Tài liệu Tích phân suy rộng

  • Số trang: 60 |
  • Loại file: PDF |
  • Lượt xem: 305 |
  • Lượt tải: 0
tranvantruong

Đã đăng 3224 tài liệu

Mô tả:

tích phân suy rộng
I. Tích phân suy rộng loại một Bài toán Tìm diện tích S miền vô hạn giới hạn bởi đường cong: y  f ( x)  0, trục hoành, đường thẳng x = a.  b a a s   f ( x)dx  lim  f ( x)dx b b   Tích phân suy rộng loại một y  f ( x) khả tích trên đoạn  Tích phân  a, b, với mọi b  a b f ( x ) dx  f ( x)dx  blim   a a được gọi là tích phân suy rộng loại một. Các tích phân sau cũng là tích phân suy rộng loại một a a  b f ( x ) dx  f ( x)dx  blim    a    a  f ( x)dx   f ( x)dx   f ( x)dx  b a a f ( x ) dx  f ( x)dx  blim   Nếu giới hạn tồn tại và hữu hạn thì tích phân gọi là hội tụ. Ngược lại, nếu giới hạn không tồn tại hoặc bằng vô cùng, thì tích phân gọi là phân kỳ. Hai vấn đề đối với tích phân suy rộng 1) Tính tích phân suy rộng (thường rất phức tạp) 2) Khảo sát sự hội tụ. Tính tích phân suy rộng (công thức Newton – Leibnitz) Giả sử F(x) là nguyên hàm của f(x) trên  a,    b a a  lim  F (b)  F (a)  f ( x ) dx  f ( x)dx  blim  b  Tích phân tồn tại khi và chỉ khi tồn tại lim F (b) : F () b    a f ( x)dx  F ( x)  F ()  F (a) a Ví dụ Tính diện tích miền phẳng giới hạn bởi 1 y  2 , trục hoành và đường thẳng x = 1. x b  b  1  dx dx  1   S   2  lim  2  lim   lim  1  1    b b x  1 x 1 x x  b   1 Diện tích của miền S bằng 1, hữu hạn. Ví dụ Tính diện tích miền phẳng giới hạn bởi 1 , trục hoành và đường thẳng x = 1. y x    b b dx dx  blim ln | x |  lim ln b    lim S     1  b b x x 1 1 S là miền có diện tích vô hạn, bằng  Tính diện tích miền phẳng giới hạn bởi Ví dụ 1 y  2 , trục hoành. x 1     dx dx b S 2 2 2  2  blim arctan x   0   x  1 0 x 1 Diện tích của miền S bằng  . Ví dụ Tính tích phân I  e 2 x dx 1 I  e 2 x dx   e 2 1 Ví dụ 2 x  1  e e2  1      2 2  2e  2 Tính tích phân I   e I   e dx  2 x ln x   e  dx 2 x ln x d (ln x) 1  1 1       1. 2  ln x ln x e  ln() ln e  Ví dụ Tính tích phân I   4 dx 2 x  5x  6 1 1 1 1    2 x  5 x  6 ( x  2)( x  3) x 3 x 2  1     1 I   dx  ln | x  3 | 4  ln | x  2 | 4 x2 4  x 3  ()  () Dạng vô định.? Không được phép dùng: lim ( f  g )  lim f  lim g x  x  x  khi chưa đảm bảo hai giới hạn vế phải chắc chắn tồn tại.  x 3  x 3 I  ln  lim  ln x  2 4 x  x  2  43 1   ln 4  2  ln1  ln 2  ln 2  Ví dụ Tính I   1 I  1 x 1 1  5 1 10 x x 6 0 I   1 dt t  t 1 2  ln  t  1/ 2   x 1  x5  x10 1 1 Đổi biến: t  5  dt   6 dx x x dx  dx Đổi cận: 1  0 x 1 t 1 x    t  0 dt  t  1/ 2   t  1/ 2  2  3/ 4 1 2  3/ 4 0 Ví dụ I Tính   e2 x cos xdx 0 ue Đặt I e 2 x sin x  du  2e  0  lim e Ta có ue 2 x x  2 x   2 e I  2 e dx 2 x dv  cos xdx  v  sin x sin xdx 0   sin x  0 nên I  2  e 2 x sin xdx 0  du  2e 2 x 2 x 2 x cos x   0 2 x dx dv  sin xdx  v   cos x  4 e 0 2 x 2 cos xdx  2  4I  I  5 Ví dụ Tính I    0 arctan x 1  x  2 3/ 2 dx dx Đổi biến: t  arctan x  dt  2 1 x Đổi cận: x  0  t  0 x    t   2 1 x  tan t  1  x  2 cos t 2 I   0 arctan x 1  x  2 3/ 2 dx    0  /2 dx     t cos tdt   1 2 2 1 x 2 1 x 0 arctan x Kết quả (được sử dụng để khảo sát sự hội tụ) Trường hợp 1:  1   1 1 1 1 1 hữu hạn, khác 0.   1    1   dx  1  x a  1 a a 0 x tích phân hội tụ. Trường hợp 2:   1  1    1 x   Tích phân phân kỳ.   dx  1 a a 0 x Trường hợp 3:  1  1   dx  ln | x | a   a 0 x Tích phân phân kỳ. Kết quả (được sử dụng để khảo sát sự hội tụ)  hoäi tuï, neáu   1 1   dx   a 0 x  phaân kyø, neáu   1  Neáu   1, thì I hoäi tuï.  1 I     dx 2 x ln x Neáu   1, thì I phaân kyø. Neáu   1,   1, thì I hoäi tuï. Neáu   1,   1, thì I PK. Tích phân hàm không âm Tiêu chuẩn so sánh 1.  x  a  f ( x)  0, g ( x)  0 và khả tích trên  a,   f ( x)  g ( x) ở lân cận của . Khi đó:   1) Nếu  g ( x)dx hội tụ, thì  a a  2) Nếu  f ( x)dx hội tụ.  f ( x)dx phân kỳ, thì a  g ( x)dx phân kỳ. a  Để khsát sự hội tụ của I   với  a dx đã biết kết quả.  x  a f ( x)dx, thường đem so sánh Chú ý (trong tiêu chuẩn 1): 1) f(x) và g(x) là hai hàm không âm. 2) Chỉ cần tồn tại   a  x   ,    f ( x)  g ( x)  3) Cận dưới của tích phân  a Ví dụ dx là số dương ( ) a  0. x Khảo sát sự hội tụ I    1 dx 2 2 2 x  sin 3 x 1 1 Ta có f ( x)  2  2  g ( x) 2 2 x  sin 3x 2 x  Vì  1 dx 2 x2 hội tụ , nên I hội tụ theo tchuẩn so sánh 1. Khảo sát sự hội tụ Ví dụ I   1 dx 2 2 x  sin 3 x 1 2 Ta có f ( x)  2  2  g ( x) 2 x  sin 3x x  dx Vì  2 hội tụ , nên I hội tụ theo tchuẩn so sánh 1. 1 x Khảo sát sự hội tụ Ví dụ I   1 ln 3 xdx x5 3 Ta có  Vì  1 dx 2x ln x 1 1 f ( x)     g ( x) x  5 x  5 x  5 2x phân kỳ , nên I phân kỳ theo tchuẩn ssánh 1. Tích phân hàm không âm Tiêu chuẩn so sánh 2.  x  a  f ( x)  0, g ( x)  0 và khả tích trên  a,   f ( x) K  xlim Khi đó:  g ( x)  1) K  0 : nếu  g ( x)dx a 2) K höõu haïn,  0 : hội tụ, thì  f ( x)dx hội tụ. a     f ( x)dx và a  g ( x)dx cùng HT hoặc cùng PK. a  3) K   : nếu  a  f ( x)dx hội tụ, thì  g ( x)dx a hội tụ. Cách sử dụng tiêu chuẩn so sánh 2.  Để khảo sát sự hội tụ của  f ( x)dx a 1) kiểm tra f(x) có là hàm không âm (trong lân cận của  ) 2) Tìm hàm g(x) bằng cách: tìm hàm tương đương của f(x) khi x tiến ra dương vô cùng. f ( x) 3) Tính K  lim , kết luận. x  g ( x) Hai hàm f(x) và g(x) không âm: nếu f ( x)   a f ( x)dx vaø   g ( x)dx a cùng tính chất. x g ( x) , thì Hội tụ tuyệt đối Định lý  Nếu  f ( x) dx hội tụ, thì a   f ( x)dx hội tụ. a Định nghĩa  Nếu  f ( x) dx hội tụ, thì a   f ( x)dx gọi là hội tụ tuyệt đối a Nếu hàm f(x) có dấu tùy ý, để khảo sát sự hội tụ của   a f ( x)dx ksát sự HT của tích phân hàm không âm   a f ( x) dx để sử dụng được hai tiêu chuẩn so sánh
- Xem thêm -