta thu được biểu thức của p nội năng: U m C V .T  U 0  Nội năng của hệ được xác định sai khác một P0 2 1 hằng số cộng U0, chọn U0 = 0 (khi T = 0), ta O được: V1 V2 V Hình 3 m U  CV .T   9 II. Quá trình đẳng áp Quá trình đẳng áp là quá trình trong đó áp suất của hệ không đổi: p = const. Trên đồ thị p – V, quá trình đẳng áp được biểu diễn bởi một đoạn thẳng song song với trục thể tích OV (hình 3). Vì p0 = const nên công của quá trình được tính: V2 A  p 0 dV  p0  V2  V1   10  V1 Biểu thức của nguyên lý I cho quá trình đẳng áp có dạng: dU  Q  p 0dV  11 Nhiệt dung mol đẳng áp của quá trình là: Cp  Suy ra: Q dU p0 dV   dT dT dT Q  Cp dT   12a  m C p dT   12b  Đối với một quá trình đẳng áp hữu hạn 1 – 2 thì từ (12b) ta có: Q m C p  T2  T1   22 So sánh (12a) và (8) và giả sử dU trong hai quá trình đó bằng nhau thì Cp > CV và: Cp  Cv  p0 dV dT  13 Mặt khác, lấy vi phân phương trình trạng thái với p = p 0 không đổi, ta được: p0dV  RdT , thay vào (13) thu được:  14  Cp  CV  R p Hệ thức (14) gọi là hệ thức Mayer. Đặt Cp Cv P1   và áp dụng hệ thức Mayer, suy 1 2 P2 ra: O R Cv  và  1 Cp  R  1 V1 V2 V Hình 4  15  III. Quá trình đẳng nhiệt Quá trình đẳng nhiệt là quá trình diễn ra khi nhiệt độ của hệ không đổi: T = const. Với khí lý tưởng, quá trình này được mô tả bằng định luật Bôilơ – Mariôt và được diễn tả trên đồ thị p – V bằng một nhánh hypebol (hình 4). Nguyên dU  Q  A lý  I viết cho quá trình đẳng nhiệt: Q  dU  A  C v dT  A Vì dT = 0 nên Q  A Với cả quá trình thì Q = - A, nghĩa là nhiệt lượng truyền cho hệ bằng công mà hệ thực hiện lên môi trường (A’ = - A). V2 Vì A   pdV nên A   pdV V1 22 Từ phương trình trạng thái (1), ta suy ra p  m RT , thay vào cho p dưới dấu  V tích phân, ta được: V2 V 2 m dV m dV A    RT   RT   V  V V1 V1 Hay A   m V RT ln 2  V1  16  Do quá trình là đẳng nhiệt có p1V1  p 2 V2 nên A V2 p1  , do đó còn có: V1 p 2 m p RT ln 1  p2  17  IV. Quá trình đoạn nhiệt 1. Các phương trình đoạn nhiệt Quá trình đoạn nhiệt là quá trình diễn ra khi hệ không trao đổi nhiệt với môi trường ngoài: Q  0 . Nguyên lý I áp dụng cho quá trình đoạn nhiệt có dạng:  18  U  A Từ (18), ta thấy: Nếu dU > 0 thì A  0 , nghĩa p pV   const là nội năng tăng do hệ nhận công từ bên ngoài. Nếu dU < 0 thì A  0 , nghĩa là hệ sinh công do nội pV  const năng giảm. Kết hợp (18) và (9), ta có: O m C v dT   pdV   dT   pdV  * m Cv  Hình 5 Lấy vi phân hai vế của phương trình trạng thái (1), ta có: pdV  Vdp  m RdT  V  ** 22 Thay (*) vào (**), được:    m pdV  R  = pdV  Vdp  R   pdV   mC  Cv   v   Thay R  C p  C v , ta được: pdV  Vdp   Cp  C v Cv pdV      1 pdV Hay Vdp  pdV, chia hai vế cho pV và chuyển về một vế: dV dp  0 V p  Tích phân hai vế, cuối cùng ta được:  19a  ; pV   const  được gọi là chỉ số đoạn nhiệt. (19a) là một phương trình đoạn nhiệt, cho biết mối liên hệ giữa hai đại lượng p và V, gọi là phương trình Poatxông. Trong hệ tọa độ p – V, (19a) được biểu diễn bằng một đường cong, tương tự đường cong của phương trình đẳng nhiệt pV = const, nhưng nó dốc hơn (hình 5). Viết (19a) cho hai trạng thái 1 và 2 của quá trình đoạn nhiệt:  p1  V2    p 2  V1   19b  Từ phương trình trạng thái (1), ta có p  m RT m RT hoặc V   V  p + Thế biểu thức của p vào (19a), ta được: m V RT  const  V  TV 1  const 22  20a  1 1 Viết (20a) cho hai trạng thái 1 và 2: T1V1  T2 V2  20b  + Thế biểu thức của V vào (19a), ta được:  m T  p  R   const  p  T  const  p 1  21a  T  p1  const 1 1 Viết (21a) cho hai trạng thái 1 và 2: T1p1  T2 p 2  21b  (20a) và (20b) cho ta mối liên hệ giữa nhiệt độ T và thể tích V; (21a) và (21b) cho ta mối liên hệ giữa nhiệt độ T và áp suất p, chúng đều là các phương trình đoạn nhiệt. 2. Công trong quá trình đoạn nhiệt Ta có thể thiết lập công thức tính công trong quá trình đoạn nhiệt theo hai cách: a. Cách 1: Trực tiêp từ công thức A   pdV với p được rút ra từ (19b) p1V1 dV p    A  p1V1  V V Lấy tích phân: V2 V 2 p1V1 1 dV   V2  V11  A   p1V    p1V1 V dV   V 1  V1 V1  1 1 Đưa V1 ra làm thừa số chung, ta được: 1 1   p1V1  V2  p1V1  V1     1 =    1 A 1    V1    1  V2        22  Kết hợp thêm với các công thức (19b) và (20b), ta tìm được các công thức khác của A: 1     p1V1  p 2   A    1    1  p1     23 22 A p1V1  T2  m 1  T2  m R  T2  T1    1  RT1   1    1  T1     1  T1     1 A Hoặc 1  p 2V2  p1V1   1  25  b. Cách 2: Sử dụng công thức A  U  A T2 m m   C dT   C  T v v 2  24   T1  , thay C v  T1 m C v dT  R  1  15  vào công thức trên, ta lại có: A  1 m m 1  p 2 V2  p1V1   RT2  RT1    1      1  Ta đã có lại công thức (25), từ đó có thể tìm lại các công thức (24), (23) và (24). C. MỘT SỐ DẠNG BÀI TOÁN ÁP DỤNG NGUYÊN LÝ I NĐLH CHO KHÍ LÝ TƯỞNG I. Tìm độ biến thiên nội năng, công mà khí sinh ra và nhiệt dung mol của khí khi biết quy luật biến đổi trạng thái Với dạng bài này, quy luật biến đổi của một lượng khí xác định thường được diễn tả bằng phương trình toán học, bằng lời hoặc bằng đồ thị. Trước khi tiến hành giải toán, cần đọc kỹ để, phân tích để nắm bắt đầy đủ các đặc điểm của quá trình biến đổi trạng thái. Vận dụng nguyên lý I, ta phải kết hợp với các kiến thức khác như phương trình trạng thái, nhiệt dung mol, ... Bài toán 1. Khí lý tưởng có chỉ số đoạn nhiệt   Cp Cv dãn theo quy luật p  V với  là hằng số. Thể tích ban đầu của khí là V0, thể tích cuối là qV0. Tính: a. Độ tăng nội năng của khí. b. Công mà khí sinh ra. c. Nhiệt dung mol của khí trong quá trình đó. Giải 22 Đây là bài toán trong đó quy luật biến đổi của khí được diễn tả bằng phương trình toán học: p  V . Khi giải, ta cần bám sát và khai thác triệt để phương trình này. m a. Độ tăng nội năng của khí: U   C v  T1  T0  , với T1 là nhiệt độ cuối, T0 là nhiệt độ đầu. Từ phương trình diễn tả quá trình biến đổi của khí, ta suy ra: p 0 V0  V02  Từ C v  R , dẫn đến R     1 C v , thay vào công thức trên, ta được:  1 p0 V0  Tương tự m RT0  m    1 C v T0  p1V1  q 2 V02  m    1 C v T1   1  2 V02 m C  Từ (1) và (2), suy ra: T1  q T0 và , thay vào biểu thức của v     1 T0 2 U , được: q2 1 U   V  1 2 0 b. Công mà khí sinh ra: A  A  V1 qV0 V02 2 pdV  V VdV  2  q  1 V0 0 c. Nhiệt dung mol của khí: Theo nguyên lý I, nhiệt lượng mà khí nhận được là Q  U  A  U  A V02  q 2  1 22  1 2    1 Nhiệt dung mol của khí là C Q Q U A    m m T m T  T  1 0  T1  T0   T1  T0     C  Cv  Suy ra: R  const 2 Bài toán 2. Có một lượng khí lý tưởng lưỡng nguyên tử ở áp suất p 1, thể tích V1 và nhiệt độ T1. Cho khí dãn đoạn nhiệt thuận nghịch tới thể tích V 2. Sau đó khí được làm nóng đẳn tích tới nhiệt độ ban đầu T 1, rồi lại dãn đoạn nhiệt thuận nghịch tới thể tích V3. a. Tính công tổng cộng A’ mà khí sinh ra trong ba giai đoạn của quá trình trên. b. Nếu V1 và V3 cho trước thì với giá trị nào của V2, công A’ là cực đại? Giải Quá trình biến đổi của khí gồm ba giai đoạn: 1 p1 ,V1,T1  2 p2 ,V2 ,T1  2  p2 ,V2 ,T2  a. Công mà khí sinh ra: 3  p3 ,V3 ,T3  + Giai đoạn 1: khí dãn nở đoạn nhiệt từ trạng thái 1 sang trạng thái 2, sinh công A1. Áp dụng công thức tính công trong quá trình đoạn nhiệt: 1 p1V1   V1   1     A1  A1    1   V2     + Giai đoạn 2: khí tăng nhiệt độ đẳng tích, không sinh công A2  0 + Giai đoạn 3: khí dãn đoạn nhiệt từ trạng thái (2’) sang trạng thái (3), công sinh ra: 1 p2 V2   V2   1     A3  A 3    1   V3     Trạng thái (2’) và trạng thái (1) có cùng nhiệt độ T 1 nên p2 V2  p1V1 , do đó công tổng cộng do khí sinh ra là: 22 1 1  V2   p1V1   V1  A A1  A2   2          1   V2   V3     1 V  c. Ta đặt Y   1   V2  1 V   2   V3  , nếu cho trước V1 và V3 thì Y là tổng hai số 1 V  dương có tích không đổi bằng  1   V3   1  V1     V2  . Y đạt GTNN khi hai số hạng đó bằng nhau:  1 V   2   V3   V2  V1V3 p Vậy với V2  V1V3 thì Y đạt GTNN và P0 công A’ mà khí sinh ra trong cả quá trình đạt GTCĐ. Bài toán 3. Một lượng khí lý tưởng gồm 3 4 A B P1 mol, biến theo quá trình cân bằng từ trạng thái có O V0 5 áp suất p0  2.10 pa và thể tích V0 = 8 lít đến trạng V1 V Hình 6 thái có áp suất p1  105 pa và thể tích V1 = 20 lít. Trong hệ tọa độ p – V, quá trình được biểu diễn bằng đoạn thẳng AB (hình 6). a. Tính nhiệt độ T0 của trạng thái đầu (A) và T1 của trạng thái cuối (B). b. Tính công mà khí sinh ra và nhiệt lượng mà khí nhận trong cả quá trình. Giải Trong bài toán này, quá trình biến đổi trạng thái được diễn tả bằng đồ thị trong hệ tọa độ p – V. Ta cần phân tích và sử dụng hiệu quả đồ thị đã cho. a. Tính T0 và T1: Từ phương trình trạng thái pV  T0  3 RT , ta suy ra: 4 4 4 p 0 V0  .2.105.8.10 3  257(K) 3R 3.8, 31 22 T1  4 4 p1V1  .105.20.10 3  321  K  3R 3.8, 31 b. Công mà khí sinh ra và nhiệt lượng mà khí nhận trong cả quá trình. Để ý rằng công mà khí sinh ra có giá trị bằng diện tích hình thang ABV 1V0 trên đồ thị, ta có: A  1 1  p 0  p1   V1  V0    2  1 .105.0, 012  1800  J  2 2 3 3R 9 Độ biến thiên nội năng: U  C v T  . .T  .8,31.  321  257   600  J  4 2 8 Áp dụng nguyên lý I, nhiệt lượng mà khí nhận được là: Q  U  A  U  A 2400  J  II. Bài toán về biến đổi trạng thái của khí bị giam trong xi lanh Với loại bài toán này, thông thường có liên quan đến một số kiến thức về cơ học. Ta xét một số ví dụ. Bài toán 4. Một xi lanh cách nhiệt đặt nằm ngang, thể tích V = V1 + V2 = 100 lít được chia làm hai ngăn không thông với nhau bởi một píttông cách nhiệt, píttông có thể Hình 7 chuyển động không ma sát. Mỗi phần của xi lanh chứa một mol khí lý tưởng đơn nguyên tử (hình 7). Ban đầu, píttông đứng yên, nhiệt độ hai phần khác nhau. Cho dòng điện chạy qua dây đốt nóng để truyền cho khí ở ngăn bên trái nhiệt lượng Q = 150J. a. Nhiệt độ phần bên phải tăng. Tại sao? b. Khi đã có cân bằng, áp suất mới trong xi lanh lớn hơn áp suất ban đầu bao nhiêu? Giải 22 a. Khí trong ngăn bên trái nhận nhiệt lượng Q, dãn nở và sinh công A1 > 0 và nội năng của khí biến đổi là U1 . Píttông dịch chuyển nén khí ở ngăn bên phải, khí ở ngăn bên phải nhận công A 2  A1  0 , vì biến đổi đoạn nhiệt nên nội năng biến thiên U 2  A 2  0 . Do vậy mà nhiệt độ của khí trong ngăn bên phải tăng. b. Áp dụng nguyên lý I: U1  Q  A1  Q  A1  Q  U1  U 2 + Với một mol khí ở ngăn bên trái: p1V1  RT1 và p1V1 RT1 3 3 Suy ra: U1  RT1   p1V1 p1V1  2 2 + Tương tự, với một mol khí ở ngăn bên phải: p1V1  RT1 và p1V1 RT1 3 3 Suy ra: U1  RT1   p1V1 p1V1  2 2 3 3 3 Vậy Q  p1 V1 V2  p1  V1  V2    V  p1  p1   Vp 2 2 2 Cuối cùng ta có: p  2Q  1000  Pa  3V Khi có cân bằng, lúc đầu p 2  p1 ; lúc sau p2  p1 Bài toán 5. Một xi lanh đặt thẳng đứng có chứa n mol khí lý tưởng đơn nguyên tử nhờ một píttông có khối lượng M đậy kín. Ban đầu, píttông được giữ đứng yên, khí trong xi lanh có thể tích V0, ở nhiệt độ T0; sau đó thả cho píttông dao động nhỏ rồi đứng yên. Bỏ qua mọi ma sát, nhiệt dung của xi lanh và píttông. Toàn bộ hệ được cách nhiệt, áp suất khí quyển là p0. Tìm nhiệt độ và thể tích của khí trong xi lanh khi píttông đứng cân bằng. Giải Do toàn bộ hệ cách nhiệt và píttông thực hiện dao động nhỏ nên coi quá trình biến đổi của khí trong xi lanh là đoạn nhiệt thuận nghịch. Do Q = 0 nên A  U (1) 22 Khi píttông đứng cân bằng, hợp lực tác dụng lên píttông bằng không u r r r r P Ff  0 u r Với P là trọng lực của píttông, có độ lớn P = Mg. r F là áp lực của khí quyển lên píttông, có độ lớn F = p0S r f là áp lực của khí trong xi lanh, có độ lớn f = pS, trong đó p là áp suất của khí trong xi lanh, S là tiết diện thẳng của píttông (hình 8). Suy ra: f = P + F ⟹ ⟹ p pS = Mg + p0S r f Mg  p0 S Áp dụng phương trình trạng thái: pV  nRT Công h  (khí  Mg   p 0  V  nRT   S  nhận):  2 A  fh    Mg  p0S  h V V  V0  S S Hình 8  A    Mg  p0S  V  V0 S i 2 3 2 Độ biến thiên nội năng: U  nRT  nR  T  T0  Từ (1) ta có:   Mg  p 0S    Mg  p0S với r u rF P V  V0 3  nR  T  T0  S 2 V0  V 3  nR  T  T0  S 2 Giải hệ (2) và (3), ta được: 22  3 2V0 3nRT  V    Mg  5  5  p0    S     Mg    2  p0   V0  3T0 S    T  5 5nR  III. Nguyên lý I áp dụng cho chu trình: Sau các giai đoạn biến đổi liên tiếp, trạng thái cuối cùng của hệ trùng với trạng thái ban đầu, ta nói hệ đã thực hiện một chu trình. Vậy, chu trình là một quá trình khép kín. Chu trình có các quá trình trung gian là thuận nghịch được gọi là chu trình thuận nghịch. Khi vận dụng nguyên lý I cho chu trình, ta cần xét xem quá trình nào hệ nhận nhiệt, nhường nhiệt hoặc thực hiện công hay nhận công... Bài toán 6. Một mol khí lí tưởng đơn nguyên tử thực hiện chu trình biến đổi trạng thái như sau: Từ trạng thái 1 có áp suất p1 = 105 Pa, nhiệt độ T1 = 400K biến đổi đẳng tích đến trạng thái 2 có áp suất p2 = 2p1. Từ trạng thái 2 dãn nở đẳng áp đến trạng thái 3 có nhiệt độ T3 = 1000K, sau đó biến đổi đẳng nhiệt đến trạng thái 4, rồi từ trạng thái 4 biến đổi đẳng áp về trạng thái 1. 1. Tính các thông số trạng thái còn lại của khối khí ứng với các trạng thái 1, 2, 3, 4. 2. Vẽ đồ thị của chu trình trong hệ toạ độ (p, V). 3. Tính công mà khí thực hiện trong cả chu trình và hiệu suất của chu trình. Cho hằng số khí lý tưởng là R = 8,31J/mol.K Giải 1. Gọi các thông số trạng thái lần lượt là (p1, V1, T1); (p2, V2, T2); (p3, V3, T3); (p4, V4, T4) Áp dụng phương trình trạng thái cho trạng thái 1: p1V1  RT1 Suy ra : V1  RT1 8,31.400   33,24.103 m 3  33,24 dm 3 5 p1 10   22  
- Xem thêm -

Tài liệu liên quan