Tài liệu Xây dựng, phát triển, ứng dụng một số mô hình kết hợp giữa mạng nơron(nn), logic mờ(fl) và thuật giải di truyền(ga)

  • Số trang: 32 |
  • Loại file: PDF |
  • Lượt xem: 132 |
  • Lượt tải: 0
thuvientrithuc1102

Đã đăng 15893 tài liệu

Mô tả:

--- -- B~I HQC Qu6c GIATHANHPH6 He, CHI MINH TRUC1NGB~I HQC KHOAHQC TV NHIEN LE HOANGTHAI xA Y DVNG, PHA T TRIEN, UNG DT,JNGMOT s6 MO H1NH KET H~ng th<1i, xac dinh raub gidi gifi'a no vdi Tr{ rue nluln t{lo clf truyln (nin tang IiI kj thuQt tfnh loan cling). Vi~c nghien cuu cua lu~n an vdi m\lc lieu: hy vQng ap d\lng'mo hlnh kIt h?p cac kj thuQt t{nh loan mlm cho vi~c giii quye't cac bai loan trong thl!c te' sao cho thu du'<;1c hi~u guilt thl!c hi~n cao nhilt. Lu~n an nay t~p trung nghien CUuhai viln d~ chinh: (1) T6ng ke't mQt s6 phu'dng phap ke't h<;1pqua l~i gifi'a Thul)t gidi di truy€n, m{lng Naron va Logic mo eua cae nha nghien CUlltrong va ngoai nu'de: trlnh bay t(nh cOn thie't cua vi~c ke't h<;1p,cae phll(/f1gthdc ket h?p, mQt s6 vi d\l minh hQa va dlla ra lup hili roan thich ung Mi vdi tt'tng mo hlnh ke't h<;1p. (2) f>~ xuilt mQt s6 mo hmh ke't h<;1prieng: Cae h~ th6ng Di truyin- Mii, Naron- Mo, Di truyln- Naron, Vi truyln- Naron- Mii. f>6ng thCJi,chi ra Hnh khd thi eua chUng trong vi~e giai quye't ung d\lng, d6 la hili Joan pMn loq.i mdu t6ng quat. Lu~n an d~ c~p hai lop bai toan cua ung d\lng nay: phdn logi mdu khOng mitt mat thOng tin: Chung thlfc m~u, phan lOp m~u va phlln [oq.imJu hi ml1'tmat thOng tin. Giiii 100 bai toaD vhan loai m~u khong: ma't mat thong: tin: Giiii lop bai loan chung thlfc m~u (phan bi~t THA TI GIA) b?ing mo hlnh ke't h<;1p giii'aThuqt giditienhod (EA) voi Logic mG(FL) (mo hlnh FL_EA). Giiii lOp bai loan phan lopm~u b?ing mQt s6 mo hlnh ke't h<;1p: giii'a mq.ng Naron va Logic miJ (m\\ng Ndron mCl (Fuzzy Neural Network- FNN»); giii'a mgng Naron va ThUQtgidi di tl'uy€n (mo hlnh NN_GA); giii'a m(Jng Naron, Logic mil va Thuqt gidi di truy€n (mo hlnh NN_FL_GA). Giiii 100 bai toaD phiin loai m~u bi ma't mat thong tin: Ph\lc h5i m~u bi ma't mat thong tin v~ tr\\ng thai ban dilu b~ng Bi) nho ke't h<;1p(AssociativeMemory- AM). Sau khi m~u du'<;1cph\lc hM, quay trCll\\i bili loan phan lo\\i mh khong ma't mat thOng tin: chang thl,lc mdu ho~c phdn lop mdu. E>~chu~n bi bi) dii' li~u hua'n luy~n clIo mq.ng plu,lc hai: BI} nhO ktt lu;tpva mqng phdn lrJp:FNN va NN, lu~n an d~ xua't mi)t ky thu~t tlf di)ng phat sinh bi) dii' li~u hua'n luy~n thay the' phu'dng phap chQn milu thu congo Ky thu~t nay hlnh thanh tli mo hinh ktt h

xen. - nnh huo'n~ 2: Bj ma't mat thong tin <:>Xmmlt~n. Voi nnh hu6ng I chlnh la bai loan dii trlnh bay. Voi tlnh hu6ng 2 phai phl,lc h6i Xmmll v~ Xph~c_Mjsao rho Xph~c_Mjen,r6i moi phan lo1,liXphKMj v~ nj, ie {1,2,..., It}. Lu~n an xem xet hai d1,lngcua bai loan phan IO1,lim§u: (I) Bai loan chung th\fc m§u (phan bi~t THA TI GIA): Tru'ong h<;1p n=2 => Q = QTH,4.T U QGlA . (2) Bai loan phan lOp mall: Xel de'n hai lru'ong h<;1p: - Tntllng hqp 1: M§u X la mQt vec td: rho 12la mQl pIlau ho1,lch cac nj, ie {1,2,...,n} va X=(X" X2,...,XJeO. Xac djnh ie {I, n}: XeOj. - Truong hqp 2: M§u X Ia M vec ld: rho 0 la mQt phan ho1,lch cac {OJ, ie{l,2,...,n}} va m§u X = {xJ = (x(, xi ",.,xI):xJ en, J = {1",.,M}}. Xac djnh i sao rho XeOj. 1.5.2 Ke't hqp Vi truyt". Mu: Ma /ri,,/r FL_EA giai bai toaD . c/runK t/r!te mliu (phftn bi~t TH~ TI GIA) Xua't pIlat tit bai toan phon loqi mliu tdng quat (ml,lc 1.5.1). Xet tru'ong h<;1pn=2 => 0= °TII,4.Tv °GlA : bai lOan cllling thlfC mlil1 (pMn birt THA T/GIA.)- Xac dinh "mliu' dang xem xer co phdi ld "mliu' gaG cho trllek khOng? Be giai quye't bai loan, lu~n an de xua't mo hlllh ke'l h<;1pThuQl gidi titn hoa (bie'n the cua ThuQt gidi di truyln) va Logic mil. Xem d~y du ve phu'dng phap t1,liml,lc 2.1 5 (chu'dng 2). Dng d\mg thlfc te' cua phu'dng phap: Cht1ng thlfe Anh trlnh bay trong chu'dng 4 (ung d\mg 1). 1.5.3 Ke't hQ'p Di truyin- Ndron- Mll giiii bai loan phlln lup mau (XeQ) Xet bdi tadn pMn laf,limdu tdng qudt (m\lc 1.5.1) voi tnf(Jng hl;1pn nguyen dl/ung ba't ky. Tuy nhien, m\lc nay chi quaD Him de'n noh hu6og 1 (m\lc 1.5.1): PMn laf,limdu kltong mdt mdt thOng tin: X day drl d(ie trllng ~ XED. De giai quye't bai toaD, lu~n an d~ xua't b6n mo kink: mf,lng Ndran truyin thling biz lOp; mf,lng Ndran miY truy€n thling b6n tang (xem m\lc 2.2 thuQc chu'dng 2); Thu~t gidi di truyin kit h{1p ede 1/u;mgNClrantruy€n thllng ba lOp (xem m\lc 2.3 thuQc chu'dng 2); Thu~t gidi di truyin lien kit ede mf,lng Ndran miY (xem m\lc 3.1.6 thuQc chu'dng 3). Vi~c so sanh de chQn IQc mo kink ktt h{1plo't nhdl trong b6n mo hlnh tren du'l;1cminh hol.! trong ung d\lng thlfc te': Nh~n df,lngk:YIlf viti lay (ung d\lng 2, chu'dng 4). 1.5.4 M6 hloh ke't hQ'p Vi truyin- Ndron- Mll giiii bai loan philo lo~i mftu co m{(t mat th6ng tin (Xmnrtt~O) La bai loan phIlO lol.!im§u t6ng quat voi nnh hu6ng 2: PhIlo lol.!i m§u bi milt mat thOng tin <=>Xmmtt~O.De giai quye't bai tmin, d~u tieD, phai ph\lC h6i Xmmttv~ XphKh&isao cho XphKh&ieO,r6i moi pMn lo~i Xph¥cj,&i v~ 0;, ie {I, 2,..., n}. De ph\lC h6i m§u X, lu~n an d~ xua't mo kink ke't hl;1pThUf)t gic1idi Iruyin- mf,lng Kahanen- Logic miY- bQ nhcJ kit h{1p (AM). M\lc 3.2.2 thuQc chu'dng 3 trlnh bay chi tie't mo hlnh d~ xua't nay. Sau khi ph\lc h6i, thu du'l;1cXphKM;eO. De phIlO lo~i XphK!1&i v~ Oi, ie {I, 2,..., n}, chQn llfa tit b6n ky thu~ t phIlo lo~i nhu' trong m\lc 3.2.2 thuQc chu'dng 3. Dng d\lng thlfc te' cua bai tmin: PMn laf,limdu van lay mdt md.t thOng tin (ung d\lng 3, chu'dng 4). 1.6 Tom t~t chu'dng 1 TEnhtadn thOng mink vdi n~n tang la cac ky thu~t Hnh tOaDm~m: ThutJ.tgidi di truyin, mf,lng Ndran nhan tf,la va Logic miY dii titng h} cM d€ nghien CUuva Om hieu tit kill Mt d4u chuyen nganh khoa hQc may tinh (tit Dam 1940). Chu'dng nay dii t6ng ke't mQt s6 nghien CUll dii co v€ vi~c ke't hc;lpqua l~i giii'a ba ky thu~t cua tfnh tadn thOng mink: Thu(1t gidi di lmy!n, mf,lng Ndran va Logic miY. D6ng tMi, gidi thi~u mQt s6 mo hini, ket h{1prieng (d~y du xin xem trong cac chu'dng 2,3 va 4 cua lu~n an). 6 Chu'dng 2 MQT so MO HINH KET H<;1PcAp BOI: DI TRUYEN-MeJ, NdRON-MeJ. DI TRUYEN-NdRON 2.1 Thu4t gidi tit" h6a ke't hllp Logic mil: InO hin" FL_EA giai bai tmin chung tht1c miD (phan bi~t TB~ T/GIA.) 2.1.1 Md d~u CMng th(lc mllu (phlln bi~f TH~ T/GL.\): tnt(Jng h<;1pn=2 trong nnh hu6ng mdu khOng mdt mdt thOng tin cua bai loan phan lo{li mdu tOng qudt (mvc 1.5.1). Hai loan du'<;1c phat bi~u nhu'sau: ClIo tru'dc !1TH~T:KhOng gian cac m~u TH~ T; nc.IA: Khong gian cae m~u GlA. Vdi !1=!1TH~TU!1mA;!1TH~T'!1mA'~0 va !1TH~T('\!1mA=0. Hie't: M~u dang ky Ae!1TH~T;M~u dn chU'ngnh~n Xe!1. It Canxacdinh: p:.!1~ {TH~T.GlA } saocho . ~ VX!eO, 3ie{TH'; T,GIA}:p(X) = i(nghia [aX eO,). Th1,J'cch~t. day la bai loan chU'ng th1,J'cm~u X: Tim phu'dng phap phan loai m~u X Ia THAT hay GlA mot cach nhanh nh~t. Qua trlnh gild quye't bai loan du'<;1c cilia thanh hai giai do!;!n:Bang ky m~u d!;!i di~n Ae !1TH~Tva chU'ngnh~n m~u X la TH~ T (X=A) hay GlA (X;tA). . Giai do{ln 1: Dang IcY (1) Nh~n mQt m~u Ae !1TH~T' (2) Hie'n d8i A v~ vec td h (3) Tim cay nhQn dr,zng_nM.p tM t(l duy~t) d1,J'atren A va TA. . Giaido(ln2: CII/ingnlz(m . (4) Nh~n m~u dn chU'ngnh~n X (5) Hie'n d8i bi8u di~n l!;!iX du'di d!;!ngyec td Tx. (6) Sit d\lng cay lIMn d(lng_n de chU'ngnh~n Tx ==TA? Ntu dung ke't lu~n: Xe!1TH~T"grl(lc [{Iike't lu~n: Xe!1mA. Mo hlnh ke't h<;1pLogic mil va ThUlJtgidi titn hod (EA- Bien thl! clia ThuQt gidi di truy~n) du'<;1c sit dvng d8 thlfc hi~n cac giai do!;!n ghH quye't bai loan. 2.1.2 Bie'n d6i m(f biiu di~n l~i miD Dinh nghia 2.1 (ma trQn thO bi!u di€n mllu) ClIo tru'dc mQt anh con G cua mQt m~u. Dung t byte (t nguyen; t~l) bi8u di~n mU'cxam cua G. Gia Ui E(G)e{O, ...,(2/x8-1)) la gici tq mU'cxam cua G. 7 M6i m§u du<;lcphiin thanh LxK anh con G;J(i=D"..,L-l;j=O,...,K-l; gici trj L va K tuy thuQc vao ph~n m~m quet anh), thu du<;lCma tr4n thO bitu diln mduALxK sao cho: A;J=E(G;J) (i=D..L-l;j=D..K-l). Djnh nghia 2.2 (bien ddi mil) Cho trudc gici trj d~u vao ae{D,...,(2,x8_1»). Biln ddi mu CURa Ia phep bie'n d8i su dl}ng ky thu~t "mil" (chi tie't v~ ky thu~t m(j xem trong phI} ll}c G) d~ pban ldp l~i ghi trj CUR a v~ mi~n BD~r~""~O~C«2x1~ (I"'" 1.-+1))., I""" (.-+1)"., X.,(.-+I))>o(~')X(""" I""'" Hlnh 2.4 Bi8u di6n "mo" bien d5i giil tri a .. (.-+1)>« "'.1 v~ mi~n (0, "" d. 3vte {D,...,e) ta c6 BDM(a)=vt: JL",(a) = Max 1.0 fIL,(a)}. . Djnh nghia 2.3 (ma tr4n rut g(Jn) Cho trudc ma tr~n thO bi~u di€n m§u LALXKJ,Cho trudc kfch thudc hang M va kich thudc cQt N. Ma tr4n rut g(Jn bi~u di€n m~u LA'MXNJ Ia mQt RG trunK binh (Rut gQn trung blnh) CURma tr~n LALxKJsao cho: A;.J(,.O...M-I.J.O...N-I) =RGtrungbinh(A".){t = O..L-I,k = 0.. K-I { A;,Je{O,...,(2'" -I)} (Xem thu~t giai rut gQn trung blnh (Jdudi). Djnh nghia 2.4 (ma trq.n rut g(Jn nmiln) Cho trudc' ma tr~n nit gQn LA'MxNJ.Ma trq.n rut g(Jn "miln LBMxNJ la mQt "bien adi mu"(djnh nghia 2.2) CURph~n tu A'iJCi=O"M-/;i=O"N-/) sao cho: , B',J(':O..M-I,J=O...N-I) = BDM',J (A',J )(i =D..M-I,} = D..N-I ) ! { B',JE{O,...,e} Djnh nghia 2.5 (vee td a{le tr/ing) Cho trudc ma tr~n rut gQn "ma" LBMxNJ,We id d{ie trunK F CUR m§u la: F=(fO,fI,fZ,...,fMxN-l); trong d6, /;=B;div N,; modN;(;=O.,}.{xN-I)' Rutgon trung blnh(RGtrum!binh) Tinh L=L/2 LALxK K=KI2 --. trung blnhA'ij i=1..L T. T<' J l 8 L=M vAK=N? thOil ~ LA'A(XNJ Y"' Miu dang ky (A) va mill c!n chUng nh~n (X) d~u du'l;Icbi€u di~n l~i du'oi dillJ;lghai vec td d~c tru'ng TAMxNva TXMxNthong qua cac bie'n d6i tit cac djnh nghia dii trlnh bay CIteen. Viln d~ con I~i la: xet xem XEnTH~T7Hay n6i dch khac phiH so khdp xem:TXMxN=TAMxN7 Luc nay, cdy nMn d{mg_n du'l;Icxay d1!ng vdi tieu chi xac djnh cay 1ft"PIlat hi~n GIA. nhanh nhilt". Ghi djnh tieu chi du'<;1c bie't tru'oc va du'l;Ic56 boa thanh ham l/./{1ngKia, su d\lng Thu(it gidi tie'n hod M gi.H quye't bai loan nay (Th1!c hi~n hai bu'oc (3) va (6». HiBu Qua cua bie'n d6i mil trOnl!viac bilu diln lai deli t/./um! Dinh nghia 2.6 (sai s5 bie'n ddi ()) Sai s5 bie'n d6i () li't sai 56 thu du'<;1c khi anh x~ ma tr~n tho bi€u di~n mill LALxKJ; A;,jE(O,...,(2'X8-1)},t~l(t nguyen), i=l..L; j=l..K v~ ma tr~n rut gQn "mo" LBMxNJ;Bm,nE{O,...,c}, Oi~u ki~n ket thuc l~p 1(A(t»*True) - LU'=0) va mi?tgia lei thich h<;lpcho {3. . BlIae 2: f)~t: M=O va k=l. BlIae 3: f)~t M=M+l. T<,tora Ndron MIN-FN thU'M trongthg va Naron COMP-FN thU'M trong t~ng thU't\1'.Xac djnh: e pqM [2J =S pqM N, N, = max 1=1 (max /=1 tbU'ba ,. (W[p-l,q-j]Xljk» (2.13 ) p=I,N1;q=I,N2 Trong d6, epqMla diSm teQng Him cua ham ra M eho Naron MAXFN thU'(p,q) trong t~ng iliU'hai. Xk=(xijd la m~u hua'n luy~n thU'k. BlIcJc4: f)~t: k=k+l. Ne'u k > K th'i thu t\lc hQc 5e ke't thuc, Ngu'qc l<,li - Nh~p mftu hua'n luy~n thU'k vao m<,tngva tinh loan d~u ra cua m<,tng Ndron mo hi~n t<,ti(vdi M Ndron mo trong t~ng thU'ba va thU't\1'). - X:icdinh: . M (j =1- max(iJI) I" Ik (2.14) trong d6 y~;1 Ia d~u ra cua MIN-FN thU'j trong t~ng thU'ba U'ng vdi mftu hua'n Iuy~n thU'k (Xk). - Ne'u 8 <=Tfth'i quay I<,tiBlIae 4. - Ne'u 8>Tfth'i quay I<,tiBlIac 3. c. Hi~u qua eila Thu(it gidi hQc H! t6 chile Dinh Iy 2.2 (Thu(lt gidi hQc elf t6 chuG tlm cdu truc nlgng) va T mftu dich '(56 Naron rho tr\1'ocmQt mh hua'n luy~n XNxN. I 2 l r l d~u fa (t~ng thU'hi» vdi ma tr~n tr<,tngthai tu'dng U'ng (JNI,N2 J. t = I,T. Cho d9 rQng ham tbiinh VieD a ~ 0, M 56 mo boa (3va ng\1'ong16i Tf' Luc nay, 56 lu'<;IngNaron trong t~ng thU' ba va thg iliU' tu' cua m<,tngmo (M) du'<;Icxac dinh I<,tinhu'5au: (2.15) M = T+ f;(5,Tf) . trongd6. f.(8,Tf)= 0 neu8-Tf~O [ I ntu8-Tf>O 14 va T [3] 8 = 1- ~ax (Y ' k) J=I j , y~l : Ia d~u ra t~ng tha ba cua m~ng roo: daub gia d(}thu(}ccua miu hua'nluy~n k vao miu dich tha j. H~ qua 2.2 Cho K miu hua'n luy~n va T miu dich ban d~u. sfi Naron tfii da dlt<1cb6 sung trong t~ng tha ba va t~ng tha tit cua m~ng mo 1£1K Naron. M=T+K (2.16) Luc nay, H~ qmi 2.3Cho K miu hua'n luy~n va T m1iu dich ban d~u. Trong trltong hQp tfii thicgu, se khong c6 ba't ca m(}t Naron mo nao dltQc b6 sung cho t~ng tha ba, ding nhlt t~ng tha tit cua m~ng. Luc nay, M=T (2.17) 2.2.3 So sanh m{lng Ndron mu yoi m{lng Ndron trllyill tTrang Bang 2.1 So sanh thoi glaD hua'n luy~n giil'a thu~t giai hQc tlf t6 chUc FN va thu4t il1i Ian tru ~n n l.iqc (NN) Phltdng phap sfi chii' hua'n T~p miu ThiJi glaD lu ~n man dich hua'n lu ~n FNN 5460 26 273 ( hut) NN 5460 26 9555 ( hUt Bang 2.2 So sanh ty I~ nMn d~ng (%) giil'a FNN va NN (kicgmtea 2340 chii' sfi chii' Ty I nhn Ty 1 16i Phltdng sfi chii' dung sai phap dang FNN 2122 218 90.68% 9.32% NN 2068 272 11.62% 88.38% FNN ili xu{{t illlf/c so sdnh va; NN trang biti todn Nhq.n dr;mg chi] viet tay.Vi mvc 2.2 t~p trung giai quye't bai loan phan lop m1iu x (tru'ong hQp miu x 1£1m(}t vec td), Den cac chii' vie't lay dltQc thti' nghi~m voi m(}t lieu chi daub gia duy nha'1: vec ta il{ic trlfllg foa" qtC 8x8. Bang 2.1 va bang 2.2 phan anh ke't qua so sanh giil'a mr;lIIg Naron miJbOntting (FNN) va nu;l1Ig Narollba tting (NN) khi dung voi cac chil' thti' nghi~m (bicgu di~n bdi vec ta il{ic trlmg toan C!lC8x8) thlfc hi~n teen may Pentiumll-PC 266 MHz. Nh~n tha'y, FNN hi~u qua hdn NN ca v~ thiJi gian hua'n luy~n cling nhlt ty I~ nMn d~ng: FNN Ia kha thi va c6 thcgap dvng n6 cho bat loan phan lOp miu. 15 2.3 Thu4t gidi di truyill li@n k@'toh!~u m(lllg N(frOIfa:Ull1gdQog eho bai tmlo pMn lOp m4u (m4u g~m M vee td) 2.3.1 M6 hlnh bai tmlo Nhu mQc 2.2.1 dii trlnh b~y. bai tmio philo Idp m~u X khong ma't mat thOng tin duQc chia thanh hai ba.i loan con: Bai toall phan lop mdu X g6m 1 Vt1ctd (MQt tieu chEduy nhdt danh Kia X) va Bai roan phan lop mdu X g6m M vec td (X dlt{1cdanh Kia biJi M tieu ch£). MQc nay se t~p trung tlm hieu va giai quye't Bai roan phiin LOpmdu X g6m M vec (d. Bai loan nay duQCdjnh righlanhusau: Cho!1 la mQt phan ho~ch cac {!1;, i Ell, 2, m~u X = {xl = (x(, x;,...,xI}:xJ .. , nl. !1; *O) va en, J = {I,...,M}} Xacdjnhie{l,n):Xe!1;. 2.3.2 Cae phu'dng philp li@ok@'tnhi~u m(l1JgN(froll Co hai phudng phap t5ng quat cho vi~c ke't hQp cua cac mr;mg Ndron: cach thU nha't d(ta VaGkj thu~t tuyln ch{Jn (p"ltl1ng phdp dem Borda), con cach thu hai d(ta VaGkj thuQt lien h{1p.Lu~n an tlm hieu phlt<1l1gphdp d(ta vao kj thu~( lien h{1p, vdi phlt<1l1gphdp nay, vi~c phan lo~i mQt m~u nh~p X dtla vao t~p cac gia trj thl,l'c:P(!1; I X), I S;i S;11,cho bie't xac sua't de X thuQc mQt trong n Idp ban d~u. Sd d6 lien ke't m~ng bao g6m M nl{lng Ndron, I phep tinh tren m6i m~ng se t~o ra mQt t~p cac gia trj xac sua't dung nhu sau : PI (!1; I X), IS; IS; M, IS; is; n. MQt m~ng ddn gian ke't hQp cac ke't qua teen m~u X tu ta't ca M m~ng ca the bhg vi~c su dQng gia trj trung blob dum day nhumQt Hnh loan mdi cua lien ke't m~ng: Nhu v~y, co the hieu trj s6 ke't hQp ohu mQt phan ldp trung blob P(o,lX)=lfp.,(o,lX), MJ-I l:~i:S;11 (220 cua phudng phap Bayes. Tinh loan nay se duQc cai tie'n ne'u daub gia kha Dang djnh hudng cua cac d~u ra dl,l'ateen cd si'1cac tri thuc tho duQc v~ muc dQ tin,5h cua tung .m~ng : P(!1, IX) = Lr;PJ(!1, IX), 1:S;i:S;n . 0 day L r;= 1. M (2.22) J-t (2.23 ) 1-1 16 2.3.3 Thu~t gbli di truy~n xac djnh h~ s6 tin c~y cho cae dilu ra CURtung m{lllg Ndron Trong qua trlnh tinh loan, ThUQtgidi di truyJn anh x~ khBng giRD giiii phap bai loan len t~p hl;1pcae chu6i, m6i chu6i biEu di€n mQt giiii phap ti~m Dang. Trong bai loan nay, mQt chu6i phiii ma bOa nxM thRill 56 gia trj thlfc (r/) trong bi~u thU'c (2.22), bhg each nay mdi thu du'l;1cnhung h~ 58 ke't hl;1pt8i u'u cho vi~c lien ke't cae m{lng Nuron ca th~. M6i h~ 58 du'l;1cma h6a thanh 2Lbit va du'l;1cdi~u chlnh trong khming tir [0,1]. Sau d6, ThuQt gidi di truyin se thao tac tren cae chulli ma h6a M tlm kie'm nhung giiii phap t8t hdn U'ngvdi mlli Mn t~o sinh. Phu'dng phap d~ nghj 5e Ia'y t~p hl;1pcae h~ 58 (r/) CURcae m{lng Nuron cd tM dB hlnh thanh nhfi'ng chulli ma tu'dng U'ng. 2.3.4 Chung minh Hnh hQi tQ CURThllQ.tgiai di trllyin trong qua trlnh xac djnh M s6 tin c4Y Bjnh Iy (djnh Iy v~ Hnh hQi tQ CUREA trong [KTN2000]) Cho EA=(I, cp..Q, 1/1.s. 1; J1,A) Giii thuye't: (i) KhOng giRDWi giiii /la t~p hUu h~n. (ii) T6n t~i 1i'1igiiii a* e I Khi d6, vdi mQi quaIl tM khiJi t{lOprO), EA se thod cdc diJu ki~1Isou: (I) Dirng 5au mQt so'bll(Jc l{ip hau h{lll: 'fEA(0') = min{<1>(a)lae Uvr(P(O))}. Bjnh nghia 2,11 (Sai 56 E) ,.. SRi s6 E CURs6 thlfc la sRi 56 thu du'l;1ckhi anh x~ gia trj CUR58 thlfc d6 v~ mi~n [UmimUmax] ba'tky; Umin-oo. Umax< + 00. M~nh d~ 2,1 Cho tru'dc vec td nhi philo g6m L bit d~ anh x~ mQt gia trj thlfc x v~ rni~n [UminoUmaJ.Luc nay, SRis6 E CURx 5e du'l;1cde djnh theo cBng thU'c5au: (2.26) M~nh d~ 2.2 £ -(U--U_){y 2 Cho tntdc sRi 58 E CURmQt gia trj thlfc x. S8 bit nhj philo L dn . thie't dB anh x~ x v~ mi~n [Umim Umax] du'l;1cde L=Round _UP(IOg,((Umn -Um:f6xd) 17 djnh theo cBng iliac: (2.27) M~nh d~ 2.3 Cho vec td nhi phan string2 dQ diU L bit bieu dien ghi tri th1,icx e [Urni",Urnax]'Luc nay, x se dU'(,1c dc dinh theo cong thl1'c: (2.28) x = U... + decimal (string 2)X g trang do, g = (U.Q - U -)6 - 1) H~ qua 2.4 T5n t~i chu6i nhi phan string2bieu cliett h~ s6 tin c~y r/e[O,I] L thoa sai s6 eE 91 cho trU'dc. . HI; qua 2.5 (di!m hQi tit ella h~ sr{ tin el,iy) Sau mQt s6 bU'dcl~p hil'u h~n, Thul,itgidi di truy€n se Hm dU'(,1c bQ h~ s6 tin e~y t6i u'u, r/ (J= 1,M , i=I, n), ung vdi sd d5 lien ke't M n/.{lngNaron thoa sai s6 e E 91 cho trU'dc. 2.3.5 Phan tleh, danh gia mo hinh d~ xua't A. Bai loan flu] nghi~m De chI ra tinh kha thi cua mo hlnh ke't h(,1p:Thul,it gidi di truyln lien ke't nhi~u mgng Naron trong phan lap m~u, chung ta quay trC1l~i bai loan vi dv C1mvc 2.2.3: liMn dgllg ella viti lay. s6 chu thit nghi~m la 26 chu cai vje't lay thU'ang vdi: lOx30x26=7800 chu, trong do, 7x30x26=5460 chil hua'n luy~n va 3x30x26=2340 chil kiem tea. Cae chil vie't lay dU'(,1c danh gia Mi 3 lieu chi khac nhau (3 d~ng d~c trU'ng ri~ng bi~t): vee ta 4 dge trllng dja phllcmg 4x4; vee ta dge tr/.lflgloan cite 8x8 va vee ta d{ie trllng bi!u diln bien ella ehil (mvc 2.2.3). B. NluJn dgng ehil viti lay Mgng Naron truyln theine ba tdng(NNi} vdi Thu(1t Kid; Ian truy€n ngll{1ese dU'(,1cdung de hQCva nh~n d~ng cac d~ng vec td d~c trU'ng nay. Cv the, NNI dung rieng cho vee ta 4 d(ie trllng dja phllcmg 4x4; NN2 dung cho vec ta dgc trllng loan cite 8x8; NN3 dung cho vee ta d{ic trllng bi!u diln bien clla chil. Tung m~ng se dU'(,1c hua'n luy~n vai 5460 m~u chil va dU'(,1ckiem tra tren 2340 m~u chu va ding th1,ichi~n tren may Pentiumll-PC 266 MHz. Vdi phU'dng phap nay, m6i m~ng se hlnh thanh quye't dinh thong qua tieu chuifn rieng cua no. Sau khi hua'n luy~n ca ba mgng Naron vdi cac d~c trU'ng rieng bi~t. GA du(,1cdung .de Hm ra nhilng tham s6 t6i u'u cho vi~c ke't h(,1p cac m~ng. Quh the ban dh vdi 100 ca the, m6i ca the chl1'a840 bit (3x35x8). Nhilng tham s6 tie'n hoa dU'(,1cdung trong thit nghi~m nay 18
- Xem thêm -