Tài liệu Vật liệu mao quản trung bình (mqtb) trật tự

  • Số trang: 79 |
  • Loại file: PDF |
  • Lượt xem: 87 |
  • Lượt tải: 0
bangnguyen-hoai

Đã đăng 3509 tài liệu

Mô tả:

BÁO CÁO TỐT NGHIỆP Vật liệu mao quản trung bình (MQTB) trật tự 1 Chương 1. TỔNG QUAN 1.1. Vật liệu mao quản trung bình (MQTB) trật tự 1.1.1. Giới thiệu chung - Hai vật liệu tiền thân của các vật liệu MQTB: + Aluminophosphat: Như đã biết, zeolit có mao quản rộng nhất là X và Y (với dạng cấu trúc faujasite) ứng với vòng oxi cực đại là R-12(O). Do đó người ta phải tìm cách tổng hợp zeolit dạng aluminophosphat (Al-P). Năm 1988 lần đầu tiên vật liệu có tên gọi VPI-5 với vòng oxi đạt đến 18, R-18(O), đường kính mao quản 12 Å đã được tổng hợp [28], sau đó vào năm 1992 AlPO4 dạng JDF-20 được tổng hợp với vòng 20 oxi, R-20 (O) [45]. Tuy nhiên, do tính bền nhiệt và thủy nhiệt không cao nên cho đến nay các vật liệu Al-P vẫn chưa được ứng dụng rộng rãi trong công nghiệp. + Sét pillar: Đây là vật liệu sét tự nhiên có cấu trúc tinh thể dạng lớp. Khoảng cách giữa các lớp là 9- 10 Å, song do tính biến dạng của sét cao nên người ta có thể chèn giữa các lớp (bằng kĩ thuật trao đổi ion) các kim loại vừa có tính chất xúc tác, vừa bền và có kích thước đủ lớn để nới rộng khoảng cách giữa các lớp. Ví dụ như, từ sét bentonit, người ta chế tạo các Me-pillar dạng Me-montmorillonit với khoảng cách giữa các lớp 15-20 Å, (Me: Al, Zr, Ca, Cr, Ti, Fe,..). Vật liệu này có thời điểm là hi vọng của nhiều nhà xúc tác song do độ bền nhiệt và hoạt tính xúc tác vẫn thấp so với zeolit và đặc biệt không dễ dàng tạo ra vật liệu nano mao quản đồng nhất như mong đợi nên sét pillar vẫn chưa trở thành các vật liệu xúc tác thương mại quan trọng. - Đặc điểm quan trọng nhất của các vật liệu MQTB trật tự (ordered mesoporous materials) là chúng có mao quản đồng nhất, kích thước mao quản rộng, diện tích bề mặt riêng lớn, do đó vật liệu sẽ chứa nhiều tâm hoạt động ở trên bề mặt nên dễ dàng tiếp cận với tác nhân phản ứng. Tuy nhiên, vật liệu MQTB không phải là vật liệu tinh thể. Xét về mối quan hệ xa thì các mặt mạng, sự sắp xếp các mao 2 quản,… được phân bố theo quy luật tuần hoàn như trong mạng tinh thể, nhưng nhìn ở góc độ gần thì các phần tử (ion, nguyên tử, nhóm nguyên tử,…) lại liên kết với nhau một cách vô định hình. Như vậy có thể xem vật liệu MQTB là “giả tinh thể”. - Một câu hỏi đặt ra là tại sao các vật liệu MQTB được tổng hợp không ở dạng tinh thể? Các nhà khoa học cho rằng độ tinh thể của vật liệu luôn luôn có mối quan hệ với mật độ mạng (số nguyên tử trong một nm3: Framework Density, FD). Năm 1989, Brunner và Meier nhận thấy rằng các cấu trúc tinh thể chứa nguyên tử T (nguyên tử trong cấu trúc tứ diện-tetragonal) đều phải tuân theo một quy tắc nghiêm ngặt giữa FD và kích thước vòng T (vòng O) cực tiểu (MINR: Minimum ring) [7]. Thực vậy, các oxit tinh thể với cấu trúc MINR= 4 và ứng với khoảng trống cực đại trong vật liệu (void fraction)~ 0.5. Các vật liệu MQTB vi phạm quy luật đó nghĩa là khoảng trống > 0.5 và FD nhỏ nên vật liệu MQTB trật tự không thể là vật liệu tinh thể. Muốn trở thành vật liệu tinh thể người ta tìm cách gia tăng FD của mạng và làm giảm bớt độ rỗng nghĩa là mạng của nó phải được cấu tạo đặc hơn, có khả năng tạo ra các đơn vị cấu trúc thứ cấp SBU (Secondary Building Unit) dạng vòng 3(T) hoặc 3(O). 1.1.2. Giới thiệu một số vật liệu mao quản trung bình trật tự - Vật liệu với cấu trúc lục lăng (MCM-41) Năm 1992, các nhà nghiên cứu của công ty dầu mỏ Mobil lần đầu tiên đã sử dụng chất tạo cấu trúc tinh thể lỏng để tổng hợp một họ rây phân tử mới MQTB. MCM-41 là một trong những loại vật liệu được nghiên cứu nhiều nhất. Chúng là vật liệu mao quản hình trụ có đường kính từ 1.5 - 8 nm. Nhóm không gian của MCM-41 là P6mm (hình 1.1a), thành mao quản là vô định hình và tương đối mỏng (0.6-1.2 nm). Sự phân bố kích thước lỗ là rất hẹp chỉ ra sự trật tự cao của cấu trúc. Do mao quản chỉ bao gồm MQTB mà không có vi mao quản bên trong thành nên dẫn đến sự khuếch tán một chiều qua kênh mao quản. Chúng có diện tích bề mặt riêng lớn đến khoảng 1000-1200 m2/g. Hạn chế quan trọng nhất của vật liệu này là độ bền thủy nhiệt chưa cao do thành khá mỏng và vô định hình [61]. 3 Hình 1.1a: Mô hình mao quản sắp xếp theo dạng lục lăng Hình 1.1b: Sự kết nối các kênh mao quản sơ cấp qua mao quản thứ cấp của SBA-15 Vật liệu với cấu trúc lập phương + KIT-5: là silica MQTB với tính chất tương tự như SBA-16. MQTB là trật tự với dạng cấu trúc lập phương tâm mặt Fm3m. Giống như SBA-16, KIT-5 có thể được tổng hợp trong hệ bậc 3 gồm nước, butanol và chất hoạt động bề mặt F127. Khác với SBA-16, trong trường hợp này mỗi MQTB trong KIT-5 chỉ được liên kết thống kê với một MQTB khác và sắp xếp theo kiểu cấu trúc tâm mặt. + MCM-48 và KIT-6: là 2 vật liệu đều có cấu trúc 3-D thuộc nhóm không gian Ia3d. Đặc trưng nhất về cấu trúc của loại vật liệu này là kiến trúc theo kiểu vòng xoáy (hình 1.2). MCM-48 được tổng hợp theo cách tương tự như MCM41 dưới điều kiện kiềm với chất hoạt động bề mặt genimi. Độ dày thành mao quản của MCM-48 là khoảng 0.8-1 nm. Kích thước mao quản cũng tương tự như MCM41. KIT-6 có thể được tổng hợp sử dụng pha meso bậc 3 là H2O, BuOH và P123. Độ dày thành mao quản và chiều mao quản tương tự như SBA-15 [56]. 1.1.3. Vật liệu họ SBA ( Santa Barbara) a. Khái quát Năm 1998, Zhao và các cộng sự [92] đã tổng hợp được họ vật liệu mới, kí hiệu là SBA-n, có cấu trúc lục lăng 2-D và 3-D (SBA-2, 3, 12, 15) hoặc lập phương (SBA-1, 6, 16), trong đó nổi bật nhất là SBA-15 và SBA-16. 4 Hai vật liệu này được tổng hợp khi sử dụng chất tạo cấu trúc (template) hay tác nhân định hướng cấu trúc ( SDA: struture-directing agent) là các chất hoạt động bề mặt copolime 3 khối Pluronic (P123: m = 20, n=70; F127: m=106, n=70): SBA-15 là vật liệu MQTB ở dạng lục lăng (hình 1.1a) cùng nhóm không gian P6mm với MCM-41 nhưng được tổng hợp trong môi trường axit (khác với MCM-41 trong môi trường kiềm) và sử dụng chất hoạt động bề mặt không ion. Tuy nhiên, do tính chất của chất hoạt động bề mặt loại Pluronic, vật liệu SBA-15 so với vật liệu MCM-41 có sự khác nhau quan trọng về mao quản và tính chất hấp phụ. Trong cách tổng hợp thông thường, SBA-15 có thành mao quản dày hơn nhưng vẫn là vô định hình. Diện tích bề mặt BET của SBA-15 thường thấp hơn MCM-41 và do thành mao quản dầy nên chúng có độ bền thủy nhiệt lớn hơn. Cũng do loại chất hoạt động bề mặt Pluronic, SBA-15 có mao quản thứ cấp bên trong thành, bao gồm vi mao quản và mao quản trung bình nhỏ hơn. Kênh mao quản chính song song của SBA-15 được kết nối với nhau qua các vi lỗ và mao quản trung bình nhỏ hơn trong thành mao quản [25] (hình 1.1b). Hình 1.2: Mô hình cấu trúc vòng xoáy của KIT-6 Hình 1.3 : Sự kết nối kênh MQ sơ cấp qua 8 kênh MQTB nhỏ hơn của SBA-16 SBA-16 là silica MQTB với kích thước mao quản 5-15 nm dạng lồng sắp xếp trong dạng lập phương tâm khối 3 chiều thuộc nhóm không gian Im3m. Giống 5 như SBA-15, nó được tổng hợp ở điều kiện axit, sử dụng chất hoạt động bề mặt không ion Pluronic và do đó cũng tạo ra mao quản phụ trong thành. Cấu trúc của SBA-16 đã được nghiên cứu, trong đó mỗi MQTB được kết nối với 8 MQTB bên cạnh (hình 1.3). Tám MQTB thứ cấp này (còn gọi là cửa sổ mao quản) nhỏ hơn MQTB sơ cấp (còn gọi là hốc, nằm ở tâm hình lập phương). Đây cũng là điều làm cho vật liệu này có tính chất lí thú, ví dụ như trong tổng hợp phức chất: cửa sổ mao quản nhỏ đủ khoảng trống cho phối tử B và ion kim loại A chui vào trong hốc và xảy ra phản ứng trong đó; hốc rộng phù hợp cho phức kim loại với kích thước phân tử lớn hình thành bên trong, nhưng cửa sổ lại nhỏ hơn kích thước phân tử phức nên phức chất C hình thành được giữ trong hốc mà không bị mất ra ngoài môi trường (hình 1.4). Hình 1.4: Sự hình thành phức kim loại trong hốc của SBA-16 Người ta đã ứng dụng phức chất C (Co(II)Salen) làm xúc tác trong quá trình mở vòng epoxit sau khi phức C được oxi hóa thành Co(III)Salen [46]: 6 b. Sự hình thành SBA Sự hình thành vật liệu SBA-15 và SBA-16 có thể hình dung một cách đơn giản qua các giai đoạn phản ứng như sau: - Chất hoạt động bề mặt F127, P123 hòa tan trong nước hình thành nên pha mixen lần lượt là dạng lập phương tâm khối (hình 1.5a) và lục lăng trong đó phần kị nước PPO nằm ở bên trong còn phần ưa nước PEO ở phía ngoài của mixen. - TEOS thủy phân trong nước hình thành nhóm silanol: -Si-OR + H2O -Si-OH  + ROH - Các nhóm silanol ngưng tụ theo kiểu oxo hóa hoặc ancolxo hóa hình thành nên silica oligome: -Si-OH + HO-Si-  -Si-O-Si- + H2O -Si-OR + HO-Si-  -Si-O-Si- + ROH - Các silica oligome này tương tác với mixen đã hình thành cấu trúc pha theo kiểu tương tác S+X-I+ (hay SoH+X-I+) (S: surfactant, X: halogen, I: inorganic là silica vô cơ). Trong môi trường axit mạnh pH < 2 silica bị proton hóa mang điện tích dương và tương tác tĩnh điện chủ yếu với phần PEO ưa nước cũng bị proton hóa qua cầu ion halogenua (hình 1.5b). Hình 1.5a: Pha mixen dạng lập phương tâm khối của F127 Hình 1.5b: Tương tác giữa chất HĐBM và silica oligome qua cầu ion halogenua - Tại đây tiếp tục xảy ra quá trình ngưng tụ và tạo thành silica polime. Khi nung ở nhiệt độ cao trong không khí, các chất HĐBM này bị loại bỏ hoàn toàn để lại khung silica (SiO2)n, phần PPO bị loại bỏ để lại khoảng trống (mao quản) bên 7 trong vật liệu. Cũng lưu ý rằng do thể tích của PEO nhỏ nên nó có khả năng thâm nhập vào bên trong thành mao quản silica và khi nung ở nhiệt độ cao, PEO bị loại bỏ và hình thành nên vi mao quản [63, 65]. c. Các yếu tố ảnh hưởng đến tính chất của vật liệu Qua cơ chế hình thành ở trên thì độ dày thành mao quản gây ra bởi chuỗi PEO ưa nước, đường kính mao quản gây ra bởi lõi PPO kị nước, vi mao quản gây ra bởi phần EO thâm nhập vào trong thành silica. Dưới đây là một số yếu tố ảnh hưởng đến đặc trưng của vật liệu đã được nghiên cứu: + Polime với chuỗi PEO ngắn thích hợp hơn cho sự hình thành pha dạng tấm (lamellar), polime với chuỗi PEO trung bình thích hợp cho sự hình thành pha lục lăng và sự hình thành pha lập phương cho hầu hết các polime với chuỗi ưa nước EO dài. Do đó P123 hình thành silica với cấu trúc lục lăng P6mm, sử dụng chất hoạt động bề mặt với chuỗi dài hơn F108 (132 đơn vị), F127(108) tạo nên cấu trúc Im3m [52]. + Galarneau và các cộng sự [16, 17] đã nghiên cứu cấu trúc mixen của SBA-15 tạo ra bởi P123 (hình 1.6a) trong giai đoạn phản ứng. Ở nhiệt độ thấp (khoảng 60oC) mixen P123 trong nước bao quanh bởi một lớp hiđrat dày đến cỡ 1nm, các chuỗi bị hiđrat hóa này đẩy nhau làm cho khoảng cách mixen lớn (ít nhất là 3-4 nm), do đó độ dày thành mao quản hình thành ở nhiệt độ này cao hơn. Hình 1.6a: Mixen của chuỗi PEO P123 trong nước Hình 1.6b: Sự đehiđrat hóa và tăng thể tích phần lõi khi tăng nhiệt độ 8 Sự tăng nhiệt độ gây ra sự đehidrat hóa chuỗi PEO và giảm thể tích phần ưa nước PEO, tăng thể tích phần lõi nên đường kính mao quản trong trường hợp này lớn hơn nhưng độ dày thành mao quản và thể tích vi lỗ lại nhỏ hơn so với nhiệt độ thấp (hình 1.6b). + Sự tăng nhiệt độ trong quá trình già hóa và thời gian già hóa cũng gây ra sự tăng đường kính mao quản (hình 1.7) và giảm vi lỗ do sự đehiđrat hóa của khối PEO như được quan sát trong giai đoạn phản ứng ở trên [76]. Hình 1.7: Mô hình sự tăng kích thước MQ của SBA-16 khi tăng nhiệt độ già hóa + Sự thêm các chất phụ trợ (ví dụ như D-glucozơ) cũng làm thay đổi tính chất của vật liệu: Sau khi thêm D-glucozơ, liên kết hydro có thể hình thành bằng các nhóm -OH của D-glucozơ và phần ưa nước PEO của copolime 3 khối. Do đó khi tăng tỉ lệ khối lượng D-glucozơ/F127, phần ưa nước PEO bị co lại và độ dày thành mao quản do đó giảm đi [72] ( hình 1.8). Hình 1.8: Sự co chuỗi PEO khi tăng hàm lượng D-glucozơ + Thể tích vi lỗ cũng phụ thuộc vào thành phần các chất ban đầu. Chi-Feng Cheng và các đồng nghiệp [23] đã khảo sát và thấy rằng khi tăng hàm lượng của silica từ 6 – 9.5% về khối lượng thì thể tích vi lỗ tăng từ 44 - 67%. Điều này được giải thích là phần ưa nước EO có thể tương tác với silica bị oligome hóa qua tương 9 tác tĩnh điện và liên kết hiđro. Do đó tăng sự có mặt của silica sẽ tăng khả năng liên kết với EO, phần EO ưa nước dài hơn và tạo ra thành mao quản (silica wall) dầy hơn, phần lõi kị nước bị co lại hơn làm cho kích thước mao quản hẹp hơn và sự tương tác EO với silica tạo nên thành mao quản nhiều vi lỗ hơn (hình 1.9). Hình 1.9: Sự tăng độ dày thành mao quản khi tăng hàm lượng TEOS (Dp: Diameter pore: đường kính MQ, W: wall thickness: độ dày thành MQ + Mẫu tổng hợp mà trong giai đoạn phản ứng có khuấy so với mẫu không khuấy với cùng nồng độ TEOS thì 2 mẫu ít có sự khác nhau về kích thước mao quản nhưng mẫu khuấy có cấu trúc trật tự hơn nhiều [80]. + Vật liệu sau khi tổng hợp xong thực hiện sự ép viên cũng làm giảm diện tích bề mặt và thể tích mao quản do sự tăng độ chặt khít vật lý [66]. 1.2. Giới thiệu về zirconia (ZrO 2) và zirconia sunfat hóa 1.2.1. Zirconia (ZrO2) ZrO2 là là chất rắn màu trắng, tồn tại dưới một số dạng tinh thể khác nhau. Dạng tinh thể đơn nghiêng của ZrO2 tồn tại trong tự nhiên dưới dạng khoáng baledeit có cấu trúc tinh thể không đồng đều với số phối trí bằng 8. Ở điều kiện bình thường cấu trúc đơn nghiêng của tinh thể ZrO2 được thể hiện qua các thông số: a = 5,15 b = 5,21 c = 5,3  =  = 900   900 ZrO2 cứng, khó nóng chảy và bền nhiệt [5]. Sự chuyển đổi hoàn toàn cấu trúc giữa dạng tứ diện và dạng đơn nghiêng diễn ra ở khoảng nhiệt độ 1193-12000C. Quá trình chuyển pha cấu trúc cũng có thể xảy ra ở điều kiện nhiệt độ thấp khoảng 20-1000C nhưng áp suất của quá trình phải là 37 KPa 15. 10 Theo nhiều tài liệu đã chứng minh thì tinh thể ZrO2 ở trạng thái tứ diện được xem là một oxit rắn có tính axit khá mạnh có thể sử dụng làm chất mang cho các loại chất xúc tác sử dụng trong quá trình đồng phân hoá, đặc biệt là khi được sunfat hoá 48, 50. Các yếu tố ảnh hưởng đến việc tổng hợp zirconia Zirconi đioxit được điều chế bằng cách nung zirconi hiđroxit ở nhiệt độ cao. Zirconi hiđroxit tồn tại ở dạng kết tủa trắng nhầy, có thành phần biến đổi với công thức là ZrO2.nH2O. Kết tủa khi mới tạo thành chứa nhiều nhóm cầu OH dạng , qua thời gian bị mất nước, nó tiếp tục bị polime hoá trở thành dạng , chứa nhiều cầu oxi 90. Các tính chất của zirconi hiđroxit phụ thuộc rất nhiều vào muối nguyên liệu đầu và giá trị pH của dung dịch trong quá trình thực hiện kết tủa hiđroxit 15, 37, 39. Đối với cấu trúc, giá trị pH tạo kết tủa có ảnh hưởng rõ rệt nhất đến sự tạo thành pha tinh thể của ZrO2. Sự điều chỉnh và giá trị pH cuối cùng có ảnh hưởng cụ thể nhất đến chất lượng của zirconi hiđroxit. Tại giá trị pH < 7 trong tinh thể muối ZrOCl2.8H2O xuất hiện ion tetrameric Zr4(OH)8.16H2O8+ (hình 1.10), phản ứng polime hoá diễn ra khi đưa bazơ vào dung dịch muối. Ngay từ giai đoạn đầu, lượng bazơ đưa vào sẽ thúc đẩy việc thay thế bốn phân tử nước của ion tetrametric bằng các nhóm OH tạo cầu nối O...H, sau đó hình thành liên kết. Công thức chung của mỗi phân tử polime tạo thành trong quá trình hình thành kết tủa là ZrOx(OH)4-x .yH2On. Công thức này thể hiện mối liên quan giữa hàm lượng oxi, OH và hàm lượng kết tủa thu được khi sử dụng muối nguyên liệu là ZrOCl2.8H2O. Cấu tạo của dạng gel đã sấy khô qua phân tích TG thường có công thức chung là: ZrO2.1,23H2O-ZrO2.1,86H2O. Công thức đó có thể được viết lại dưới dạng [Zr4(OH)8]8+ để thể hiện sự liên kết giữa các mắt xích trong mạch polime. Ảnh hưởng của nguồn muối nguyên liệu đến chất lượng của hiđroxit là khá rõ. Muối ZrOCl2.8H2O ở dạng tinh thể có chứa ion tetrameric và anion Cl. Anion 11 Cl không liên quan đến phản ứng polime hoá trong quá trình điều chế hiđroxit vô định hình. Tuy nhiên, một lượng nhỏ anion Cl vẫn còn lưu lại trong kết tủa, lượng anion này sẽ giảm khi độ pH tăng, do vậy rất cần thiết phải tạo kết tủa ở giá trị pH lớn. T©m axit Bronsted O O O S O + Zr S +H2O O + Zr O O + H O O -H2O H O + Zr Zr O T©m axit Lewis Hình 1.10: Ion tetrameric Hình 1.11: Sự hình thành tâm axit Bronsted và Lewis trên SO42-/ZrO2 Với muối ZrO(NO3)2.xH2O sẽ xảy ra quá trình tạo phức khác với quá trình polime hoá của muối ZrOCl2.8H2O. Mỗi nguyên tử Zr có liên kết với NO3 tạo thành mắt xích [Zr(OH)2(H2O)(NO3)]+, mỗi mắt xích này được liên kết với nhau qua liên kết hiđro của H2O với anion NO3, hiđroxit vô định hình nhận được trong thành phần cấu tạo vẫn có mặt của anion NO3. Như vậy, sự khác nhau trong cấu trúc dạng gel nhận được là do vai trò của anion NO3 và Cl có trong muối nguyên liệu đầu. Giá trị pH không ổn định trong suốt quá trình hình thành kết tủa là yếu tố có ảnh hưởng phức tạp đến chất lượng kết tủa. Trước hết nó sẽ ảnh hưởng tới số bậc của phản ứng polime hoá, trong một khoảng pH thay đổi rộng tăng dần từ pH axit sang pH bazơ có rất nhiều hiện tượng nảy sinh và làm chất lượng kết tủa bị ảnh hưởng. Mặt khác, theo G. Ertl và các cộng sự 37 thì tỉ số giữa pha tứ diện và pha đơn nghiêng thay đổi theo sự thay đổi của pH trong quá trình kết tủa của zirconi hiđroxit. Khi tăng pH từ 6-10 thì pha tứ diện trong ZrO2-SO42  tăng từ 73% đến 100%. 1.2.2. Xúc tác SO42 /ZrO 2 Thực nghiệm chứng minh rằng ZrO2 khi sử dụng trực tiếp làm chất mang xúc tác thì có nhiều mặt hạn chế bởi diện tích bề mặt riêng rất bé (20m2/g ở nhiệt độ nung 700 oC) và cấu trúc pha tứ diện trong tinh thể không đồng đều, dẫn đến hoạt 12 tính xúc tác không cao. Để khắc phục những nhược điểm trên, người ta tiến hành sunfat hóa mẫu trước khi sử dụng xúc tác, do các oxit được sunfat hóa có hoạt tính cao đối với các phản ứng xảy ra theo cơ chế cacbocation. Sự hình thành tâm axit Bronsted và Lewis trên SO42-/ZrO2 được biểu diễn trên hình 1.11. Sự có mặt của ion SO42- trên bề mặt đã làm ổn định pha tứ diện chống lại sự chuyển pha cấu trúc, do vậy diện tích bề mặt riêng của chất mang cũng được tăng lên so với mẫu chưa được sunfat hóa. a. Ảnh hưởng của chất nền đến chất lượng xúc tác Quá trình sunfat hoá có thể thực hiện trên nền zirconi hiđroxit và zirconi đioxit nhưng theo Jing Qi Li và các cộng sự [49] thì sunfat hoá trên nền zirconi hiđroxit sẽ cho diện tích bề mặt riêng lớn và sự mất lưu huỳnh trong quá trình nung nhỏ hơn so với khi thực hiện trên nền zirconi đioxit (được nung từ zirconi hiđroxit ở 5000C trong 4 giờ). Kết quả thể hiện ở bảng 1.1. Bảng 1.1. Ảnh hưởng của chất nền đến chất lượng xúc tác Sau khi nung Chất xúc tác Chất nền H2SO4 (ml/g chất nền) Hàm lượng S trước khi nung (S%) S (%) Diện tích bề mặt (m2/g) ZSO ZrO2 15 1.57 0.93 51.2 ZSH Zr(OH)4 15 3.74 2.69 99.0 ZSO: Chất xúc tác điều chế từ chất nền ZrO2. ZSH: Chất xúc tác điều chế từ chất nền Zr(OH)4 b. Ảnh hưởng của nguồn lưu huỳnh sử dụng trong quá trình sunfat hoá Theo kết quả của J. Q. Li và các cộng sự 49 thì mẫu được hoạt hoá bằng H2SO4 cho diện tích bề mặt riêng cao hơn 2-7 lần so với các mẫu được sunfat hoá bằng SO2 hoặc H2S. Điều này được giải thích bởi khi hoạt hoá nền bằng SO2 hoặc H2S thì sự tương tác không xảy ra. Đối với H2SO4, thực tế cho thấy số phân tử nước mất đi trên một mol lưu huỳnh đưa vào giảm dần theo thời gian sunfat hoá, ngược 13 lại, hàm lượng lưu huỳnh trên chất mang lại tăng dần. Điều đó chứng tỏ tính axit của dung dịch H2SO4 đủ để xúc tiến cho phản ứng tách nước của zirconi hiđroxit, nó tự phản ứng với nền để tách nước và tạo ra các nhóm sunfat, nhờ vậy nó sẽ góp phần làm giảm sự chuyển pha cấu trúc của nền, tạo sự ổn định và làm tăng diện tích bề mặt của chất xúc tác thu được. Ngoài ra, sử dụng nguồn SO2 hoặc H2S để sunfat hoá mẫu thì sau khi tái sinh, xúc tác sẽ không còn là superaxit nữa 58. Khi sử dụng (NH4)2SO4 để sunfat hoá mẫu sẽ cho xúc tác có diện tích bề mặt riêng lớn hơn so với sử dụng H2SO4 37. Tuy nhiên, quá trình đưa kim loại lên bề mặt chất mang, ví dụ như Ni2+, ion kim loại dễ tạo phức với NH3, làm giảm độ phân tán của kim loại lên bề mặt chất mang, từ đó làm giảm hoạt tính của xúc tác. Như vậy, nguồn chứa lưu huỳnh cho quá trình sunfat hoá zirconi hiđroxit có tính ưu việt nhất là dung dịch H2SO4 (thường dùng dung dịch H2SO4 0.5M). c. Ảnh hưởng của các phương pháp sunfat hoá đến hoạt tính xúc tác Theo một số nhà nghiên cứu, đường cong biểu diễn mối quan hệ giữa hàm lượng lưu huỳnh và hoạt tính xúc tác có một điểm cực đại, chứng tỏ một trong những yếu tố ảnh hưởng đến hoạt tính xúc tác là hàm lượng lưu huỳnh. Vấn đề chính trong việc đưa ion SO42 lên bề mặt chất mang một cách hiệu quả không chỉ là xác định thời gian cần thiết để dung dịch ngấm được vào chất rắn, khối lượng thực của dung dịch được hấp thụ mà còn phụ thuộc vào phương pháp sunfat hoá, khối lượng chất nền, độ xốp của chất rắn, kích thước và phân bố kích thước hạt rắn... Vì vậy, tìm phương pháp tối ưu để đảm bảo khối lượng lưu huỳnh trên bề mặt xúc tác là một vấn đề được các nhà khoa học rất quan tâm. Có hai phương pháp sunfat hoá thường được sử dụng hiện nay là phương pháp thấm và phương pháp ngâm tẩm. - Phương pháp thấm: Là phương pháp lọc dung dịch H2SO4 qua lớp chất nền zirconi hiđroxit trước khi nung. Phương pháp này rất khó đánh giá hàm lượng lưu huỳnh và gây lãng phí dung dịch thấm H2SO4. Theo phương pháp này, trong trường hợp hàm lượng lưu huỳnh trên bề mặt vượt qua % tính toán ban đầu, 14 có thể điều chỉnh lại bằng cách tăng nhiệt độ nung, nhưng như vậy những tính chất khác của chất mang sẽ bị ảnh hưởng. - Phương pháp ngâm tẩm: Ngâm tẩm chất rắn trong dung dịch H2SO4 trong một khoảng thời gian nhất định, sau đó cho bay hơi từ từ ở nhiệt độ sấy thấp. Ưu điểm của phương pháp này là có thể điều chỉnh được hàm lượng lưu huỳnh tương đối thông qua khối lượng thực của H2SO4 ngay trong giai đoạn hấp phụ lên bề mặt chất mang, đồng thời có thể thêm vào một lượng axit phụ để bù trừ cho sự mất mát xảy ra khi nung. Ngoài ra, trong quá trình ngâm xảy ra phản ứng hoá học giữa bề mặt chất mang và ion SO42  làm tăng diện tích bề mặt chất mang và ổn định hàm lượng lưu huỳnh trên chất mang. Như vậy, theo các kết quả thực nghiệm thì sự mất lưu huỳnh trên bề mặt chất mang xảy ra trong cả hai phương pháp thấm và ngâm tẩm. Tuy nhiên, điều chế theo phương pháp ngâm tẩm thì hàm lượng lưu huỳnh bị mất ít hơn và xúc tác có sự ổn định hơn. Vì vậy, sunfat hoá zirconi hiđroxit theo phương pháp ngâm tẩm sẽ cho hiệu quả cao hơn các phương pháp khác. d. Ảnh hưởng của nhiệt độ nung Kết tủa zirconi hiđroxit sau khi được lọc rửa, sấy khô với tốc độ gia nhiệt thấp, qua giai đoạn nung thì cấu trúc vô định hình sẽ chuyển sang cấu trúc tứ diện khi nhiệt độ đạt 4000C. Người ta nhận thấy, ngay cả khi ở cấu trúc tinh thể tứ diện thì trong phân tử vẫn còn tồn tại một lượng nhỏ nước. Khi tăng đến nhiệt độ 6508000C thì cấu trúc tứ diện bắt đầu bị phá vỡ và chuyển sang cấu trúc đơn nghiêng. Hàm lượng nước trong cấu trúc bị loại hết một cách triệt để khi tiến hành nung ở nhiệt độ lớn hơn 10000C. Do đó, nhiệt độ nung ảnh hưởng khá lớn đến hoạt tính xúc tác. e. Zirconia sunfat hóa mang trên vật liệu mao quản trung bình và zirconia sunfat hóa mao quản trung bình Từ năm 1992 đã có công bố rằng vật liệu mao quản trung bình với cấu trúc lỗ xốp trật tự rất có khả năng ứng dụng trong các quá trình xúc tác, hấp phụ và tách chất bởi chúng có diện tích bề mặt cao, thể tích lỗ xốp lớn và cấu trúc lỗ xốp đồng đều nhưng chúng lại có tính axit yếu [27, 32]. Để tăng tính axit của vật liệu này, 15 zirconi sunfat hóa đã được mang trên các vật liệu mao quản trung bình như MCM41 [67, 90], FSM-16 [43],... Sử dụng phương pháp này, vật liệu được tổng hợp có độ axit mạnh hơn so với vật liệu mao quản trung bình thông thường. Tuy nhiên, do MCM-41 có kích thước mao quản nhỏ nên các lỗ xốp thường bị SO42-/ZrO2 bịt kín, làm giảm diện tích bề mặt. Hơn nữa, MCM-41 có độ bền thủy nhiệt thấp nên có nhiều hạn chế trong việc ứng dụng trong thực tiễn. Bên cạnh đó, đã có nhiều nhóm nghiên cứu tổng hợp thành công zirconia sunfat hoá mao quản trung bình [10, 77, 83]. Schuth và cộng sự 77 đã tổng hợp thành công zirconia oxo photphat xốp với diện tích bề mặt lớn bằng phương pháp sử dụng chất hoạt động bề mặt. Jentoft và cộng sự [83] đã tổng hợp thành công zirconia sunfat hóa với cấu trúc mao quản trung bình bằng cách sử dụng chất tạo cấu trúc là Cetyltrimetyl Amoni Bromat (CTAB), một số tác giả khác thì sử dụng chất tạo cấu trúc là amin. Tuy nhiên, dù zirconi sunfat hoá với cấu trúc mao quản trung bình đã được tổng hợp thành công nhưng hoạt tính xúc tác của nó vẫn còn thấp hơn hoặc là chỉ tương đương so với zirconi sunfat hóa thông thường trong quá trình đồng phân hóa n-parafin [23, 45]. Hơn nữa, độ bền nhiệt của cấu trúc meso và khả năng chống lại sự mất hoạt tính của zirconi sunfat hoá mao quản trung bình vẫn còn thấp 90. Trong luận văn này, chúng tôi đã tiến hành biến tính vật liệu mao quản trung bình SBA-16, một vật liệu có diện tích bề mặt riêng lớn, kích thước mao quản rộng và có độ bền thủy nhiệt cao bằng zirconia sunfat hóa nhằm tạo ra một vật liệu có tính axit và bền nhiệt, phù hợp cho phản ứng chuyển hóa n-hexan. 1.3. Vật liệu mao quản trung bình có chứa Al Vật liệu mao quản trung bình silica nguyên chất chỉ có các nhóm silanol trên bề mặt, có tính axit yếu và không có hoạt tính xúc tác. Vì vậy, để làm cho các vật liệu này có thể ứng dụng trong lĩnh vực xúc tác, các tâm axit mạnh hơn đã được đưa vào mạng cấu trúc của chúng. Thông thường, sự thay thế của các nguyên tử khác 16 với hóa trị thấp hơn hóa trị của silic tạo ra điện tích âm trong mạng lưới, điện tích này có thể được trung hòa bởi proton, do đó tạo ra tính axit cho vật liệu. Trong thời gian gần đây, HMS, Al-HMS, Ti-HMS, Al-SBA-15 và các cấu trúc thế kim loại thu hút nhiều sự chú ý [38, 53]. Trong rất nhiều các kim loại có thể được thay thế đồng hình, Al là kim loại được quan tâm nhiều nhất theo quan điểm về việc tạo ra tính axit. Người ta đã chứng minh được rằng sự thay thế của Al trong cấu trúc silica tạo ra tính axit Bronsted và các tâm axit này tham gia vào nhiều phản ứng quan trọng trong công nghiệp. Trombetta và cộng sự [64] cho rằng các tâm axit Bronsted được tạo thành từ các nhóm silanol đầu tận (terminal silanol groups) ở gần một nguyên tử Al, được gọi là các nhóm hiđroxyl cầu nối như được biểu diễn trên hình 1.12. Hình 1.12: Sự hình thành các nhóm OH đầu tận mang tính axit Bronsted trong các vật liệu MQTB Cho đến nay, có nhiều vật liệu mao quản trung bình chứa Al đã được nghiên cứu như Al-HMS [68, 69], Al-MCM-41 [14], Al-SBA-15 [38]. Mokaya và Jones [68, 69] đã sử dụng phương pháp hấp phụ pyriđin để nghiên cứu các tâm axit Bronsted và Lewis trên Al-HMS và kết luận rằng các vật liệu Al-HMS thể hiện tính axit Bronsted tương đương với zeolit HY. Yue và cộng sự [91] nghiên cứu tính axit của Al-HMS với các tỉ lệ Si/Al khác nhau bằng phương pháp TPD-NH3 cho thấy rằng các vật liệu này tương đương với zeolit HY về lượng các tâm axit cũng như độ mạnh của chúng. Theo G. Muthu Kumaran và cộng sự [38], khi hàm lượng Al trong vật liệu tăng, các tâm axit mạnh nhất được hình thành; lượng tâm axit cũng như độ mạnh của chúng tăng theo hàm lượng của Al chỉ ra rằng sự thay thế đồng hình của Al vào cấu trúc của SBA-15 tạo ra lượng lớn các tâm axit mạnh. Luan và Fourier [93], từ những nghiên cứu về sự hấp phụ pyriđin bằng phổ hồng ngoại đã chỉ ra 17 rằng tính axit Bronsted không thay đổi theo tỉ lệ Si/Al. Những phát hiện này đã đưa ra những thông tin quan trọng về bản chất của các tâm axit; tuy nhiên, sự mô tả toàn diện về đặc tính axit đòi hỏi phải xem xét đến lượng tâm axit và cả sự phân bố độ mạnh axit như là một hàm số của tỉ lệ Si/Al. Có hai phương pháp đã được phát triển để kết hợp các nguyên tử Al vào trong mạng cấu trúc của các vật liệu MQTB là phương pháp tổng hợp trực tiếp [18, 19] và phương pháp "tổng hợp sau" (post-synthesis) [44, 75, 94]. Phương pháp tổng hợp trực tiếp khó thực hiện do sự phân ly của liên kết kim loại Me-O-Si trong môi trường axit cũng như sự khác biệt lớn trong tốc độ thủy phân giữa silic ankoxit và nhôm ankoxit, do đó việc tổng hợp trực tiếp các vật liệu SBA-15 được thế Al trong mạng theo phương pháp thủy nhiệt thông thường là rất khó khăn [85]. Sự kết hợp của Al trong SBA-15 đi theo cơ chế tương tự như với SBA-15 nguyên chất, nghĩa là qua tương tác (S0H+)(X-I+) với (S0H+) là chất HĐBM polime không ion, X- là ion halogenua, I+ là dạng silica vô cơ bị proton hóa (xem phần cơ chế hình thành SBA). Phương pháp tổng hợp "sau" được phát triển bởi Makaya và Jones [70, 71] trên chất mang silica MCM-41. Phương pháp này có thể được xem là một chiến lược để tăng hàm lượng Al kết hợp trong mẫu, dẫn đến sự tăng rất rõ ràng của hàm lượng nhôm dạng EFAL (extraframework aluminum-nhôm ngoài mạng) nhưng hàm lượng Al dạng tứ diện không hề cao hơn so với phương pháp tổng hợp trực tiếp. Đối với vật liệu Al-SBA-15 được tổng hợp theo hai phương pháp trên, diện tích bề mặt và thể tích mao quản của vật liệu được tổng hợp trực tiếp cao hơn so với SBA-15 thông thường, trong khi phương pháp grafting dẫn đến sự giảm các thông số này [22]. Các kết quả nghiên cứu về thành phần hóa học cho thấy tỉ lệ Si/Al trong sản phẩm cuối được tổng hợp theo phương pháp trực tiếp tăng so với tỉ lệ tính trong gel, nhưng với mẫu thu được bởi phương pháp grafting, tỉ lệ này thấp hơn so với trong gel. Kết quả này cũng đã được quan sát thấy trong các nghiên cứu trước đó [18]. Tuy vậy, kết quả nghiên cứu bằng phương pháp TPD-NH3 chỉ ra rằng độ mạnh của các tâm axit của hai mẫu được tổng hợp theo hai phương pháp khác nhau nhưng có cùng tỉ lệ Si/Al trong gel là tương đương. 18 Trong công trình này, chúng tôi tiến hành tổng hợp vật liệu Al-SBA-16 bằng phương pháp tổng hợp trực tiếp đi từ nguồn ankoxit nhằm tạo ra một vật liệu có diện tích bề mặt lớn và tính axit phù hợp cho phản ứng chuyển hóa n-hexan. 1.4. Phản ứng chuyển hóa n-ankan 1.4.1. Quá trình đồng phân hóa n-ankan Đồng phân hoá là quá trình làm thay đổi cấu tạo hoặc phân bố lại vị trí các nguyên tử hay nhóm nguyên tử của hợp chất hữu cơ mà không làm thay đổi khối lượng phân tử của nó. Có nhiều quá trình đồng phân hoá khác nhau như đồng phân hoá n-parafin thành isoparafin, đồng phân hoá các ankyl benzen thành xilen, etyl benzen hay quá trình đồng phân hoá n-buten thành isobuten 5, 13, 58. Trong các quá trình trên, quá trình biến đổi parafin mạch thẳng thành parafin mạch nhánh có ý nghĩa quan trọng nhất trong công nghiệp lọc hoá dầu bởi các isoparafin không những là cấu tử quý dùng để cải thiện chất lượng xăng mà chúng còn là nguồn nguyên liệu cho quá trình tổng hợp những hợp chất có vai trò quan trọng. Ví dụ như isobutan là nguồn cung cấp isobuten, làm nguyên liệu cho quá trình tổng hợp MTBE hay isopentan là nguồn nguyên liệu để tổng hợp cao su isopren,… a. Các phản ứng chính xảy ra trong quá trình đồng phân hoá Dưới tác dụng của chất xúc tác và ảnh hưởng của các điều kiện phản ứng (nhiệt độ, áp suất…), trong quá trình đồng phân hoá có thể xảy ra những phản ứng chính sau: - Phản ứng đồng phân hoá: Đây là phản ứng chính của quá trình đồng phân hoá. Phản ứng làm biến đổi các hiđrocacbon mạch thẳng thành hiđrocacbon mạch nhánh. Tốc độ của phản ứng phụ thuộc vào điều kiện của phản ứng và chất lượng của xúc tác. - Phản ứng crackinh: Là phản ứng bẻ gẫy mạch hiđrocacbon. Tốc độ phản ứng crackinh tăng theo kích thước hiđrocacbon, độ axit của xúc tác và nhiệt độ 19 phản ứng. Sản phẩm của phản ứng crackinh có thể tiếp tục được đồng phân hoá, tạo nên các isoparafin có khối lượng phân tử nhỏ hơn n-parafin ban đầu. - Phản ứng đehiđro hoá đóng vòng và ngưng tụ dẫn đến tạo nhựa, cốc. Đây là phản ứng không mong muốn do nhựa và cốc tạo ra bám trên bề mặt xúc tác, làm xúc tác mất hoạt tính. b. Đặc điểm nhiệt động học Liên kết trong các hợp chất hữu cơ là liên kết cộng hoá trị, các phản ứng hữu cơ xảy ra với tốc độ chậm, không triệt để và theo nhiều hướng khác nhau. Về nhiệt động học, phản ứng đồng phân hóa là phản ứng thuận nghịch và tỏa nhiệt, vì vậy phản ứng sẽ không thuận lợi nếu nhiệt độ tăng quá cao. Sự đồng phân hóa không làm thay đổi số mol nên sự thay đổi áp suất không làm chuyển dịch cân bằng của phản ứng. Cân bằng này chỉ phụ thuộc chủ yếu vào nhiệt độ. Dễ thấy rằng hiệu suất của của phản ứng đồng phân hóa tăng lên khi nhiệt độ giảm do phản ứng là tỏa nhiệt. Để đạt được cực đại các đồng phân có chỉ số octan cao, phản ứng cần tiến hành ở nhiệt độ thấp nhất có thể. Tuy nhiên, ở bất kì nhiệt độ nào thì một vòng phản ứng chỉ chuyển hóa được một phần các n-parafin thành isoparafin. Bởi vậy, người ta thường sử dụng quá trình hồi lưu các n-parafin chưa chuyển hóa và cả những đồng phân iso có trị số octan thấp để tăng độ chuyển hoá, tăng hiệu suất của phản ứng. c. Cơ chế phản ứng Phản ứng đồng phân hóa có thể xảy ra trên xúc tác axit hoặc xúc tác lưỡng chức [31]. Cơ chế xúc tác axit Cơ chế đồng phân hóa và crackinh ankan trên tâm axit được biểu diễn theo sơ đồ 1.1: 20
- Xem thêm -