Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Y dược Tổng quan nghiên cứu đa dược lý mạng trong tìm kiếm đích phân tử liên quan đến u...

Tài liệu Tổng quan nghiên cứu đa dược lý mạng trong tìm kiếm đích phân tử liên quan đến ung thư

.PDF
67
39
85

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI VN U KHOA Y DƢỢC ha rm ac y, LÝ THỊ DUYÊN dP TỔNG QUAN NGHIÊN CỨU ĐA DƢỢC LÝ an MẠNG TRONG TÌM KIẾM ĐÍCH PHÂN TỬ Me dic ine LIÊN QUAN ĐẾN UNG THƢ Sc ho ol of KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC NGÀNH DƢỢC HỌC QH.2013.Y Ngƣời hƣớng dẫn: TS. LÊ THỊ THU HƢỜNG PGS.TS. LÊ ĐỨC HẬU Co p yri gh t© Khóa: HÀ NỘI - 2018 LỜI CẢM ƠN VN U Trƣớc hết tôi xin gửi lời cảm ơn tới những ngƣời đã giúp đỡ tôi trong quá trình thực hiện khóa luận này. an dP ha rm ac y, Tôi xin gửi lời cảm ơn sâu sắc đến TS. Lê Thị Thu Hƣờng - Giảng viên Bộ môn Dƣợc liệu và Dƣợc học cổ truyền, khoa Y Dƣợc, Đại học Quốc Gia Hà Nội; PGS.TS. Lê Đức Hậu - Giảng viên Bộ môn Kỹ thuật máy tính và mạng, khoa Công Nghệ Thông Tin, Đại học Thủy Lợi đã trực tiếp hƣớng dẫn, tận tình giúp đỡ, hƣớng dẫn tôi từ những ngày đầu làm khóa luận, tạo điều kiện thuận lợi để tôi có thể nghiên cứu và hoàn thành khóa luận này. Tôi cũng xin gửi lời cảm ơn tới những thầy cô khác trong khoa Y Dƣợc, Đại học Quốc Gia Hà Nội đã luôn giúp đỡ tôi trong quá trình học tập, giúp tôi có những kiến thức nền quý giá để chuẩn bị sẵn sàng cho việc hoàn thành khóa luận. Me dic ine Tôi xin chân thành cám ơn TS. Phạm Thế Hải - Giảng viên bộ môn Hóa Dƣợc, Đại học Dƣợc Hà Nội đã giúp đỡ tôi rất nhiều trong quá trình tìm kiếm, thu thập tài liệu, tận trình trao đổi nhiều vấn đề có liên quan đến khóa luận. ho ol of Cuối cùng, tôi xin đƣợc tri ân gia đình và bạn bè đã luôn đồng hành bên tôi những lúc khó khăn, bận rộn, luôn là nguồn động lực để tôi làm việc và phấn đấu vƣơn lên. Hà Nội, tháng 05 năm 2018 Sinh viên Co p yri gh t© Sc Xin chân thành cảm ơn! Lý Thị Duyên KÝ HIỆU VÀ CHỮ VIẾT TẮT Cục quản lý thực phẩm và dƣợc phẩm Hoa Kỳ CSDL Cơ sở dữ liệu DEG Gen biểu hiện khác thƣờng, differentially expression gene DNA Deoxyribonucleic acid RNA Ribonucleic acid mRNA Ribonucleic acid thông tin MS Phƣơng pháp khổi phổ GO Gene Ontology NP Đa dƣợc lý mạng, Network Pharmacology PPI Tƣơng tác protein, Protein-Protein Interaction PPIN Mạng tƣơng tác protein, Protein-Protein Interaction Network Hub Nút có bậc cao trong mạng DPIN Mạng tƣơng tác thuốc – protein DDIN Mạng tƣơng tác thuốc – thuốc EGFR Thụ thể yếu tố tăng trƣởng biểu bì ho ol of Me dic ine an dP ha rm ac y, VN U FDA Ung thƣ vú bộ ba âm tính Sc TNBC t© HDAC Co p yri gh FGFR1 Histon deacetylase Thụ thể yếu tố tăng trƣởng nguyên bào loại 1 DANH MỤC CÁC BẢNG Bảng 1: Các cơ sở dữ liệu về PPI.................................................................... 21 VN U Bảng 2: Đặc điểm dữ liệu microarray đƣợc sử dụng trong ung thƣ tuyến tụy ..... 46 ac y, Bảng 3: Năm chức năng làm giàu hàng đầu của GO và con đƣờng KEGG cho tổng các DEG .................................................................................................. 46 Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm Bảng 4: Hai mƣơi DEG hàng đầu trong PPIN ................................................ 50 DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1: Quá trình nghiên cứu phát triển thuốc .............................................. 3 VN U Hình 1.2: Các dạng đồ thị Graph ...................................................................... 6 ac y, Hình 1.3: Ví dụ về hai cách biểu diễn đồ thị theo ma trận kề và theo danh sách kề ....................................................................................................................... 7 rm Hình 1.4: Các dạng của mạng. (a) mạng vô hƣớng, (b) mạng có định hƣớng, (c) mạng có gắn trọng số ................................................................................... 8 dP ha Hình 1.5: Mạng tƣơng tác giữa thuốc hóa trị với các đích protein tyrosine kinase ............................................................................................................... 10 an Hình 1.6: Mạng tƣơng tác protein-protein của interleukin-10 ........................ 12 Hình 1.7: Minh họa chiến lƣợc can thiệp hiệu quả trong nghiên cứu thuốc ........13 ine Hình 1.8: Mạng tƣơng tác thuốc-thuốc ........................................................... 15 Me dic Hình 2.1: Logo phần mềm Cytoscape - công cụ phân tích và xây dựng hình ảnh trực quan cho PPIN .................................................................................. 19 Hình 2.2: Logo Phần mềm Gephi ................................................................... 20 of Hình 2.3: Phần mềm lập trình igraph và NetworkX ....................................... 20 ol Hình 2.4: Các cơ sở dữ liệu về tƣơng tác protein ........................................... 21 Sc ho Hình 2.5: Hệ thống lai đôi nấm men giúp phát hiện tƣơng tác giữa các cặp protein.............................................................................................................. 25 t© Hình 2.6: Quá trình phân tích phức hợp protein bằng phƣơng pháp khối phổ ..... 26 gh Hình 2.7: Các cách phân tích topo .................................................................. 27 yri Hình 2.8: Nút trung tâm đại diện trong một mạng. ......................................... 28 Co p Hình 2.9: Ví dụ về cách tính closeness centrality của nút trong một graph ... 29 Hình 2.10: Ví dụ về betweenness centrality ................................................... 30 Hình 2.11: Một số khải niệm trong phân tích cụm ......................................... 31 Hình 2.12: Phân tích làm giàu chú giải sử dụng GO và Reactome trong mạng....... 34 Hình 3.1: Các ứng dụng của đa dƣợc lý mạng ................................................ 37 Hình 3.2: Ứng dụng của đa dƣợc lý mạng trong tìm kiếm thuốc mới ............ 38 VN U Hình 3.3: Mạng PPIN của ung thƣ vú ............................................................. 40 ac y, Hình 3.4: Giá trị hệ số phân cụm của mạng con ung thƣ vú khi xóa 10 gen có giá trị hub, betweenness và closenness. .......................................................... 41 rm Hình 3.5: Giá trị đƣờng đi ngắn nhất của mạng con ung thƣ vú khi xóa 10 gen có giá trị hub, betweenness và closenness. ..................................................... 41 ha Hình 3.6: Các giá trị đột biến có ý nghĩa thống kê của gen có betweenness centraility cao nhất .......................................................................................... 42 dP Hình 3.7: Mạng lƣới liên hệ cơ chế cho các DEG .......................................... 48 an Hình 3.8: Mạng PPI cho các DEG. ................................................................. 49 Co p yri gh t© Sc ho ol of Me dic ine Hình 3.9: Mạng đồng biểu hiện gen cho các DEG. ........................................ 52 MỤC LỤC VN U LỜI CẢM ƠN KÝ HIỆU, CHỮ VIẾT TẮT ac y, DANH MỤC CÁC BẢNG DANH MỤC HÌNH VẼ, ĐỒ THỊ rm ĐẶT VẤN ĐỀ .................................................................................................. 1 ha CHƢƠNG I: TỔNG QUAN ĐA DƢỢC LÝ MẠNG ................................... 3 dP 1.1. Đa dƣợc lý mạng trong nghiên cứu phát triển thuốc ................................. 3 an 1.2. Sơ lƣợc lý` thuyết Graph ............................................................................ 6 1.3. Biểu diễn đa dƣợc lý mạng bằng đồ thị Graph .......................................... 7 ine 1.3.1. Mạng tƣơng tác giữa thuốc với đích phân tử (DPIN) ......................... 9 dic 1.3.2. Mạng tƣơng tác protein – protein (PPIN) ......................................... 11 Me 1.3.3. Mạng tƣơng tác thuốc-thuốc (DDIN) ............................................... 14 of 1.4. Đa dƣợc lý mạng trong tìm kiếm đích tác dụng của thuốc chống ung thƣ .... 16 ho ol CHƢƠNG II: QUY TRÌNH XÂY DỰNG MẠNG TƢƠNG TÁC PROTEIN-PROTEIN (PPIN) ...................................................................... 19 Sc 2.1. Các công cụ phân tích .............................................................................. 19 2.1.1. Cytoscape .......................................................................................... 19 t© 2.1.2. Gephi ................................................................................................. 20 gh 2.1.3. Các phần mềm lập trình .................................................................... 20 yri 2.2. Nguồn dữ liệu ........................................................................................... 21 Co p 2.2.1. Các cơ sở dữ liệu tƣơng tác protein (PPI) ......................................... 21 2.2.2. Các phƣơng pháp thực nghiệm ......................................................... 24 2.3. Phân tích topo của PPIN .......................................................................... 27 2.3.1. Phân tích trung tâm ........................................................................... 27 2.3.2. Phân tích cụm (Clustering analysis) ................................................. 31 2.3.3. Phân tích làm giàu chú giải (Annotation enrichment analysis) ........ 33 VN U 2.4. Các bƣớc cơ bản xây dựng mạng tƣơng tác PPIN ................................... 34 ac y, CHƢƠNG III: PHÂN TÍCH MỘT SỐ VÍ DỤ VỀ ỨNG DỤNG CỦA ĐA DƢỢC LÝ MẠNG TRONG NGHIÊN CỨU ĐÍCH PHÂN TỬ LIÊN QUAN ĐẾN UNG THƢ.............................................................................................. 36 rm 3.1. Ung thƣ và đích phân tử ........................................................................... 36 ha 3.2. Ứng dụng của nghiên cứu đa dƣợc lý mạng trong tìm kiếm đích phân tử liên quan đến ung thƣ ...................................................................................... 37 an dP 3.3. Phân tích một số ví dụ về ứng dụng của đa dƣợc lý mạng trong nghiên cứu đích phân tử liên quan đến ung thƣ .................................................................. 38 3.3.1. Ví dụ 1. Xác định gen đích ung thƣ vú bằng mạng tƣơng tác PPIN ........38 dic ine 3.3.2. Ví dụ 2: Xác định các gen đích điều trị mới và cơ chế trong ung thƣ tuyến tụy bằng phân tích tổng hợp .............................................................. 43 Me CHƢƠNG IV: KẾT LUẬN VÀ KIẾN NGHỊ ............................................ 54 4.1. Kết luận .................................................................................................... 54 of 4.2. Kiến nghị .................................................................................................. 54 Co p yri gh t© Sc ho ol TÀI LIỆU THAM KHẢO ĐẶT VẤN ĐỀ ha rm ac y, VN U Ung thƣ là một trong những căn bệnh nguy hiểm gây tử vong hàng đầu trên thế giới. Ƣớc tính mỗi năm có khoảng 14,1 triệu ngƣời mới mắc và 8,2 triệu ngƣời chết do ung thƣ. Ở Việt Nam, mỗi năm có khoảng 124.000 ca mắc ung thƣ mới với tỷ lệ tử vong chiếm gần 75%. Trong những năm gần đây, khoa học đã có những bƣớc tiến đáng kể trong phòng ngừa và điều trị ung thƣ [15]. Tuy nhiên, ung thƣ vẫn là một thách thức lớn đối với y học hiện đại. Do đó, nghiên cứu thuốc điều trị ung thƣ hiệu quả và an toàn đƣợc xem là hƣớng đi cấp bách hiện nay. yri gh t© Sc ho ol of Me dic ine an dP Hiện nay, việc sử dụng các phân tử nhỏ có khả năng tác động các đích phân tử là các protein hay gene liên quan đến ung thƣ là một trong những liệu pháp hoá trị phổ biến nhất. Các thuốc này chủ yếu tác động lên một đích phân tử là protein đóng vai trò quan trọng trong quá trình sinh sản, biệt hóa, và chết theo chu trình của tế bào ung thƣ. Tuy nhiên, các thuốc này gặp phải một vấn đề lớn là tỷ lệ kháng thuốc cao do các đích phân tử dễ bị đột biến. Bên cạnh đó chúng cũng có thể tác động lên những protein khác của tế bào bình thƣờng (tính không chọn lọc), do đó gây ra nhiều tác dụng không mong muốn, ảnh hƣởng tới thể trạng và chất lƣợng sống của bệnh nhân cũng nhƣ làm giảm hiệu quả lâm sàng của thuốc. Nhƣ vậy, nghiên cứu và phát triển các thuốc điều trị ung thƣ đang gặp phải hai vấn đề chính. Thứ nhất, với việc phát hiện ngày càng nhiều yếu tố bệnh sinh ảnh hƣởng đến tình trạng bệnh, những liệu pháp điều trị dựa trên một mục tiêu phân tử duy nhất tỏ ra kém hiệu quả. Thứ hai, cần phải hệ thống hóa các tƣơng tác phức tạp của chúng trong các quá trình sinh học của cơ thể. Từ đó, chúng ta sẽ xác định đƣợc các đích phân tử quan trọng trong quá trình bệnh sinh, cũng nhƣ dự đoán đƣợc các tác dụng không mong muốn của thuốc. Co p Để giải quyết các vấn đề nêu trên, cách tiếp cận đa dƣợc lý mạng (network pharmacology, NP) hiện là một công cụ hữu ích giúp tìm kiếm đích phân tử mới, cũng nhƣ tìm hiểu sâu cơ chế tác dụng của thuốc. Mạng NP thƣờng có cấu trúc dạng graph, trong đó các protein đóng vai trò là các nút và mối tƣơng quan giữa chúng là các cạnh nối giữa các nút. Một ví dụ đó là 1 dic ine an dP ha rm ac y, VN U mạng tƣơng tác protein – protein (Protein-Protein Interaction Network, PPIN). Tƣơng tác giữa các protein (interactome) ở đây đƣợc hiểu là các quá trình hoá sinh học nhƣ tổng hợp cấu trúc, truyền tín hiệu (signal transduction), vận chuyển (transport) hay phosphoryl hoá… Một nút có thể kết nối với nhiều nút khác (nút có bậc cao >2), protein nhƣ thế gọi là một hub. Các nút không liên kết gọi là non-hub. Trong NP, tầm quan trọng của một protein đƣợc xác định thông qua mức độ thay đổi trong cấu trúc NP khi bỏ đi một nút trong mạng. Do đó, các protein hub thƣờng đƣợc xem là quan trọng hơn trong bảo tồn cấu trúc tổng thể của mạng NP cũng nhƣ hoạt động của tế bào. Chúng có thể đƣợc xem là các đích phân tử tiềm năng trong tìm kiếm các thuốc kháng ung thƣ mới. Ngoài ra, dựa trên tính tƣơng đồng về cấu trúc của các hợp chất hóa học và tƣơng tác của chúng với các protein liên quan đến phản ứng có hại của thuốc, chúng ta có thể dự đoán đƣợc tác dụng không mong muốn của hợp chất đó. Việc xây dựng mạng NP hiện nay đã không còn quá phức tạp do ngày càng nhiều thông tin về tinh thể nhiễu xạ tia X của các đích mới cũng nhƣ thông tin liên quan đến gene (genome) hay protein (proteome) đƣợc tìm thấy . ho ol of Me Xuất phát từ những vấn đề nêu trên, để có một cái nhìn tổng thể về cách tiếp cận đa dƣợc lý mạng trong xác định đích điều trị ung thƣ , chúng tôi đã thực hiện đề tài tổng quan: “Tổng quan nghiên cứu đa dƣợc lý mạng trong tìm kiếm đích phân tử liên quan đến ung thƣ” với hai mục tiêu sau: Co p yri gh t© Sc 1. Trình bày quy trình chung để xây dựng mạng tƣơng tác proteinprotein, mạng tƣơng tác thuốc-đích (protein) và thuốc-thuốc. 2. Phân tích một số ví dụ về ứng dụng của nghiên cứu đa dƣợc lý mạng trong xác định các đích phân tử liên quan đến ung thƣ. 2 CHƢƠNG I: TỔNG QUAN ĐA DƢỢC LÝ MẠNG 1.1. Đa dƣợc lý mạng trong nghiên cứu phát triển thuốc of Me dic ine an dP ha rm ac y, VN U Quá trình nghiên cứu và phát triển thuốc là một quá trình tốn kém cả về thời gian và tiền bạc. Trung bình để ra đời một thuốc mới tiêu tốn 1 tỷ đô la Mỹ, kéo dài từ 10 đến 15 năm bao gồm nhiều giai đoạn khác nhau [43]. Hình 1 mô tả các giai đoạn chung của quá trình nghiên cứu và phát triển thuốc. ol Hình 1.1: Quá trình nghiên cứu phát triển thuốc gh t© Sc ho Việc nghiên cứu thuốc mới bắt đầu bằng cách tìm hiểu cơ chế bệnh sinh để nhận biết các “mục tiêu phân tử” hay đích phân tử [36]. Đích thƣờng là một cấu trúc đại phân tử (protein), VD nhƣ enzyme, kênh xuyên màng... Trong giai đoạn này, đích phân tử đƣợc chọn phải chính xác, tức là nó có ảnh hƣởng lớn đối với quá trình bệnh sinh. Co p yri Bƣớc tiếp theo là sàng lọc tìm kiếm hoạt chất tiềm năng có thể ức chế hoặc tăng hoạt động của đích phân tử. Hàng loạt các chất trong tự nhiên (chiết xuất từ cây cỏ, động vật...) và nhân tạo (tổng hợp hóa học) đƣợc tiến hành thử nghiệm trong phòng nghiên cứu trên các mô hình bệnh tật khác nhau, bao gồm cả thiết kế thuốc trên máy tính [8]. Mục đích chính là nhằm tìm ra các hoạt chất có tác dụng tốt nhất, liều lƣợng thấp nhất và an toàn nhất. Thống kê 3 chỉ ra rằng cứ mỗi 10.000 hợp chất đƣợc nghiên cứu sàng lọc thì chỉ có duy nhất 1 chất may mắn trở thành ứng viên thuốc tiềm năng (Hình 1.1). ac y, VN U Các hoạt chất tiềm năng sẽ đƣợc tiến hành thử nghiệm tiền lâm sàng trên các mô hình động vật (chuột, chó…) nhằm xác định khả năng điều trị cũng nhƣ độ an toàn của hoạt chất trên cơ thể sống, đặc biệt là cơ thể có hệ thống giống con ngƣời [13]. an dP ha rm Ứng viên thành thuốc tiềm năng (có tác dụng tốt trên động vật) sẽ đƣợc tiến hành thử nghiệm lâm sàng (pha I, II và III) [39]. Pha I thực hiện trên ngƣời tình nguyện khỏe mạnh và giai đoạn II-III trên ngƣời bệnh với số lƣợng ngƣời tham gia tăng dần (khoảng 50 ngƣời cho pha I đến khoảng vài ngàn ngƣời cho pha III), nhằm đánh giá hiệu quả, liều lƣợng cũng nhƣ độ an toàn của thuốc. dic ine Đăng ký thuốc và đƣa ra thị trƣờng: sau khi có đầy đủ các dữ liệu khoa học, thuốc đƣợc đăng ký với cơ quan pháp lý, đƣợc bảo hộ độc quyền trong khoảng 10-15 năm, đƣợc sản xuất và bán ra thị trƣờng [37]. yri gh t© Sc ho ol of Me Trong vòng 60 năm qua, công nghệ khoa học đã và đang phát triển một cách chóng mặt. Tuy nhiên, trong lĩnh vực dƣợc học, số lƣợng thuốc mới ra đời ngày càng giảm đi. Cụ thể, từ năm 1950 tới 2008, có 1222 hoạt chất mới (1103 phân tử hóa học và 119 hoạt chất sinh học) đƣợc FDA (Food and Drug Administration, Cục quản lý thực phẩm và dƣợc phẩm Hoa Kỳ) chấp thuận, tức chỉ trung bình 21 thuốc mới đƣợc ra đời hàng năm [30]. Con số này thật đáng lo ngại khi trên thế giới có hàng trăm loại bệnh tật, và nguy hiểm hơn khi những loại bệnh không có thuốc trị ngày càng gia tăng. Gần đây, việc xuất hiện chủng siêu vi khuẩn Escherichia coli kháng colistin, một loại kháng sinh dự phòng chỉ dành cho vi khuẩn đã kháng những kháng sinh khác, dấy lên một tình trạng báo động trong giới y học [26]. Co p Nhƣ vậy, nghiên cứu và phát triển thuốc trƣớc đây chủ yếu dựa trên kinh nghiệm với cách tiếp cận “thử và lỗi” (trial and error), dẫn đến chi phí tăng cao và xác suất thành công thấp. Có rất nhiều lý do cản trở thành công của quá trình này, ví dụ nhƣ đích tác dụng không đúng, không tìm thấy hoặc 4 Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm ac y, VN U tìm thấy hoạt chất không đủ tốt để trở thành thuốc hay các vấn đề liên quan đến độc tính. Trong hơn ba thập kỷ qua, sàng lọc hay thiết kế hợp chất có hoạt tính chọn lọc trên một đích phân tử với mong muốn giảm thiểu tác dụng không mong muốn là hƣớng đi chủ đạo trong nghiên cứu và phát triển thuốc mới [14]. Tuy nhiên, kỷ nguyên hậu genomic đã mở ra một bức tranh vô cùng phức tạp về cơ chế tác dụng của thuốc [25]. Công trình của Yildirim và cộng sự năm 2007 đã chứng minh một cách thuyết phục rằng không chỉ nhiều thuốc có thể gắn với cùng một đích mà trên thực tế một thuốc có thể tác dụng trên nhiều đích [47]. Cơ chế tác dụng đa đích là rất phổ biến trên thuốc kháng ung thƣ, thuốc điều trị bệnh lý thần kinh, kháng sinh và kháng viêm. Năm 2014, David Cook và cộng sự, khi tổng kết các số liệu của các dự án nghiên cứu và phát triển thuốc phân tử nhỏ đƣợc thực hiện bởi tập đoàn Dƣợc phẩm Astra Zeneca trong khoảng thời gian 5 năm (2005-2010) đã chỉ ra rằng xác định đúng đích phân tử là yếu tố then chốt đầu tiên (1-Right target), quyết định thành công của quá trình nghiên cứu và phát triển thuốc mới [9]. Nghiên cứu của Yildirim cũng nhƣ nhiều tác giả sau này về sinh học phân tử và tin sinh học cho thấy đa dƣợc lý mạng (pharmacological network, PN) là một công cụ hữu ích giúp sàng lọc đích mới cũng nhƣ tìm hiểu sâu cơ chế tác dụng của thuốc [38, 47]. Cách tiếp cận đa dƣợc lý mạng giúp xác định các đích phân tử dựa trên tổng hợp các tƣơng tác có thể xảy ra giữa các protein tham gia quá trình bệnh sinh (tƣơng tác protein-protein, mạng lƣới các tƣơng tác này gọi là mạng tƣơng tác protein, Protein-protein interaction network, PPIN), các tƣơng tác có thể có giữa thuốc với các protein trong cơ thể (tƣơng tác thuốc-protein) và sự tƣơng đồng giữa các cấu trúc hóa học của các thuốc và hợp chất nghiên cứu (tƣơng quan thuốc-thuốc). Cách tiếp cận này giúp ngƣời nghiên cứu có một cái nhìn tổng quát về cơ chế bệnh sinh, từ đó xây dựng một chiến lƣợc nghiên cứu và phát triển thuốc hiệu quả nhất. Các mối liên hệ nêu trên thƣờng rất phức tạp và chồng chéo, do đó để nghiên cứu đa dƣợc lý mạng đòi hỏi dữ liệu không lồ về công nghệ sinh học, sinh học phân tử và công nghệ thông tin. Các công cụ tính toán, chủ yếu là dùng tin sinh học (bioinformatics) đƣợc ứng dụng nhiều trong khâu xử lý thông tin và xác định đích phân tử. 5 1.2. Sơ lƣợc lý` thuyết Graph VN U Về mặt hình học, đa dƣợc lý mạng chính là một dạng đồ thị Graph biểu diễn cho các tƣơng tác giữa giữa các protein hay thuốc. Trong toán học, Graph đƣợc định nghĩa là một đồ thị rời rạc bao gồm các đỉnh và các cạnh nối các đỉnh này. Đồ thị này kí hiệu là G(V,E), gồm hai thành phần: ac y, 1. Tập hợp V, bao gồm các đối tƣợng, đƣợc gọi là tập hợp các đỉnh rm (vertex hay node) của đồ thị. 2. Tập hợp E là tập hợp các cạnh (edge) của đồ thị. ha Gọi n và m lần lƣợt là số đỉnh và số cạnh của đồ thị, trong đó dP V  n, E  m ol of Me dic ine an Số lƣợng các cạnh nối với 1 đỉnh gọi là bậc của đỉnh, thƣờng ký hiệu là d(a). Các đỉnh trong graph không nhất thiết có bậc nhƣ nhau. Hình 1.2 biểu diễn một số đồ thị graph có 5 đỉnh là a, b, c, d và e. ho Hình 1.2: Các dạng đồ thị Graph Co p yri gh t© Sc Trong hình 1.2 (1), cạnh (aa) đƣợc gọi là cạnh lặp (loop) và hai cạnh giữa cặp đỉnh (b,d) đƣợc gọi là hai cạnh song song (parallel edges). Một đồ thị đƣợc gọi là một đơn đồ thị (simple graph) nếu nó không có cạnh lặp và cạnh song song (hình 1.2-(2)). Nếu một đồ thị không phải là đơn đồ thị thì chúng ta sẽ gọi nó là đa đồ thị (multigraph). Đồ thị G(V,E) có thể là vô hƣớng (hình 1.2 (1) và 1.2 (2)) hoặc có hƣớng (hình 1.2 (3)) (các thuật ngữ khác xem thêm tại [44]). Đồ thị Graph cũng đƣợc biểu diễn bằng một ma trận kề (adjacency matrix) A có kích thƣớc n×n trong đó: 6  1, if ab  E Aa, b   0, otherwise ac y, VN U Có thể thấy kích thƣớc của cách biểu diễn này là O(n2) bất kể số lƣợng cạnh là nhiều hay ít. Số lƣợng cạnh m của một đồ thị Graph có thể lên tới O(n2) cạnh (ta gọi là đồ thị dầy). Tuy nhiên, nhiều đồ thị (đặc biệt các đồ thị thực tế nhƣ mạng PN) có số lƣợng cạnh m=O(n) (ta gọi là đồ thị thƣa), cách biểu diễn này khá tốn kém dung lƣợng bộ nhớ . rm Để tiết kiệm bộ nhớ, đồ thị Graph cũng có thể đƣợc biểu diễn bằng danh sách kề (adjacency list). Theo đó, với mỗi đỉnh a∈ V, ta lƣu trữ aV d (a)  2m an  dP ha một danh sách các đỉnh kề với nó. Nhƣ vậy, đỉnh a cần một danh sách có d(a) phần tử. Do đó tổng số phần tử của các danh sách là: dic ine Ở đây mỗi cạnh đƣợc đếm hai lần trong tổng bậc của hai đỉnh kề với nó. Cách biểu diễn này phù hợp với cả đồ thị thƣa. Mặc dù tiết kiệm bộ nhớ, cách biểu diễn này không phù hợp với một số thao tác của đồ thị. t© Sc ho ol of Me Ví dụ về hai cách biểu diễn đồ thị cho trong hình dƣới đây: gh Hình 1.3: Ví dụ về hai cách biểu diễn đồ thị theo ma trận kề và theo danh sách kề yri 1.3. Biểu diễn đa dƣợc lý mạng bằng đồ thị Graph Co p Đa dƣợc lý mạng là hệ thống tích hợp của các mạng nhỏ chứa thông tin về tƣơng tác giữa thuốc với đích phân tử (Drug-Protein Interaction Network, DPIN), giữa các đích phân tử (Protein-Protein Interaction Network, PPIN) và giữa các thuốc (Drug-Drug Interaction Network, DDIN) với nhau. Mạng là 7 một đồ thị đƣợc biểu diễn dƣới dạng Graph, gồm các nút và các cạnh nối các nút với nhau biểu diễn cho các tƣơng tác giữa các nút [29]. VN U Các cạnh gồm có cạnh vô hƣớng, cạnh có hƣớng và cạnh có gắn trọng số.  Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm ac y, Các cạnh vô hƣớng (Undirected edges): Kiểu này thƣờng gặp trong các mạng lƣới tƣơng tác protein–protein (PPIN). Mối quan hệ giữa các nút là sự kết nối đơn giản, không có một hƣớng đi xác định [22].  Các cạnh đƣợc định hƣớng (Directed edges): Kiểu này đƣợc tìm thấy, ví dụ nhƣ là, trong mạng lƣới trao đổi chất hoặc chuyển hóa gene. Có một hƣớng đi rõ ràng của các tín hiệu đƣợc quy ƣớc sẵn và mạng lƣới có thể đƣợc tổ chức theo kiểu cấp bậc [22].  Các cạnh có gắn trọng số (Weighted edges): Các cạnh dù có hƣớng hay không thì cũng có thể mang giá trị trọng số liên quan tới chúng. Điều này đƣợc sử dụng để phác họa các ví dụ nhƣ khả năng xảy ra một tƣơng tác, khả năng một gene làm thay đổi mức độ biểu hiện của một gene khác hay thậm chí là sự liên quan giữa các trình tự chuỗi giống nhau trên hai gene. Các cạnh cũng có thể đƣợc định lƣợng bởi các giá trị trung tâm của chúng hoặc một vài tham số mạng lƣới khác [22]. Dựa vào các cạnh ta có thể chia mạng thành ba dạng chính: mạng vô hƣớng, mạng có hƣớng và mạng có gắn trọng số [7]. Hình 1.4 mô tả các dạng của mạng: Hình 1.4: Các dạng của mạng. (a) mạng vô hƣớng, (b) mạng có định hƣớng, (c) mạng có gắn trọng số 8 1.3.1. Mạng tương tác giữa thuốc với đích phân tử (DPIN) ac y, VN U Mạng DPIN là một sơ đồ đƣợc biểu thị dƣới dạng đồ thị Graph, gồm các nút là thuốc hoặc protein và các cạnh là các tƣơng tác qua lại giữa chúng. Tƣơng tác protein-thuốc là sự tƣơng tác vật lý giữa phân tử thuốc và protein làm thay đổi cấu dạng hay hoạt tính của protein, từ đó tạo ra tác dụng dƣợc lý của thuốc [46]. Sc ho ol of Me dic ine an dP ha rm Nếu thuốc tác động lên một thụ thể hoặc đƣợc chuyển hóa bởi một enzyme thì nó phải gắn với với protein hoặc enzyme thông qua các loại liên kết vật lý nhƣ cộng hóa trị (covalence), tĩnh điện (electrostatics), Van der Vaals và liên kết hydro. Liên kết cộng hóa trị là loại liên kết bền vững hơn các loại liên kết khác. Liên kết ion, hay liên kết điện tích, là một liên kết hóa học có bản chất là lực hút tĩnh điện giữa hai ion mang điện tích trái dấu. Tƣơng tác này thƣờng xuất hiện khi trong protein có một đồng yếu tố (cofactor) là ion kim loại. Ngoài ra còn một tƣơng tác yếu giữa các nguyên tử là lực tƣơng tác Van der Vaals, là một loại lực phân tử, sinh ra bởi sự phân cực của các phân tử thành các lƣỡng cực điện mà nguyên nhân sâu xa là do sự thăng giáng trong phân bố điện tích giữa các điện tử. Tƣơng tác Van der Vaals giữa thuốc với protein thƣờng thông qua tác động giữa 2 nhân thơm (pipi), 1 nhân thơm với mạch thẳng (pi-alkyl) hay giữa 2 mạch thẳng với nhau (alkyl-alkyl). Do bản chất của protein là chuỗi các acid amin nên thuốc cũng có thể tƣơng tác với protein thông qua cầu nối hydro, ví dụ nhóm cho acid yếu (D-H) với chất nhận còn cặp electron tự do nhƣ Oxy và Ni tơ [20]. Co p yri gh t© Trong hình 1.5 là một ví dụ về mạng tƣơng tác giữa các thuốc hoá trị với protein liên quan đến ung thƣ. Thuốc đa đích đƣợc biểu thị bằng hình lục giác màu cam và tất cả các đích đƣợc biểu diễn bằng hình elip màu xanh lam biểu thị sự tƣơng tác của 20 loại thuốc cùng 17 đích của chúng. Phân tích mạng, bậc (degree) đƣợc dùng để đánh giá sự tƣơng tác giữa các thuốc và đích (protein). Bậc của một nút (thuốc hoặc đích) là số cạnh (tƣơng tác từ các nút khác) liên kết với nút này. Nhƣ trong hình 1.5, bậc tối đa của các thuốc đa đích là 5, và tối thiểu là 2. Đặc biệt, các thuốc đa đích Sorafenib, Suniitinib và Pazopanib tƣơng ứng có bậc là 5, 3 và 3, có ảnh hƣởng lớn đến cấu trúc mạng. Thuốc có bậc cao nhất là Sorafenib, phản ánh tính đa dạng của nó 9 Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm ac y, VN U trong chỉ định điều trị bệnh (ung thƣ biểu mô tế bào gan, ung thƣ biểu mô tế bào thận và ung thƣ biểu mô tuyến giáp). Bậc tối đa của các đích là 8 và tối thiểu là 1. Đặc biệt, các đột biến VEGFR2 (Vascular endothelial growth factor receptor 2, thụ thể yếu tố tăng trƣởng của tế bào nội mạch), c-Kit (đột biến tyrosine-protein kinase hay CD-117 thƣờng gặp trong ung thƣ mô đệm dạ dày), PDGFR-b (yếu tố tăng trƣởng có nguồn gốc từ tiểu cầu) và EGFR (Epidermal Growth Factor Receptor, thụ thể yếu tố tăng trƣởng biểu bì) đƣợc xem là các mục tiêu của thuốc tác dụng đa đích. Các đích có bậc cao (> 5) là VEGFR2 và c-Kit. VEGF (Vascular endothelial growth factor , yếu tố tăng trƣởng tế bào nội mạch) và VEGFR2 là các thụ thể hiện đƣợc khai thác rất nhiều trong ung thƣ biểu mô thận (RCC, renal cell carcinoma). Tƣơng tự VEGFR2, biểu hiện của c-Kit có liên quan chặt chẽ với quá trình phát sinh và phát triển của ung thƣ biểu mô thận di căn. Có thể nói, phát triển thuốc nhắm các đích VEGFR2 và c-Kit là hƣớng đi phổ biến nhất hiện nay của các thuốc kháng ung thƣ có tác dụng đa đích [23]. Hình 1.5: Mạng tƣơng tác giữa thuốc hóa trị với các đích protein tyrosine kinase 10 Theo hình 1.5 thì thuốc là các nút hình lục giác màu da cam, và đích đƣợc biểu diễn bằng hình elip màu xanh. Tƣơng tác thuốc-đích đƣợc biểu diễn bằng các cạnh có hình dạng mũi tên là kích hoạt và “T” là ức chế. VN U 1.3.2. Mạng tương tác protein – protein (PPIN) Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm ac y, Thông qua đa dƣợc lý mạng, chúng ta có thể xác định các đích phân tử dựa trên tổng hợp các tƣơng tác có thể xảy ra giữa các protein tham gia quá trình bệnh sinh (PPIN). Protein và các tƣơng tác của chúng là trung tâm của hầu hết các quá trình sinh học cơ bản. Thông thƣờng, protein ít khi hoạt động độc lập mà chúng thực hiện chức năng thông qua sự tƣơng tác với các đơn vị phân tử sinh học khác trong tế bào. Tƣơng tác protein điều chỉnh một loạt các quá trình sinh học, bao gồm kích hoạt / ức chế phiên mã; miễn dịch, nội tiết, và tín hiệu dƣợc lý cũng nhƣ tƣơng tác giữa các tế bào. Do đó, việc nghiên cứu các tƣơng tác protein-protein (protein-protein interactions, PPIs) là cần thiết để hiểu đƣợc cơ chế phân tử của các quá trình sinh học [49]. PPIN là mạng tƣơng tác giữa các protein, thƣờng có cấu trúc dạng graph, trong đó các protein đóng vai trò là các nút và mối tƣơng quan giữa chúng là các cạnh nối giữa các nút. Tƣơng quan giữa các protein (interactome) ở đây đƣợc hiểu là các quá trình hoá sinh học nhƣ tổng hợp cấu trúc, truyền tín hiệu (signal transduction), vận chuyển (transport) hay phosphoryl hoá… [45]. Tƣơng tác protein-protein có thể là các tƣơng tác vật lý có độ đặc hiệu cao đƣợc tạo ra giữa hai hoặc nhiều phân tử protein. Tƣơng tác protein có tính chất ổn định hoặc tạm thời và cả hai loại tƣơng tác có thể mạnh hoặc yếu. Tƣơng tác ổn định là những tƣơng tác với các protein tạo thành các phức hợp đa tiểu đơn vị và các đơn vị con của các phức hợp này có thể giống nhau hoặc khác nhau. Hemoglobin và lõi RNA polymerase là ví dụ về các tƣơng tác đa tiểu đơn vị tạo thành các phức hợp ổn định. Tƣơng tác tạm thời là tƣơng tác xảy ra nhiều trong các quá trình của tế bào. Tƣơng tác là tạm thời trong điều kiện bình thƣờng và thƣờng cần nhiều điều kiện để thúc đẩy sự tƣơng tác, chẳng hạn nhƣ phosphoryl hóa, thay đổi cấu hình hoặc hoạt hóa cho các khu vực rời rạc của tế bào. Tƣơng tác tạm thời có thể mạnh hoặc yếu và nhanh hoặc chậm. Trong quá trình xảy ra tƣơng tác tạm thời, các protein tham gia 11 Co p yri gh t© Sc ho ol of Me dic ine an dP ha rm ac y, VN U một loạt các quá trình sinh hoá của tế bào, bao gồm vận chuyển, truyền tin, sự chết (apoptosis) tế bào [42]. Hình 1.6 mô tả một ví dụ về mạng tƣơng tác PPIN của Interleukin-10 (một cytokine đa tác động, pleitropic cytokine). Các phân tử cytokine bản chất là protein tan trong nƣớc, chúng có vai trò đặc biệt đối với hệ miễn dịch của cơ thể nhƣ tăng sinh, phát triển, biệt hoá và hoá hƣớng động (chemotaxis). Các interleukin hoạt động thông qua các lộ trình tín hiệu của các thụ thể Toll-like, sinh ra trong các phản ứng viêm cấp tính, đƣợc giải phóng và đáp ứng với tình trạng nhiễm khuẩn hay tổn thƣơng tế bào gây ra bởi hệ thống miễn dịch bẩm sinh (VD. Macrophage). Do đáp ứng có tính dây chuyền của các interleukins, mạng PPIN đã đƣợc xây dựng nhằm tìm hiểu cơ chế cũng nhƣ các lộ trình tín hiệu đặc hiệu trong phản ứng gây viêm trên bệnh nhân mắc Crohn (Hình 1.6). Hình 1.6: Mạng tƣơng tác protein-protein của interleukin-10 12
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng