Tài liệu Vai trò của các tỷ số tài chính trong phát hiện kiệt quệ tài chính - bằng chứng từ các công ty phi tài chính tại việt nam

  • Số trang: 69 |
  • Loại file: PDF |
  • Lượt xem: 52 |
  • Lượt tải: 0
sakura

Đã đăng 11429 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC KINH TẾ TP. HỒ CHÍ MINH **************** HOÀNG THỊ MINH THƯ VAI TRÒ CỦA CÁC TỶ SỐ TÀI CHÍNH TRONG PHÁT HIỆN KIỆT QUỆ TÀI CHÍNH – BẰNG CHỨNG TỪ CÁC CÔNG TY PHI TÀI CHÍNH TẠI VIỆT NAM LUẬN VĂN THẠC SĨ KINH TẾ TP. HỒ CHÍ MINH - NĂM 2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC KINH TẾ TP. HỒ CHÍ MINH **************** HOÀNG THỊ MINH THƯ VAI TRÒ CỦA CÁC TỶ SỐ TÀI CHÍNH TRONG PHÁT HIỆN KIỆT QUỆ TÀI CHÍNH – BẰNG CHỨNG TỪ CÁC CÔNG TY PHI TÀI CHÍNH TẠI VIỆT NAM Chuyên ngành: Tài chính - Ngân hàng Mã số: 60340201 LUẬN VĂN THẠC SĨ KINH TẾ Người hướng dẫn khoa học: PGS.TS. NGUYỄN THỊ LIÊN HOA TP. HỒ CHÍ MINH - NĂM 2013 LỜI CAM ĐOAN Tôi xin cam đoan: bài nghiên cứu này là kết quả nghiên cứu của chính cá nhân tôi, được thực hiện dưới sự hướng dẫn khoa học của PGS.TS Nguyễn Thị Liên Hoa – Giảng viên Trường Đại học Kinh tế Thành phố Hồ Chí Minh. Học viên Hoàng Thị Minh Thư MỤC LỤC Nội dung: Trang LỜI CAM ĐOAN. MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT DANH MỤC BẢNG BIỂU TÓM TẮT ..................................................................................................................1 1. GIỚI THIỆU..........................................................................................................2 1.1. LÝ DO NGHIÊN CỨU ĐỀ TÀI..........................................................................2 1.2. CÂU HỎI NGHIÊN CỨU ..................................................................................3 1.3. MỤC TIÊU CỦA BÀI NGHIÊN CỨU ...............................................................4 1.4. PHẠM VI NGHIÊN CỨU ...................................................................................4 1.5. KẾT CẤU CỦA BÀI NGHIÊN CỨU .................................................................4 2. TỔNG QUAN CÁC NGHIÊN CỨU TRƯỚC ĐÂY ..........................................5 2.1. KHÁI QUÁT VỀ LÝ THUYẾT KIỆT QUỆ TÀI CHÍNH .................................5 2.1.1. Các thuật ngữ cơ bản ........................................................................................5 2.1.2. Chi phí kiệt quệ tài chính ..................................................................................5 2.1.3. Sự hữu dụng của dự báo phá sản doanh nghiệp ...............................................7 2.2. BẰNG CHỨNG THỰC NGHIỆM VỀ DỰ BÁO PHÁ SẢN DOANH NGHIỆP .....................................................................................................................................8 2.2.1. Nghiên cứu của William Beaver - “Các chỉ số tài chính dự báo phá sản” 1966 .............................................................................................................................8 2.2.2. Nghiên cứu của Eward Altman – “ Các chỉ số tài chính, phân tích khác biệt và dự báo phá sản doanh nghiệp” - 1968 ...................................................................9 2.2.3. Các nghiên cứu điển hình khác .......................................................................13 2.2.4. Nghiên cứu của Abbas, Qaiser và Rashid, Abdul –“Mô hình dự báo phá sản cho các doanh nghiệp phi tài chính – Trường hợp của Pakistan” - 2011................15 2.2.5. Nghiên cứu của Akbar, Behzad, Seyed và Mohammad –“Sử dụng mô hình Logit trong dự báo phá sản doanh nghiệp – Bằng chứng từ các doanh nghiệp niêm yết tại Iran” - 2012 ...................................................................................................16 2.3. THẢO LUẬN VỀ CÁC NGHIÊN CỨU DỰ BÁO PHÁ SẢN DOANH NGHIỆP TRÊN THẾ GIỚI VÀ HẠN CHẾ CỦA CÁC NGHIÊN CỨU NÀY ......17 3. PHƯƠNG PHÁP VÀ MÔ HÌNH NGHIÊN CỨU ...........................................19 3.1. PHƯƠNG PHÁP NGHIÊN CỨU, PHẠM VI NGHIÊN CỨU .........................19 3.2. MÔ HÌNH NGHIÊN CỨU ................................................................................22 4. NỘI DUNG VÀ KẾT QUẢ NGHIÊN CỨU .....................................................31 4.1. KẾT QUẢ ÁP DỤNG MÔ HÌNH CHỈ SỐ Z ....................................................31 4.2. KẾT QUẢ ÁP DỤNG PHƯƠNG PHÁP PHÂN TÍCH TỶ LỆ SO SÁNH ......44 4.3. KẾT QUẢ ÁP DỤNG PHƯƠNG PHÁP PHÂN TÍCH TỶ LỆ XU HƯỚNG .47 4.4. KẾT QUẢ ÁP DỤNG MÔ HÌNH LOGIT ........................................................49 5.KẾT LUẬN ...........................................................................................................55 5.1. TỔNG HỢP CÁC KẾT QUẢ NGHIÊN CỨU ..................................................55 5.2. CÁC HẠN CHẾ CỦA ĐỀ TÀI NGHIÊN CỨU ...............................................56 5.3. ĐỀ XUẤT HƯỚNG NGHIÊN CỨU TIẾP THEO ...........................................57 DANH MỤC TÀI LIỆU THAM KHẢO ...............................................................58 DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT CTCP: Công ty cổ phần. DN: Doanh nghiệp. HOSE: Sàn giao dịch chứng khoán Thành phố Hồ Chí Minh. HNX: Sàn giao dịch chứng khoán Hà Nội. MDA – Multivariate discriminant analysis: Phân tích đa khác biệt. DANH MỤC BẢNG BIỂU Trang Bảng 3.1: Danh sách các công ty trong mẫu nghiên cứu tại Việt Nam ....................21 Bảng 3.2: Các tỷ số sử dụng trong phương pháp phân tích tỷ lệ và phân tích tỷ lệ xu hướng.........................................................................................................................26 Bảng 4.1a: Trung bình và độ lệch chuẩn của nhóm các chỉ số đòn bẩy của các công ty phá sản ...................................................................................................................32 Bảng 4.1b: Trung bình và độ lệch chuẩn của nhóm các chỉ số thanh khoản của các công ty phá sản ..........................................................................................................33 Bảng 4.1c:Trung bình và độ lệch chuẩn của nhóm các chỉ số khả năng sinh lời của các công ty phá sản ...................................................................................................33 Bảng 4.1d: Trung bình và độ lệch chuẩn của nhóm các chỉ số hiệu quả sử dụng tài sản của các công ty phá sản.......................................................................................34 Bảng 4.2a: Trung bình và độ lệch chuẩn của nhóm các chỉ số đòn bẩy của các công ty không phá sản ........................................................................................................35 Bảng 4.2.b: Trung bình và độ lệch chuẩn của nhóm các chỉ số thanh khoản của các công ty không phá sản ...............................................................................................36 Bảng 4.2.c: Trung bình và độ lệch chuẩn của nhóm các chỉ số khả năng sinh lời của các công ty không phá sản ........................................................................................36 Bảng 4.2.d: Trung bình và độ lệch chuẩn của nhóm các chỉ số hiệu quả sử dụng tài sản của các công ty không phá sản ...........................................................................37 Bảng 4.3a: Kiểm định sự bằng nhau của trung bình và phương sai của nhóm các chỉ số đòn bẩy. ................................................................................................................38 Bảng 4.3b: Kiểm định sự bằng nhau của trung bình và phương sai của nhóm các chỉ số thanh khoản...........................................................................................................38 Bảng 4.3c: Kiểm định sự bằng nhau của trung bình và phương sai của nhóm các chỉ số sinh lời ..................................................................................................................39 Bảng 4.3d: Kiểm định sự bằng nhau của trung bình và phương sai của nhóm các chỉ số hiệu quả sử dụng tài sản. ......................................................................................39 Bảng 4.4: Các biến đưa vào mô hình nghiên cứu tại Việt Nam ...............................40 Bảng 4.5: Hệ số của mô hình nghiên cứu tại Việt Nam ............................................41 Bảng 4.6: Giá trị Z tối ưu trong nghiên cứu tại Việt Nam ........................................41 Bảng 4.7: Kết quả phân loại của mô hình nghiên cứu tại Việt Nam ........................42 Bảng 4.8: Wilks' Lambda của mô hình nghiên cứu tại Việt Nam ............................44 Bảng 4.9: Kết quả phân loại của phương pháp phân tích tỷ lệ cho các công ty phá sản tại Việt Nam ........................................................................................................45 Bảng 4.10: Kết quả phân loại của phương pháp phân tích tỷ lệ cho các công ty không phá sản tại Việt Nam ......................................................................................46 Bảng 4.11: Kết quả phân loại của phương pháp phân tích tỷ lệ xu hướng cho các công ty phá sản tại Việt Nam ....................................................................................48 Bảng 4.12: Tổng hợp kết quả các phương pháp nghiên cứu tại Việt Nam ...............49 Bảng 4.13: Kiểm định T sự bằng nhau của giá trị trung bình ...................................50 Bảng 4.14: Kết quả mô hình hồi quy Logit...............................................................51 Bảng 4.15: Kết quả phân loại mô hình Logit ............................................................51 Bảng 4.16: Kết quả kiểm định Wald .........................................................................52 Bảng 4.17: Kết quả kiểm định forward Wald ...........................................................53 Bảng 4.18: Kết quả phân loại của kiểm định forward Wald .....................................53 1 TÓM TẮT Bài nghiên cứu nhằm xác định mối quan hệ giữa các tỷ số tài chính và kiệt quệ tài chính của các công ty phi tài chính niêm yết trên thị trường chứng khoán Việt Nam trong giai đoạn từ năm 2008 đến tháng 9 năm 2013. Hay nói một cách khác, bài nghiên cứu này kiểm định rằng có hay không các tỷ số tài chính có thể dự báo được tín hiệu kiệt quệ tài chính trong bối cảnh hoạt động kinh doanh bình thường. Phương pháp sử dụng trong nghiên cứu này bao gồm phương pháp phân tích đa biệt thức (MDA), phương pháp so sánh tỷ lệ, phương pháp phân tích tỷ lệ xu hướng và mô hình Logit. Kết quả của phương pháp MDA là tỷ lệ dự đoán chính xác là 70% và phương pháp mô hình Logit là 88,9%. Kết quả thực nghiệm cho thấy rằng, các tỷ số tài chính có đủ sức mạnh để dự đoán dấu hiệu kiệt quệ tài chính trên thị trường chứng khoán tại Việt Nam. Kết quả này cũng phù hợp với các nghiên cứu gần đây của Beaver cho thị trường Châu Âu, nghiên cứu của Abbas và cộng sự tại Pakistan, nghiên cứu Akbar, Behzad, Seyed và Mohammad tại Iran. Các kết quả thực nghiệm của nghiên cứu này có thể được sử dụng như một bàn đạp để cho các nhà nghiên cứu trong tương lai - những người quan tâm trong việc tìm kiếm dự đoán tốt nhất cho sự phá sản phát triển một mô hình dự báo và đánh giá độ chính xác phân loại của nó. 2 1. GIỚI THIỆU 1.1. LÝ DO NGHIÊN CỨU ĐỀ TÀI Có rất nhiều lý do khiến cho một doanh nghiệp biến mất khỏi thị trường. Nguyên nhân có thể là bị kiệt quệ tài chính, thanh lý hoặc bị sát nhập vào một công ty khác. Trong bối cảnh hội nhập kinh tế ngày càng sâu rộng, sự cạnh tranh giữa các doanh nghiệp (DN) trên thị trường ngày càng lớn nên sự rút lui hay phá sản của một bộ phận DN là điều không thể tránh khỏi. Đặc biệt, do những tác động tiêu cực của cuộc khủng hoảng kinh tế toàn cầu hiện nay, tình trạng khó khăn của nền kinh tế đã và đang dẫn tới sự phá sản hàng loạt của các DN, kể cả các DN ở các nước phát triển và các nước đang phát triển trong đó có Việt Nam. DN phá sản sẽ gây ra nhiều tác động tiêu cực cho cả xã hội và nền kinh tế. Về mặt kinh tế: Một doanh nghiệp bị phá sản trong điều kiện ngày nay có thể dẫn đến những tác động tiêu cực. Khi quy mô của doanh nghiệp phá sản càng lớn, tham gia vào quá trình phân công lao động của ngành nghề đó càng sâu và rộng, số lượng bạn hàng ngày càng đông, thì sự phá sản của nó có thể dẫn đến sự phá sản hàng loạt của các doanh nghiệp bạn hàng theo "hiệu ứng domino" - phá sản dây chuyền. Về mặt xã hội: Phá sản doanh nghiệp để lại những hậu quả tiêu cực nhất định về mặt xã hội bởi nó làm tăng số lượng người thất nghiệp, làm cho sức ép về việc làm ngày càng lớn và có thể làm nảy sinh các tệ nạn xã hội, thậm chí các tội phạm. Về mặt chính trị: Phá sản dây chuyền sẽ dẫn tới sự suy thoái và khủng hoảng nền kinh tế quốc gia, thậm chí khủng hoảng kinh tế khu vực và đây là nguyên nhân trực tiếp dẫn đến những khủng hoảng sâu sắc về chính trị. Từ những phân tích trên, chúng ta thấy DN bị phá sản sẽ trở thành vấn đề thu hút sự quan tâm của nhiều bên liên đới, bao gồm những người có lợi ích trực tiếp từ DN như cổ đông, công nhân viên, chủ nợ và cả những người ít liên quan trực tiếp tới DN như các nhà quản lý và chính phủ. Như vậy phá sản doanh nghiệp có thể gây ra 3 những chấn thương đáng kể (tức là chi phí cao và tổn thất nặng nề) đến các bên liên quan, nên việc dự đoán nó là rất có lợi. Điều này thúc đẩy các nhà nghiên cứu phải đi tìm những công cụ để phát hiện các triệu chứng bất lợi trước khi một thực thể công ty biến mất. Fitzpatrick (1931) và Merwin (1942) là những nhà nghiên cứu đầu tiên đã cố gắng để xác định sức mạnh tiềm năng của các chỉ số tài chính như là tín hiệu dự báo kiệt quệ tài chính. Sau đó, Altman (1968) đã giới thiệu phương pháp phức tạp và tinh vi hơn đó là phương pháp phân tích đa biệt thức, sử dụng các chỉ tiêu tài chính như một công cụ để báo hiệu kiệt quệ tài chính. Mục đích của bài nghiên cứu này là để kiểm tra khả năng dự báo kiệt quệ tài chính của các tỷ số tài chính bằng các kỹ thuật đã được nghiên cứu, phát triển và được chấp nhận rộng rãi. Để làm được điều này, bài nghiên cứu sử dụng phương pháp phân tích tỷ lệ so sánh, phân tích tỷ lệ xu hướng, mô hình chỉ số Z và mô hình Logit. Cần lưu ý rằng bài nghiên cứu này không nhằm mục đích để tìm các chỉ số tốt nhất cho dự báo kiệt quệ tài chính tại Việt Nam, mặc dù một số chi tiết kỹ thuật của mô hình logit và mô hình chỉ số Z được ước tính để tìm ra sức mạnh giải thích tốt nhất trong việc dự đoán khả năng kiệt quệ tài chính. 1.2. CÂU HỎI NGHIÊN CỨU Các câu hỏi đề cập đến trong bài nghiên cứu này là: Thông tin báo cáo tài chính có thể được sử dụng để phân biệt giữa nguy cơ phá sản và không phá sản các công ty Việt Nam trong điều kiện hoàn cảnh kinh tế bình thường không? Câu hỏi nghiên cứu được phát triển để đáp ứng với các vấn đề nghiên cứu. Ngoài ra, các câu hỏi sẽ giúp xác định rõ ràng hơn ranh giới nghiên cứu. 4 1.3. MỤC TIÊU CỦA BÀI NGHIÊN CỨU Để điều tra thông tin báo cáo tài chính có đủ phân loại có khả năng phá sản và không phá sản của các công ty trong bối cảnh Việt Nam trong hoàn cảnh kinh tế bình thường. 1.4. PHẠM VI NGHIÊN CỨU Phạm vi nghiên cứu của đề tài này là các công ty cổ phần thuộc khu vực phi tài chính bị hủy niêm yết trên sàn chứng khoán HOSE và HNX bởi Ủy ban chứng khoán và sàn giao dịch từ năm 2008 đến tháng 9 năm 2013 vì tính thanh khoản yếu kém hay hoạt động kinh doanh thua lỗ kéo dài. 1.5. KẾT CẤU CỦA BÀI NGHIÊN CỨU Đề tài nghiên cứu này được người viết trình bày theo thứ tự như sau: Phần 1: Giới thiệu. Phần 2: Tổng quan các nghiên cứu trước đây. Phần 3: Phương pháp và mô hình nghiên cứu Phần 4: Kết quả nghiên cứu Phần 5: Kết luận và hướng phát triển của đề tài nghiên cứu. 5 2. TỔNG QUAN CÁC NGHIÊN CỨU TRƯỚC ĐÂY 2.1. KHÁI QUÁT VỀ LÝ THUYẾT KIỆT QUỆ TÀI CHÍNH Trong phần này, người viết giới thiệu về các thuật ngữ cơ bản được sử dụng trong dự báo phá sản doanh nghiệp, các chi phí kiệt quệ tài chính và tính hữu ích của mô hình dự báo phá sản doanh nghiệp. Mặt khác, phần này người viết cũng nhằm mục đích mô tả các yếu tố quan trọng trong dự báo phá sản doanh nghiệp. 2.1.1. Các thuật ngữ cơ bản Kiệt quệ tài chính (financial distress) xảy ra khi doanh nghiệp không đáp ứng được các hứa hẹn với chủ nợ hay đáp ứng một cách khó khăn. Đôi khi, kiệt quệ tài chính đưa đến phá sản, đôi khi nó chỉ có nghĩa là công ty đang gặp khó khăn, rắc rối về tài chính. Như vậy kiệt quệ tài chính bao gồm nguy cơ phá sản và sự phá sản. 2.1.2. Chi phí kiệt quệ tài chính Trên quan điểm của lý thuyết đánh đổi, giá trị doanh nghiệp sẽ được phân chia thành ba phần: Giá nghiệp trị doanh Giá trị doanh nghiệp khi Hiện giá của = được tài trợ hoàn toàn + tấm chắn bằng vốn cổ phần thuế Hiện giá của - chi phí kiệt quệ tài chính Chi phí kiệt quệ tài chính tùy thuộc vào xác suất kiệt quệ và độ lớn của chi phí phải gánh chịu nếu kiệt quệ tài chính xảy ra. 6 Giá trị công ty PV (tấm chắn thuế) PV (chi phí kiệt quệ tài chính) Giá trị công ty khi có thuế và nợ Giá trị thực của công ty Giá trị công ty được tài trợ 100% vốn cổ phần 0 D/E* (D/E) Tỷ lệ nợ tối ưu Hình 2.1 – Cấu trúc vốn tối ưu và giá trị doanh nghiệp Nguồn: Trần Ngọc Thơ và cộng sự, 2007. Tài chính doanh nghiệp hiện đại. Hồ Chí Minh: nhà xuất bản Thống kê, trang 380. Hình trên cũng cho thấy sự đánh đổi giữa lợi ích thuế và chi phí kiệt quệ tài chính ấn định cấu trúc vốn tối ưu như thế nào. Khi tỷ lệ nợ ngày càng tăng, cùng với sự gia tăng từ lợi ích tấm chắn thuế thì chi phí kiệt quệ tài chính cũng gia tăng. Đến một lúc nào đó, khi mà với mỗi tỷ lệ nợ tăng thêm, hiện giá lợi ích từ tấm chắn thuế không cao hơn hiện giá chi phí kiệt quệ tài chính thì việc vay nợ không còn mang lại lợi ích cho doanh nghiệp mà ngược lại còn làm cho tổng giá trị doanh nghiệp giảm dần. Theo lý thuyết này, một doanh nghiệp nên gia tăng nợ cho đến khi giá trị từ hiện giá của tấm chắn thuế vừa đủ để được bù trừ bằng gia tăng trong hiện giá của các chi phí kiệt quệ tài chính. Chi phí kiệt quệ tài chính bao gồm: 7 (i) Chi phí kiệt quệ tài chính nhưng chưa đưa đến phá sản: chi phí xuất phát từ các quyết định sai lầm trong quá trình hoạt động và đầu tư có thể được đưa ra do các mâu thuẫn quyền lợi giữa trái chủ và cổ đông khi doanh nghiệp rơi vào tình trạng kiệt quệ tài chính. Các cổ đông hành động vì quyền lợi cá nhân có thể chuyển rủi ro từ họ sang cho các chủ nợ gánh chịu, bằng cách thi hành các trò chơi làm giảm tổng giá trị của doanh nghiệp. Các trò chơi ở đây có thể là “ dịch chuyển rủi ro”, “từ chối đóng góp cổ phần”, “ thu tiền và bỏ chạy”, “ thả mồi bắt bóng”, “ kéo dài thời gian”… Sự gia tăng các chi phí soạn thảo, giám sát và thực thi các hợp đồng vay khi ngăn ngừa các trò chơi này. (ii) Chi phí phá sản: Các chi phí trực tiếp gắn liền với việc phá sản như chi phí pháp lý, hành chính, chi phí kế toán và các chi phí gián tiếp phản ánh các khó khăn trong việc quản lý một công ty đang bị tái tổ chức như chi phí do mất khách hàng, mất nhân viên có năng lực… 2.1.3. Sự hữu dụng của dự báo phá sản doanh nghiệp Rõ ràng là phá sản doanh nghiệp có thể gây ra chấn thương đáng kể cho các bên liên quan. Nghiên cứu của Fitzpatrick (1931) cho rằng có bảy nhóm các bên liên quan bị ảnh hưởng bởi phá sản doanh nghiệp đó là người lao động, cộng đồng, cổ đông, các chủ nợ, ngân hàng, người sở hữu trái phiếu, hội đồng quản trị và chính phủ. Sự hữu ích của dự báo phá sản doanh nghiệp có thể giúp cho các bên liên quan tránh hoặc ít nhất là giảm thiểu các tác động bất lợi của phá sản doanh nghiệp. Dự báo phá sản doanh nghiệp được sử dụng rộng rãi trong những mục tiêu khác nhau của các bên liên quan. Ví dụ như nhà quản lý, chủ sở hữu sử dụng dự đoán phá sản doanh nghiệp như là một công cụ cảnh báo sớm và có thể sẽ có những hành động thích hợp để tránh phá sản doanh nghiệp. Các nhà đầu tư, cổ đông sử dụng dự báo kiệt quệ tài chính để ngăn chặn những thiệt hại đáng kể họ phải chịu khi công ty thanh lý phá sản. Chủ nợ (tức ngân hàng và các tổ chức tài chính) sử dụng các kỹ thuật dự báo phá sản doanh nghiệp trong việc kiểm tra mức độ rủi ro danh mục đầu tư của họ hoặc có thể để đánh giá xác suất của sự thất bại nếu cho vay mới. Kiểm 8 toán viên sử dụng phương pháp dự báo phá sản trong việc đánh giá có hay không một công ty đang trên bờ vực của sự phá sản. Cuối cùng, cơ quan quản lý sử dụng các kỹ thuật khác nhau để giám sát tình hình tài chính của các công ty theo quy định. Đây là những khía cạnh quan trọng của dự báo phá sản doanh nghiệp. Phần tiếp theo người viết sẽ trình bày tóm tắt lại các kết quả nghiên cứu của một số tác giả trên thế giới về dự báo phá sản doanh nghiệp, cụ thể như sau: 2.2. BẰNG CHỨNG THỰC NGHIỆM VỀ DỰ BÁO PHÁ SẢN DOANH NGHIỆP 2.2.1. Nghiên cứu của William Beaver - “Các chỉ số tài chính dự báo phá sản” 1966 Bằng nghiên cứu thực nghiệm 79 doanh nghiệp kinh doanh thất bại và một số lượng tương ứng các doanh nghiệp kinh doanh thành công (các cặp doanh nghiệp này cùng ngành và quy mô tài sản tương tự) cho giai đoạn từ năm 1954-1964, bài nghiên cứu đã phân tích, đánh giá từng chỉ số tài chính nhằm đưa ra những tiêu chí dự báo phá sản doanh nghiệp thông qua việc quan sát các chỉ số tài chính này. Tổng cộng đã có 30 chỉ số tài chính được chia thành 5 nhóm (các tỷ số dòng tiền, tỷ số doanh thu thuần, tỷ số nợ phải trả trên tổng tài sản, chỉ số tài sản thanh khoản trên tổng tài sản, chỉ số tài sản thanh khoản nhanh, các tỷ số vòng quay) đã được sử dụng. Kết quả cho thấy các doanh nghiệp lâm vào tình trạng khủng hoảng tài chính là các doanh nghiệp có ít tiền mặt, ít hàng tồn kho nhưng nhiều nợ phải thu. Nghiên cứu của Beaver cũng chỉ ra rằng tỷ lệ lưu chuyển tiền thuần/tổng nợ phải trả là chỉ tiêu quan trọng nhất trong việc dự báo dấu hiện khủng hoảng và phá sản doanh nghiệp. Chỉ tiêu này phản ảnh tính cân đối giữa khả năng tạo tiền của doanh nghiệp với số nợ mà doanh nghiệp phải thanh toán, và do đó nó thể hiện rõ ràng nhất khả năng thanh toán của doanh nghiệp. Bên cạnh khả năng sinh lời của tài sản (thu nhập 9 thuần/tổng tài sản) và hệ số nợ (tổng nợ phải trả/tổng tài sản) cũng là những chỉ tiêu quan trọng trong việc phát hiện dấu hiệu khủng hoảng và phá sản doanh nghiệp bởi vì các chỉ tiêu này phản ảnh hiệu quả hoạt động kinh doanh của doanh nghiệp và mức độ rủi ro tài chính mà doanh nghiệp đang mắc phải. 2.2.2. Nghiên cứu của Eward Altman – “ Các chỉ số tài chính, phân tích khác biệt và dự báo phá sản doanh nghiệp” - 1968 Bài nghiên cứu đã sử dụng phương pháp tiếp cận đa biệt thức thay thế cho các phương pháp phân tích chỉ số truyền thống trước đây. Có thể nói Altman là người tiên phong giới thiệu phương pháp tiếp cận đa biệt thức trong lĩnh vực dự báo phá sản doanh nghiệp. Altman đã nghiên cứu mẫu bao gồm 66 công ty với 33 công ty ở mỗi nhóm. Nhóm phá sản (kiệt quệ) (nhóm 1) là những công ty đã nộp đơn phá sản theo chương 10 của Luật Phá Sản Hoa Kỳ trong giai đoạn từ 1946 đến 1965. Nhóm 2 bao gồm một mẫu ghép đôi của các công ty với điều kiện cùng ngành và kích cỡ doanh nghiệp. Phạm vi tài sản của các công ty trong nhóm 2 cũng bị giới hạn nghiêm ngặt từ 1 triệu USD đến 25 triệu USD. Sau đó, Atlman đã tiến hành thu thập các bảng báo cân đối kế toán và báo cáo kết quả hoạt động kinh doanh và một danh sách gồm 22 biến hữu ích được thu thập để đánh giá. Các biến được phân thành 5 nhóm, bao gồm nhóm các chỉ số thanh khoản, nhóm chỉ số lợi nhuận, nhóm chỉ số đòn bẩy, nhóm chỉ số khả năng thanh toán và nhóm chỉ số hoạt động. Kết quả có 5 tỷ số đã được chọn vì chúng thể hiện tốt nhất trong việc liên kết dự báo phá sản các công ty. Biệt thức cuối cùng được thể hiện như sau: Z = 0,012X1 + 0,014X2 + 0,033X3 + 0,006X4 + 0,999X5 Trong đó: X1 = Working capital/Total assets = Vốn luân chuyển/Tổng tài sản, X2 = Retained earning/ Total assets = Lợi nhuận giữ lại/Tổng tài sản, X3 = Earning before tax and interest/Total assets = EBIT/Tổng tài sản, 10 X4 = Market value equity/Book value of total liabilities = Giá trị thị trường của vốn chủ sở hữu/Giá trị sổ sách của nợ phải trả, X5 = Sales/Total assets = Tổng doanh thu/Tổng tài sản, Z = Overal index = chỉ số tổng hợp. Trong mô hình này, các biến từ đến X1 đến X4 đều phải được tính toán bằng giá trị phần trăm. Riêng biến X5 được giữ nguyên, không tính tỷ lệ phần trăm. Các điểm ngưỡng cho chỉ số Z như sau: Z < 1,81: Phá sản 1,81 < Z < 2,99: Không rõ ràng 2,99 < Z: Lành mạnh Mẫu ban đầu gồm 33 công ty mỗi nhóm, được sử dụng bằng cách sử dụng dữ liệu báo cáo tài chính thu thập một năm trước khi phá sản. Bởi vì các hệ số biệt thực và các phân phối nhóm được xây dựng từ mẫu nghiên cứu này, nên sự phân loại được kỳ vọng rất cao. Điều này xảy ra bởi vì các công ty được phân loại bằng sử dụng chức năng đa biệt thức, thực tế, là dựa vào các công cụ đo lường riêng lẻ cho cùng các công ty này. Ma trận phân loại cho mẫu gốc được biểu diễn trong bảng 2.1: Bảng 2.1: Ma trận phân loại mẫu gốc trong mẫu nghiên cứu Atlman (1968) Thực tế Số đúng Phần Nhóm 1 Nhóm 2 Nhóm 1 31 2 Nhóm 2 1 32 trăm Phần trăm không Mẫu n chính xác chính xác Dự đoán Kiểu I 31 94 6 33 Kiểu II 32 97 3 33 Tổng 63 95 5 66 11 Mô hình thể hiện cực kỳ chính xác trong việc phân loại đúng 95% cho tổng các công ty trong mẫu. Còn nhóm I sai số chỉ có 6% trong lúc nhóm II thậm chí còn ít hơn 3%. Những kết quả này là rất tốt như kỳ vọng. Sau nhiều năm phát triển, mô hình được thay đổi một số đặc điểm kĩ thuật để việc vận dụng được thuận tiện hơn: Z = 1,2X1 + 1,4X2 + 3,3X3 + 0,64X4 + 0,999X5 Với mô hình dạng này, các biến từ đến X1 đến X4 không phải tính toán bằng giá trị phần trăm. Các điểm ngưỡng cho chỉ số Z như sau: Z < 1,81: Phá sản 1,81 < Z < 2,99: Không rõ ràng 2,99 < Z: Lành mạnh Mô hình Z - Score của Altman (1993) đã ước đoán chính xác 66% doanh nghiệp bị phá sản và 78% doanh nghiệp không bị phá sản trước đó một năm. Nhờ những dự đoán khá chính xác của mô hình này nên chỉ số được sử dụng không chỉ tại Mỹ mà còn được phổ biến tại nhiều quốc gia trên thế giới. Tuy nhiên, mô hình này không chỉ ra được thời gian phá sản dự kiến, vì việc phá sản của một doanh nghiệp còn phụ thuộc vào tình hình kinh tế, việc phá sản hợp pháp không bao giờ có thể xảy ra mà bất chấp tình hình khủng hoảng. Từ chỉ số Z ban đầu được sử dụng cho các doanh nghiệp đã cổ phần hóa, Altman phát triển thêm Z’, Z’’ để có thể áp dụng loại hình cho các loại hình doanh nghiệp khác: Mô hình Z’- score dùng cho các doanh nghiệp chưa cổ phần hóa, ngành sản xuất: Z’ = 0,717X1 + 0,847X2 + 3,107X3 + 0,420X4 + 0,998X5 12 Trong đó các biến đều được giữ nguyên với mô hình cũ, ngoại trừ biến X4. X4 trong chỉ số Z sử dụng giá trị thị trường của vốn chủ sở hữu, còn trong chỉ số Z’, X4 sử dụng giá trị sổ sách. Z’ > 2,9 : Lành mạnh 1,23 < Z’ < 2,9: Không rõ ràng Z’ < 1,23 : Phá sản Ngoài ra từ mô hình gốc Z-Score của mình, Altman đã thực hiện phân tích đặc điểm và độ chính xác của một mô hình khi không có biến X5 – Sales/Total assets – doanh thu/tổng tài sản nhằm giảm thiểu ảnh hưởng do ngành. Tỷ số doanh thu/tổng tài sản thay đổi rất lớn theo ngành, tỷ số này ở các công ty thương mại dịch vụ lớn hơn so với các công ty sản xuất vì các công ty thương mại cần ít vốn hơn. Thêm vào đó, Altman cũng dùng mô hình này để đánh giá tình trạng tài chính của các của các DN ngoài Hoa Kỳ. Cụ thể, Altman, Hatzell và Peck (1995) đã áp dụng mô hình Z’’Score cho các công ty thuộc các nền kinh tế mới nổi, đặc biệt các công ty Mexico đã phát hành trái phiếu Euro tính theo USD. Giá trị sổ sách của vốn chủ sở hữu được dùng cho biến X4 trong trường hợp này. Kết quả phân loại đồng nhất với mô hình 5 biến Z’-Score. Mô hình mới Z’’-Score là: Z’’ = 6,56X1 + 3,26X2 + 6,72X3 + 1,05X4 Các điểm ngưỡng cho mô hình này như sau: Z’’ < 1,1: Phá sản 1,1 < Z’’ < 2,6: Không rõ ràng 2,6 < Z’’: Lành mạnh Giống với chỉ số Z’, biến X4 trong chỉ số Z” vẫn sử dụng giá trị sổ sách của vốn chủ sở hữu. Điểm sửa đổi của mô hình này là không sử dụng biến X và dẫn đến hệ số của các biến từ X1 đến X4 đều thay đổi so với chỉ số Z’. Chỉ số Z” có thể được dùng cho hầu hết các ngành và các loại hình doanh nghiệp.
- Xem thêm -