Đăng ký Đăng nhập
Trang chủ Về ước lượng metric kobayashi...

Tài liệu Về ước lượng metric kobayashi

.PDF
37
103
92

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN VĂN QUANG VỀ ƯỚC LƯỢNG METRIC KOBAYASHI LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - Năm 2017 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN VĂN QUANG VỀ ƯỚC LƯỢNG METRIC KOBAYASHI Chuyên ngành: Toán giải tích Mã số: 60460102 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. Ninh Văn Thu Hà Nội - Năm 2017 1 Mục lục Lời cảm ơn 2 Danh mục ký hiệu 3 Lời nói đầu 4 Chương 1. Kiến thức chuẩn bị 6 1.1 Hàm chỉnh hình . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Hàm điều hòa, đa điều hòa dưới . . . . . . . . . . . . . . . . . . 8 1.3 Miền giả lồi, giả lồi chặt . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Hàm Green, Green đa cực . . . . . . . . . . . . . . . . . . . . . 12 1.5 Kiểu hữu hạn, vô hạn . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Miền C-lồi, C-lồi hóa . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 Metric Kobayashi, khoảng cách Kobayashi . . . . . . . . . . . . 14 Chương 2. So sánh hàm Green thực với hàm Green phức và ước lượng chặt của khoảng cách Kobayashi 19 2.1 Ký hiệu và các đại lượng bổ trợ . . . . . . . . . . . . . . . . . . 19 2.2 Tỉ số của hàm Green . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Cận trên của hàm Lempert . . . . . . . . . . . . . . . . . . . . 21 2.4 Ước lượng dưới của khoảng cách Kobayashi . . . . . . . . . . . . 24 2.5 Chứng minh của Định lý 2.2.1, 2.2.2 và 2.2.3 . . . . . . . . . . . 27 Kết luận 34 Tài liệu tham khảo 35 2 Lời cảm ơn Luận văn này được hoàn thành tại trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội dưới sự hướng dẫn của TS. Ninh Văn Thu. Nhân dịp này, tôi cũng xin bày tỏ lòng biết ơn sâu sắc và chân thành nhất tới thầy. Thầy đã dành nhiều thời gian, công sức để hướng dẫn, kiểm tra và giúp đỡ tôi hoàn thành luận văn này. Tôi cũng xin gửi lời cảm ơn đến lãnh đạo và các thầy cô trong khoa Toán Cơ - Tin học, trường Đại học Khoa học Tự nhiên về những kiến thức, những điều tốt đẹp mà tôi đã nhận được trong suốt quá trình học tập tại khoa. Tôi cũng xin gửi lời cảm ơn đến Phòng Sau Đại học của nhà trường đã tạo điều kiện cho tôi hoàn thành các thủ tục trong học tập và bảo vệ luận văn này. Cuối cùng, tôi muốn bày tỏ lòng biết ơn đến gia đình, người thân và bạn bè. Những người luôn bên cạnh động viên ủng hộ tôi cả về vật chất và tinh thần trong cuộc sống và học tập. Mặc dù bản thân tôi đã có nhiều cố gắng nhưng bản luận văn này vẫn khó tránh khỏi những thiếu sót. Vì vậy, tôi rất mong nhận được sự đóng góp ý kiến của quý thầy, cô và các bạn. Tôi xin chân thành cảm ơn. Hà nội, tháng 11 năm 2017 Tác giả luận văn Nguyên Văn Quang 3 Danh mục ký hiệu GD (z, w) Hàm Green tại cực w ∈ D gD (z, w) Hàm Green đa cực tại cực w ∈ D SH− (D) Tập các hàm điều hòa dưới trên D P SH− (D) Tập các hàm đa điều hòa dưới trên D δD (z) Khoảng cách từ z tới biên D lD (z, w) Hàm Lempert κD (z; X) Metric Kobayashi-Royden kD (z, w) Khoảng cách Kobayashi O(E, G) Tập các ánh xạ song chỉnh hình từ E vào G 4 Lời nói đầu Trong toán học và đặc biệt trong hình học phức, metric Kobayashi là một giả metric liên quan tới đa tạp phức. Nó được giới thiệu bởi Shoshichi Kobayashi vào năm 1967. Đa tạp hyperbolíc là một lớp quan trọng của đa tạp phức, xác định bởi tính chất rằng giả metric Kobayashi là một metric. Các khái niệm ban đầu của metric Kobayashi nằm trong bổ đề Schwarz trong giải tích phức. Cụ thể, nếu f là một hàm chỉnh hình trên đĩa đơn vị mở D trong tập số phức C sao cho f (0) = 0 và |f (z)| < 1 với mọi z thuộc D thì đạo hàm f 0 (0) có giá trị tuyệt đối lớn nhất bằng 1. Tổng quát hơn, với ánh xạ chỉnh hình f bất kỳ từ D vào chính nó (không nhất thiết gửi 0 vào 0), tồn tại một cận trên phức tạp hơn của đạo hàm của f tại điểm bất kỳ trong D. Tuy nhiên, cận này có công thức đơn giản trong metric Poincare, một metric Riemann đầy đủ trên D với độ cong bằng −1. Điều này là khởi đầu cho sự liên hệ giữa giải tích phức và hình học với độ cong âm. Với bất kỳ không gian phức X, giả metric Kobayashi kX được định nghĩa là giả metric lớn nhất trên X sao cho kX (f (x), f (y)) ≤ ρ(x, y), với mọi ánh xạ chỉnh hình f từ đĩa đơn vị D lên X, trong đó ρ(x, y) ký hiệu khoảng cách trong metric Poincare trên D. Theo một nghĩa nào đó, công thức này tổng quát hóa bổ đề Schwarz cho tất các các không gian phức. Một không gian phức X được gọi là hyperbolíc nếu giả metric Kobayashi kX là một metric, có nghĩa là kX (x, y) > 0 với mọi x 6= y trong X. Lý thuyết về khoảng cách Kobayashi càng ngày càng trở nên thú vị khi có nhiều ví dụ về đa tạp hyperbolíc được tìm ra cùng với các tính chất giải tích, tính chất tôpô, ước lượng đánh giá của giả khoảng cách Kobayashi và ánh xạ chỉnh hình. Các kết quả trong những trường hợp ngoại lệ như trên các đa tạp 5 Banach giải tích, những khối cầu, miền Reinhardt, miền đối xứng, những ánh xạ song chỉnh hình giữa một vài dạng của những miền không giả lồi với biên giải tích thực. Trong luận văn này chúng tôi trình bày khái niệm giả khoảng cách Kobayashi và trình bày một số kết quả về ước lượng chặt của khoảng cách Kobayashi dựa trên bài báo “Comparison of the real and the complex Green functions, and sharp estimates of the Kobayashi distance” của N. Nikolov và P.J. Thomas đăng trên arXiv: 1608.06615v1 năm 2016. Cụ thể, ngoài phần Lời nói đầu, Kết luận và Tài liệu tham khảo, luận văn gồm hai chương. Chương 1: “Kiến thức chuẩn bị”. Trong chương này ta trình bày một số kiến thức về hàm chỉnh hình, hàm điều hòa, hàm đa điều hòa dưới, hàm Green, hàm Green đa cực, miền C-lồi, C-lồi hóa được, giả khoảng cách Kobayashi, metric Kobayashi. Chương 2: “So sánh hàm Green thực với hàm Green phức và ước lượng chặt của khoảng cách Kobayashi”. Trong chương này chúng tôi trình bày về tỉ số so sánh giữa hàm Green thực với hàm Green phức, sau đó chúng tôi trình bày ước lượng cận trên của hàm Lempert và ước lượng dưới của khoảng cách Kobayashi Vì trình độ còn hạn chế nên luận văn không thể tránh khỏi những sai sót, tôi hy vọng sẽ nhận được nhiều ý kiến đóng góp từ các thầy cô giáo và bạn đọc để luận văn được hoàn thiện hơn. 6 Chương 1 Kiến thức chuẩn bị Chương 1 trình bày một kiến thức chuẩn bị bao gồm các định nghĩa và một số ví dụ về hàm chỉnh hình, hàm song chỉnh hình, hàm điều hòa, hàm đa điều hòa dưới, hàm Green, hàm Green đa cực, miền C-lồi, C-lồi hóa được, giả khoảng cách Kobayashi, metric Kobayashi. 1.1 Hàm chỉnh hình Giả sử D là một miền của mặt phẳng phức C và f là hàm biến phức z = x + iy xác định trong D. Định nghĩa 1.1.1 ([1]). Hàm f được gọi là C-khả vi tại điểm z0 ∈ D nếu tồn tại giới hạn lim h→0 h6=0 f (z0 + h) − f (z0 ) . h Trong trường hợp này, ta nói rằng f có đạo hàm theo biến phức tại điểm z0 và df ký hiệu là f 0 (z0 ) hay (z0 ): dz f 0 (z0 ) = df f (z0 + h) − f (z0 ) (z0 ) = lim . dz h h→0 Xét vi phân df = ∂f ∂f dx + dy. ∂x ∂y Đối với các hàm z = x + iy và z = x − iy, ta có dz = dx + idy, dz = dx − idy (1.1) 7 và do đó, chúng ta thu được 1 dx = (dz + dz), 2 dy = 1 (dz − dz). 2i (1.2) Thế (1.2) vào (1.1), ta thu được hệ thức 1  ∂f ∂f  1  ∂f ∂f  df = −i dz + +i dz. 2 ∂x ∂y 2 ∂x ∂y Bằng cách đặt ∂f 1  ∂f ∂f  = −i , ∂z 2 ∂x ∂y ∂f 1  ∂f ∂f  = +i ∂z 2 ∂x ∂y (1.3) ta thu được ∂f ∂f ∂f = + , ∂x ∂z ∂z  ∂f ∂f  ∂f =i − ∂y ∂z ∂z (1.4) và ta có thể viết biểu thức vi phân (1.1) dưới dạng df = ∂f ∂f dz + dz. ∂z ∂z (1.5) Định lý 1.1.2 ([1]). Hàm f là C-khả vi tại một điểm nào đó khi và chỉ khi nó là R2 -khả vi tại điểm đó và ∂f = 0. ∂z Định nghĩa 1.1.3 ([1]). Giả sử D là một miền của mặt phẳng phức C. (i) Hàm f : D → C được gọi là hàm chỉnh hình tại điểm z0 nếu nó là C-khả vi tại một lân cận nào đó của điểm z0 . (ii) Hàm f : D → C được gọi là hàm chỉnh hình trong miền D nếu nó chỉnh hình tại mọi điểm của miền ấy. Tập hợp mọi hàm chỉnh hình trong miền D được ký hiệu là O(D). (iii) Hàm f (z) chỉnh hình tại điểm vô cùng nếu hàm ϕ(z) = f 1 z chỉnh hình tại điểm z = 0. Định nghĩa 1.1.4. Giả sử D, E là các miền của mặt phẳng phức. Hàm f : E → D được gọi là song chỉnh hình nếu nó là một song ánh chỉnh hình từ E vào D. Tập hợp các hàm song chỉnh hình từ E vào D được ký hiệu là O(E, D). Ví dụ 1.1.5. Một số hàm chỉnh hình sơ cấp là 8 • hàm đa thức P (z) = a0 z n + a1 z n−1 + · · · + an , • hàm w = z n và z = √ n w, n ∈ N, • hàm ez , • hàm lôgarit, • hàm lũy thừa z α , α ∈ R, • hàm lượng giác sin z, cos z, tan z, cot z. Định lý 1.1.6 ([1]). Nếu f và g chỉnh hình trong D thì: (i) f + g chỉnh hình trong D và (f + g)0 = f 0 + g 0 . (ii) f g chỉnh hình trong D và (f g)0 = f 0 g + f g 0 . (iii) Nếu g(z0 ) 6= 0 thì f /g chỉnh hình tại z0 và  f 0 g (z0 ) = f 0 (z0 )g(z0 ) − f (z0 )g 0 (z0 ) . g 2 (z0 ) Định lý 1.1.7 ([1]). Nếu f (w) là hàm chỉnh hình trong miền E ⊂ C và nếu g : D → E là hàm chỉnh hình trong miền D ⊂ C thì hàm hợp f [g(z)] chỉnh hình trong D. Chứng minh. Thật vậy, dễ thấy rằng ∂f ∂g ∂f ∂g ∂[f (g)] = · + · . ∂z ∂w ∂z ∂w ∂z Theo giả thiết D. 1.2 ∂f ∂g = 0, = 0, ta suy ra f [g(z)] là hàm chỉnh hình trong ∂w ∂z Hàm điều hòa, đa điều hòa dưới Lớp hàm thực liên quan một cách chặt chẽ với các hàm chỉnh hình là lớp các hàm điều hòa. 9 Định nghĩa 1.2.1 ([1]). Hàm thực u(x, y) đơn trị trong miền D ⊂ R2 được gọi là hàm điều hòa trong miền D nếu trong miền D nó có các đạo hàm riêng cấp hai liên tục và thỏa mãn phương trình ∂ 2u ∂ 2u ∆u := 2 + 2 = 0. ∂x ∂y (1.6) Lớp các hàm điều hòa trên D được ký hiệu là H(D). Ví dụ 1.2.2. Hàm f (x, y) = x2 − y 2 là hàm điều hòa trong R2 vì nó có các đạo hàm riêng liên tục: ∂f ∂ 2f = 2x, 2 = 2, ∂x ∂x và ∆f = ∂f ∂ 2f = −2y, 2 = −2 ∂y ∂y ∂ 2f ∂ 2f + = 2 − 2 = 0. ∂x2 ∂y 2 Ví dụ 1.2.3. Hàm f (x, y) = ex sin y là hàm điều hòa trong R2 vì nó có các đạo hàm riêng liên tục thỏa mãn ∂ 2f ∂ 2f ∂f ∂f x x = ex sin y, = e cos y, = e sin y, = −ex sin y. ∂x ∂x2 ∂y ∂y 2 Từ đó, chúng ta thu được ∂ 2f ∂ 2f + 2 = ex sin y − ex sin y = 0. 2 ∂x ∂y Phương trình vi phân đạo hàm riêng (1.6) được gọi là phương trình Laplace và toán tử vi phân ∂2 ∂2 ∆= 2+ 2 ∂x ∂y được gọi là toán tử Laplace. Bằng cách áp dụng phép vi phân hình thức (1.4) dễ dàng thấy rằng ∆=4 ∂2 , ∂z∂z z = x + iy, z = x − iy. Do đó, phương trình (1.6) có thể được viết dưới dạng ∂2 = 0. ∂z∂z (1.7) 10 Định lý 1.2.4 ([1]). Mọi hàm chỉnh hình đều là hàm điều hòa. Chứng minh. Thật vậy, mọi hàm chỉnh hình f đều khả vi vô hạn lần và theo Định lý 1.1.2, ta có ∂f = 0. ∂z ∂ 2f = 0. Do đó, ∆f = ∂z∂z Định nghĩa 1.2.5 ([1]). Nếu các hàm điều hòa u(x, y) và v(x, y) thỏa mãn các điều kiện Cauchy-Riemann, tức là ∂u ∂v = , ∂x ∂y ∂u ∂v =− , ∂y ∂x thì hàm v(x, y) được gọi là hàm điều hòa liên hợp với u(x, y). Định lý 1.2.6 ([1]). Để một hàm là chỉnh hình trong miền D điều kiện cần và đủ là phần ảo của nó là hàm điều hòa liên hợp với phần thực của nó trong miền D. Định nghĩa 1.2.7. Giả sử X là không gian tôpô. Hàm u : X → [−∞, +∞) được gọi là nửa liên tục trên trên X nếu với mỗi a ∈ R, tập Xa = {x ∈ X : u(x) < a} là mở trong X. Hàm v : X → [−∞, +∞) được gọi là nửa liên tục dưới trên X nếu −v là nửa liên tục trên trên X. Định nghĩa 1.2.8 ([3]). Cho D ⊂ C là tập mở. Hàm u : D → [−∞, +∞) được gọi là điều hòa dưới trong D nếu: • u là nửa liên tục trên trong D, • với mỗi miền S ⊂⊂ D và với mọi hàm h ∈ C(S) ∩ H(S), nếu u ≤ h trên ∂S thì u ≤ h trong S. Tập các hàm điều hòa dưới trong D được ký hiệu là SH(D). Định nghĩa 1.2.9 ([3]). Cho D là tập con mở trong Cn . Hàm u ∈ C 2 (D, R) được gọi là đa điều hòa trên D nếu ∂ 2u (z) = 0, ∂zj ∂z k ∀z ∈ D, ∀j, k = 1, . . . , n. Tập các hàm đa điều hòa trong D được ký hiệu là P H(D). (1.8) 11 Nhận xét 1.2.10. (a) Nếu n = 1, thì P H(D) = H(D). (b) P H(D) là một không gian vectơ. (c) Điều kiện (1.8) tương đương với hệ phương trình sau ∂ 2u ∂ 2u ∂ 2u ∂ 2u (z) = (z), (z) + (z) = 0, z ∈ D, j, k = 1, . . . , n. ∂xj ∂yk ∂xk ∂yj ∂xj ∂xk ∂yj ∂yk Định nghĩa 1.2.11 ([3]). Cho D ⊂ Cn là tập mở. Hàm u : D → [−∞, +∞) được gọi là đa điều hòa dưới trên D nếu: • u là nửa liên tục trên trên D, • với mọi cặp điểm a ∈ D, b ∈ Cn , hàm λ 7→ u(a + λb) là hàm điều hòa dưới hoặc bằng −∞ trên mọi thành phần liên thông của tập {λ ∈ C : a + λb ∈ D}. Tập các hàm đa điều hòa dưới trong D được ký hiệu là P SH(D). Ví dụ 1.2.12. Hàm u = x2 + y 2 là hàm đa điều hòa dưới. Mệnh đề 1.2.13 ([3]). Tính đa điều hòa dưới có tính chất địa phương, tức là một hàm u : D → [−∞, +∞) là đa điều hòa dưới trong D khi và chỉ khi mọi điểm a ∈ D nhận một lân cận mở Ua ⊂ D sao cho u|Ua ∈ P SH(Ua ). Mệnh đề 1.2.14 ([3]). Cho u : D → [−∞, +∞) là nửa liên tục trên. Khi đó, u ∈ P SH(D) khi và chỉ khi với bất kỳ a ∈ D, X ∈ Cn , và r > 0 sao cho a + rD · X ⊂ D, ta có 1 u(a) ≤ 2π 1.3 Z 2π u(a + reiθ X)dθ. 0 Miền giả lồi, giả lồi chặt Định nghĩa 1.3.1. Miền G ⊂ Cn với biên trên lớp C 2 được gọi là giả lồi tại p ∈ ∂G nếu tồn tại hàm xác định biên ρ, tức là G ∩ U = {ρ < 0} với U là một lân cận của p, sao cho Lρ (p)(w) = n X ∂ 2 ρ(p) i,j=1 ∂zi ∂z j wi w j ≥ 0 12 với mọi w ∈ Cn thỏa mãn n X ∂ρ(p) j=1 ∂zj wj = 0. Ví dụ 1.3.2. Cho miền D = {(z1 , z2 ) ∈ C2 : |z1 |2 + |z2 |2m < 1}, trong đó m ∈ N∗ . Dễ thấy miền D là một miền giả lồi. Thật vậy, gọi ρ = |z1 |2 + |z2 |2m − 1 = z1 z 1 + z2m z m 2 − 1 là hàm xác định biên của D. Bằng tính toán đơn giản ta có ∂ρ ∂ 2ρ = z1, = 1, ∂z1 ∂z1 ∂z 1 ∂ρ ∂ 2ρ = m(z2m−1 z m = m2 |z2 |2(m−1) . ), 2 ∂z2 ∂z2 ∂z 2 Khi đó, ma trận của dạng Levi tại (z1 , z2 ) ∈ ∂D có dạng   1 0 . 2 0 m |z2 |2(m−1) (1.9) Do ma trận (1.9) xác định không âm nên D là miền giả lồi. Định nghĩa 1.3.3. Miền G ⊂ Cn được gọi là giả lồi chặt tại p ∈ ∂G nếu G giả lồi tại p và nếu tồn tại hàm xác định biên ρ, tức là G ∩ U = {ρ < 0} với U là một lân cận của p, sao cho Lρ (p)(w) = n X ∂ 2 ρ(p) i,j=1 ∂zi ∂z j wi wj > 0 với mọi w ∈ Cn \{0} thỏa mãn n X ∂ρ(p) j=1 ∂zj wj = 0. Ví dụ 1.3.4. Cho Bn = {z ∈ Cn : |z1 |2 + |z2 |2 + · · · + |zn |2 < 1}. Khi đó, Bn là một miền giả lồi chặt. 1.4 Hàm Green, Green đa cực Hai loại hàm Green có thể được định nghĩa trên miền D ⊂ Cn ∼ = R2n , n ≥ 2: loại thông thường liên quan tới hàm điều hòa (hoặc điều hòa dưới) khi D được coi là miền con trong R2n , và hàm Green đa cực liên quan tới hàm đa điều hòa dưới. 13 Định nghĩa 1.4.1 ([4]). Hàm Green thông thường tại cực w ∈ D ⊂ Rm , m ≥ 3, ký hiệu bởi GD , được xác định bởi GD (z, w) = sup{u(z) : u ∈ SH− (D), u = | · −w|−m+2 + O(1)}. Định nghĩa 1.4.2 ([4]). Hàm Green đa cực tại cực w trong D ⊂ Cn , n ≥ 2, ký hiệu bởi gD , được xác định bởi gD (z, w) = sup{u(z) : u ∈ P SH− (D), u = log | · −w|−m+2 + O(1)}. Ở đây SH− (D) và P SH− (D) lần lượt ký hiệu hàm điều hòa dưới và hàm đa điều hòa dưới trên D. Chú ý rằng với n = 1 bài toán cực trị thứ hai cũng sinh ra hàm Green thông thường của Laplacian trên R2 . Dáng điệu tương ứng của hai hàm này được so sánh bởi M. Carlehed và B.-Y. Chen. Trong luận văn này, chúng tôi trình bày lại kết quả mở rộng của họ cho lớp miền rộng hơn và đưa ra một số ước lượng cải tiến cho nhiều bất biến chỉnh hình như khoảng cách Kobayashi trong lớp miền đó được trình bày trong bài báo [4]. 1.5 Kiểu hữu hạn, vô hạn Định nghĩa 1.5.1. Một điểm p ∈ ∂D được gọi là điểm tụ quỹ đạo nếu tồn tại dãy {fj } ⊂ Aut(D) và tồn tại q ∈ D sao cho fj (q) → p khi j → ∞. Định nghĩa 1.5.2. Cho D ⊂ Cn là một miền trơn C ∞ và điểm p ∈ ∂D. Khi đó, kiểu D’Angelo τ của ∂D tại p được định nghĩa như sau: τ (∂D, p) := sup γ ν(ρ ◦ γ) , ν(γ) (1.10) trong đó ρ là một hàm xác định biên cho D trong một lân cận của p, supremum được lấy trên tất cả các đường cong chỉnh hình khác hằng γ : (C, 0) → (Cn , p). Ta nói rằng p là điểm hữu hạn nếu τ (∂D, p) < ∞ và điểm vô hạn nếu ngược lại. Ví dụ 1.5.3. Cho D1,m = {(z1 , z2 ) ∈ C2 : |z2 |2 + |z1 |2m < 1}. Ta có thể chứng minh được rằng τ (∂D1,m , (1, 0)) = 2m. Vì vậy, D1,m có biên kiểu hữu hạn tại p = (1, 0). 14 −1 Ví dụ 1.5.4. Cho D1,∞ = {(z1 , z2 ) ∈ C2 : |z1 |2 + e |z2 |2 < 1}. Dễ thấy, τ (∂D1,∞ , (1, 0)) = +∞. Vì vậy, D1,∞ có biên kiểu vô hạn tại p = (1, 0). 1.6 Miền C-lồi, C-lồi hóa Định nghĩa 1.6.1. Một miền D được gọi là C-lồi nếu bất kỳ giao khác rỗng của D với một đường thẳng phức là liên thông và đơn liên. Trong trường hợp D bị chặn và C 1 -trơn, D là C-lồi khi và chỉ khi nó lồi tuyến tính, tức là, với bất kỳ z ∈ / D, tồn tại siêu phẳng phức H qua z sao cho D ∩ H = ∅. Định nghĩa 1.6.2. Miền D được gọi là C-lồi hóa được nếu D là song chỉnh hình với một miền C-lồi. Định nghĩa 1.6.3. Miền D là C-lồi hóa được địa phương nếu với bất kỳ a ∈ ∂D, tồn tại lân cận U của a và một phép nhúng chỉnh hình Φ : U → Cn sao cho Φ(D ∩ U ) là miền C-lồi. 1.7 Metric Kobayashi, khoảng cách Kobayashi Định nghĩa 1.7.1. Khoảng cách d trên tập X là một hàm d:X ×X →R (x, y) 7→ d(x, y) thỏa mãn các điều kiện sau với mọi x, y, z thuộc X: (i) d(x, y) ≥ 0, d(x, y) > 0 ∀x 6= y; (ii) d(x, y) = d(y, x); (iii) d(x, y) ≤ d(x, z) + d(z, y). Nếu d chỉ thỏa mãn (ii), (iii) và d(x, y) ≥ 0 thì d được gọi là giả khoảng cách trên X. Trong phần này ta sẽ nghiên cứu tính chất hình học của không gian (G, dG ), trong đó dG là một giả khoảng cách thích hợp trên G. Giả khoảng cách 15 Kobayashi là một lựa chọn hữu ích để nghiên cứu. Ta luôn giả sử rằng bất kỳ hệ như trên là giảm chỉnh hình theo nghĩa rằng mọi ánh xạ chỉnh hình là giảm chỉnh hình: Định nghĩa 1.7.2 ([2]). Cho hai miền G ⊂ Cn , D ⊂ Cm . Ánh xạ chỉnh hình F : G → D được gọi là giảm chỉnh hình từ (G, dG ) vào (D, dD ) nếu dD (F (z 0 ), F (z 00 )) ≤ dG (z 0 , z 00 ), z 0 , z 00 ∈ G. Nói riêng, bất kỳ ánh xạ song chỉnh hình F : G → D là một đẳng cự giữa (G, dG ) và (D, dD ). Ký hiệu D là đĩa đơn vị mở trong C, dD là một giả khoảng cách trên D. Ký hiệu O(Ω1 , Ω2 ) là không gian tất cả các ánh xạ chỉnh hình F : Ω1 → Ω2 . Trước khi đưa định nghĩa chính thức của giả khoảng cách Kobayashi, ta có nhận xét sau. Nhận xét 1.7.3. Cho G là miền bất kỳ trong Cn và cố định hai điểm z00 , z000 trong G. Khi đó, tồn tại một đường cong α : [0, 1] → G nối các điểm z00 , z000 . Sử dụng định lý xấp xỉ Weierstrass ta tìm ánh xạ đa thức P : [0, 1] → G với P (0) = z00 và P (1) = z000 . Khi đó, dễ chọn được miền đơn liên D ⊂ C, [0, 1] ⊂ D, sao cho P (λ) ∈ G với λ ∈ D. Theo nguyên lý ánh xạ Riemann ta có thể kết luận rằng z00 , z000 nằm trên một đĩa giải tích ϕ : D → G với ϕ(0) = z00 và ϕ(σ) = z000 (0 ≤ σ < 1). Cho z 0 , z 00 ∈ G, đặt k̃G (z 0 , z 00 ) = inf{p(λ0 , λ00 ) : λ0 , λ00 ∈ D, ∃ϕ ∈ O(D, G), ϕ(λ0 ) = z 0 , ϕ(λ00 ) = z 00 } = inf{p(0, λ00 ) : λ00 ∈ D, ∃ϕ ∈ O(D̄, G), ϕ(0) = z 0 , ϕ(λ00 ) = z 00 }, ∗ k̃G = tanh k̃G , và ta gọi k̃G là hàm Lempert của G. Nhận xét 1.7.4 ([2]). (a) k̃G : G × G → [0, ∞) là hàm đối xứng; (b) (k̃G )G là họ giảm chỉnh hình, tức là nếu F ∈ O(G, D) thì k̃D (F (z 0 ), F (z 00 )) ≤ k̃G (z 0 , z 00 ), z 0 , z 00 ∈ G; (c) đặt biệt, ta có k̃D (F (z 0 ), F (z 00 )) = k̃G (z 0 , z 00 ) nếu F : G → D là ánh xạ song chỉnh hình; 16 (d) k̃D = p. Tóm tắt lại, nếu có lớp (dG )G các hàm dG : G × G → [0, ∞) giảm chỉnh hình với dD = p thì dG ≤ k̃G . Nhưng ở đây, nói chung hàm Lempert không phải một giả khoảng cách. Ví dụ 1.7.5. Với v ∈ N định nghĩa miền Gv ⊂ C2 bởi 1 Gv := {(z1 , z2 ) ∈ C2 : |zj | < 1, j = 1, 2, |z1 z2 | < }. v Ngoài ra, cố định z 0 := (1/2, 0) và z 00 = (0, 1/2) và chú ý rằng các điểm này đều nằm trong Gv . Do tính giảm chỉnh hình của hệ (k̃G ) ta dễ dàng thu được 1 k̃Gv (z 0 , 0) + k̃Gv (0, z 00 ) ≤ 2p(0, ) =: A. 2 Nếu ta giả sử có bất đẳng thức tam giác k̃Gv (z 0 , z 00 ) ≤ k̃Gv (z 0 , 0) + k̃Gv (0, z 00 ), thì ta có thể tìm được các ánh xạ chỉnh hình ϕv ∈ O(E, Gv ) sao cho ϕv (0) = z 0 , ϕv (σv ) = z 00 với 0 < σv < 1, và p(0, σv ) < A + 1. Áp dụng định lý Montel, ta có thể giả sử rằng K ϕv ⇒ ϕ, ϕ(0) = z 0 , ϕ(σ) = z 00 với σ = lim σv ∈ [0, 1). v→∞ Viết ϕ = (g, h) và vì ϕv ∈ O(E, Gv ), ta suy ra 1 1 g ◦ h ≡ 0, g(0) = , và h(σ) = , 2 2 mâu thuẫn. Do đó, với v đủ lớn thì bất đẳng thức tam giác không đúng với hàm Lempert k̃Gv . Nhận xét 1.7.6 ([2]). Tuy nhiên, trong trường hợp G ⊂ Cn là tập lồi, bất đẳng thức tam giác luôn luôn đúng đối với hàm Lempert k̃G . Đây là hệ quả của một kết quả rất sâu của L. Lempert, cụ thể k̃G = cG trên các miền G lồi. Ngoài ra, ta cũng có thể chứng minh trực tiếp kết quả này. 17 Để vượt qua khó khăn về bất đẳng thức tam giác, ta chỉnh sửa hàm k̃G theo cách mà hàm mới trở thành một giả khoảng cách. Với z 0 , z 00 ∈ G, ta đặt kG (z 0 , z 00 ) := inf  N X  k̃G (zj−1 , zj ) : N ∈ N, z0 = z 0 , z1 , . . . , zN −1 ∈ G, zN = z 00    j=1 ∗ kG := tanh kG . Hàm kG được gọi là giả khoảng cách Kobayashi của G. Nhận xét 1.7.7 ([2]). Các tính chất sau đúng cho hệ (kG )G : (a) kG là hàm non lớn nhất thỏa mãn bất đẳng thức tam giác và kG ≤ k̃G ; (b) kG là một giả khoảng cách trên G; (c) nếu F ∈ O(G, D) thì kD (F (z 0 ), F (z 00 )) ≤ kG (z 0 , z 00 ), tức là hệ (kG )G giảm chỉnh hình; (d) kD = k̃D = p. (e) Thậm chí ta có: nếu (dG )G là hệ các giả khoảng cách dG : G × G → [0, ∞) có tính chất (c) và (d) thì dG ≤ kG . Ví dụ 1.7.8. Cho q là một nửa chuẩn trên Cn . Ký hiệu G = {z ∈ Cn : q(z) < 1} là q-hình cầu đơn vị mở. Với z ∈ G, ta khẳng định rằng các công thức sau là đúng kG (0, z) = k̃G (0, z) = p(0, q(z)). Để chứng minh các đẳng thức này ta sử dụng công thức tương tự cho giả khoảng cách Carathéodory. Từ đó, ta chỉ cần kiểm tra rằng k̃G (0, z) ≤ p(0, q(z)). Nếu q(z) 6= 0, đặt ϕ(λ) := λz/q(z) ta thu được đĩa giải tích ϕ ∈ O(E, G) với ϕ(0) = 0 và ϕ(q(z)) = z, điều này kéo theo k̃(0, z) ≤ p(0, q(z)). Trong trường hợp q(z) = 0 ta xét họ các đĩa giải tích ϕt ∈ O(E, G), ϕt := λtz với t > 0, ϕt (0) = 0 và ϕt (1/t) = z. Do đó ta thu được k̃G (0, z) ≤ p(0, 1/t) → 0 khi t → ∞. Ví dụ 1.7.9 ([2]). (a) kDn (0, z) = k̃Dn (0, z) = max{p(0, |zj |) : 1 ≤ j ≤ n}, , 18 (b) kBn (0, z) = k̃Bn (0, z) = p(0, kzk), trong đó Bn = B(0, 1) ⊂ Cn là hình cầu đơn vị trong Cn . Hệ quả 1.7.10 ([2]). Hàm kG : G × G → [0, ∞) liên tục. Chứng minh. Dựa theo bất đẳng thức tam giác ta chỉ cần chỉ ra kG (z0 , ·) : G → R+ liên tục với z0 ∈ G cố định. Để thấy điều này, ta lấy w0 ∈ G và w ∈ B(w0 , R) ⊂ G và đánh giá |kG (z0 , w) − kG (z0 , w0 )| ≤ kG (w0 , w) kw − w0 k ) R R ≤ Ckw − w0 k nếu kw − w0 k < . 2 ≤ kB (w0 , R)(w0 , w) = p(0, Ở đây ta đã sử dụng tính giảm chỉnh hình của giả khoảng cách Kobayashi qua phép nhúng B(w0 , R) → G và Ví dụ 1.7.9. Cho G là một miền trong Cn . Hàm ξG : G × Cn → [0, ∞) xác định bởi ξG (z; X) := inf{γ(λ)|α| : ∃ϕ ∈ O(E, G), ∃λ ∈ E, ϕ(λ) = z, αϕ0 (λ) = X} được gọi là giả khoảng cách Kobayashi-Royden trên G.
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất