Đăng ký Đăng nhập
Trang chủ Thiết kế hệ thống thiết bị khí hóa sinh khối năng suất nhỏ phục vụ nhu cầu cung ...

Tài liệu Thiết kế hệ thống thiết bị khí hóa sinh khối năng suất nhỏ phục vụ nhu cầu cung cấp năng lượng cho nông nghiệp nông thôn

.PDF
62
318
83

Mô tả:

Thiết kế hệ thống thiết bị khí hóa sinh khối năng suất nhỏ phục vụ nhu cầu cung cấp năng lượng cho nông nghiệp nông thôn
ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN MỤC LỤC LỜI CẢM ƠN.................................................................................................................3 LỜI NÓI ĐẦU .................................................................................................................4 U PHẦN I: TỔNG QUAN VỀ SINH KHỐI....................................................................6 1.1 Các khái niệm cơ bản về sinh khối......................................................................6 1.1.1 Sinh khối là gì ?................................................................................................6 1.1.2. Nguồn năng lượng từ sinh khối.......................................................................6 1.2. Vai trò của sinh khối............................................................................................7 1.2.1. Lợi ích .............................................................................................................8 1.2.2. Khó khăn .........................................................................................................9 1.3. Thành phần và tính chất hóa học của sinh khối .............................................10 1.4. Tiềm năng sinh khối của Việt Nam..................................................................12 1.5. Hiện trạng sử dụng sinh khối của Việt Nam ...................................................14 PHẦN II : CƠ SỞ HÓA HỌC CỦA QUÁ TRÌNH KHÍ HÓA SINH KHỐI.........15 2.1. Giới thiệu quá trình khí hóa sinh khối ............................................................15 2.2. Cơ chế phản ứng của các phản ứng chính trong quá trình khí hóa sinh khối ....................................................................................................................................16 2.2.1. Cơ chế phản ứng C + H2O.............................................................................16 2.2.2 Cơ chế phản ứng của C + CO2: ......................................................................18 2.3. Các yếu tố ảnh hưởng tới quá trình khí hóa sinh khối. .................................20 2.3.1 Ảnh hưởng của áp suất ...................................................................................20 2.3.2 Ảnh hưởng của nhiệt độ. ................................................................................21 2.3.3. Ảnh hưởng của nguyên liệu ..........................................................................21 2.3.4. Ảnh hưởng của nhựa. ....................................................................................22 2.3.5. Ảnh hưởng của tro.........................................................................................22 2.3.6. Ảnh hưởng của kích thước hạt sinh khối ......................................................23 ‘.......................................................................................................................................23 PHẦN 3: CÔNG NGHỆ KHÍ HÓA SINH KHỐI.....................................................24 3.1. Giới thiệu Công nghệ khí hóa tầng cố định: ...................................................24 3.2. Giới thiệu Công nghệ khí hóa tầng sôi: ...........................................................27 PHẦN IV: THIẾT KẾ DÂY TRUYỀN KHÍ HÓA SINH KHỐI............................30 4.1. Đánh giá và lựa cho công nghệ khí hóa sinh khối...........................................30 SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -1- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN 4.2. Sơ đồ dây chuyền công nghệ .............................................................................31 4.3. Lựa chọn và tính toán các thông số công nghệ ...............................................32 4.4. Tính toán thiết bị khí hóa .................................................................................35 4.4.1. Thời gian khí hóa ..........................................................................................35 4.4.2. Cân bằng vật chất trong thiết bị khí hóa .......................................................38 4.4.3. Cân bằng năng lượng.....................................................................................40 4.5. Tổng kết số liệu tính toán..................................................................................43 4.6. Tính toán Cyclone và thiết bị rửa ....................................................................45 4.6.1. Tính toán thiết kế Cyclone ............................................................................45 4.6.2. Tính toán thiết bị rửa .....................................................................................47 4.7. Lựa chọn thiết bị phụ trợ.................................................................................48 4.8. Chí phí cho dây chuyền .....................................................................................49 A. Diện tích toàn phần của các thiết bị trong hệ thống khí hóa sinh khối ..............49 B. Tổng số các thiết bị phụ trợ, các van khí, cút nối và đường ống dẫn khí...........54 4.9.Sơ đồ mặt bằng dây chuyền ...............................................................................56 PHẦN V: KẾT LUẬN .................................................................................................58 TÀI LIỆU THAM KHẢO ...........................................................................................59 PHỤ LỤC......................................................................................................................60 SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -2- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN LỜI CẢM ƠN Trong thời gian làm đồ án tốt nghiệp vừa qua, em xin bày tỏ lòng biết ơn sâu sắc tới thầy giáo hướng dẫn: TS.Văn Đình Sơn Thọ. Người đã tận tình giúp đỡ và tạo điều kiện thuận lợi cho em trong suốt quá trình thực hiện đề tài. Em xin bày tỏ lòng biết ơn tới các thầy cô giáo trong bộ môn Công Nghệ Hữu Cơ- Hóa Dầu – Viện Kĩ Thuật Hóa Học – Trường Đại Học Bách Khoa Hà Nội đã trang bị cho em những kiến thức bổ ích trong suốt quá trình học tập nghiên cứu để hoàn thành tốt bản đồ án này. Em cũng xin trân trọng cảm ơn các cán bộ phòng thí nghiệm thuộc bộ môn Công Nghệ Hữu Cơ- Hóa Dầu đã đã giúp đỡ và tạo điều kiện cho em trong quá trình thực hiện đồ án. Cuối cùng em xin được bày tỏ lòng biết ơn sâu sắc tới gia đình, người thân, bạn bè đã động viên, giúp đỡ và tạo điều kiện để em hoàn thành đồ án. Tuy nhiên, do điều kiện nghiên cứu còn hạn chế, kiến thức còn chưa sâu, kinh nghiệm chưa có cùng với thời gian có hạn nên đồ án này không tránh khỏi nhiều thiếu sót. Mong các thầy cô giáo, các bạn đồng nghiệp cùng các bạn đọc thông cảm , giúp đỡ em để bản đồ án được hoàn thiện hơn. Hà Nội, Ngày 02 Tháng 06 Năm 2011 SVTH: Trần Quang Huy. SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -3- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN LỜI NÓI ĐẦU Với sự gia tăng nhu cầu sử dụng năng lượng và các áp lực môi trường gây ra do phát thải khí nhà kính từ việc sử dụng nhiên liệu hóa thạch, năng lượng sinh khối hiện nay được coi là một nguồn năng lượng tái tạo là giải pháp thay thế cho năng lượng hóa thạch. Sinh khối (biomas) chứa năng lượng hóa học, nguồn năng lượng từ mặt trời tích lũy trong thực vật qua quá trình quang hợp. Sinh khối là các phế phẩm từ nông nghiệp (rơm rạ, bã mía, vỏ, xơ bắp …v.v), phế phẩm lâm nghiệp (lá khô, vụn gỗ …v.v), giấy vụn, metan từ các bãi chôn lấp, trạm xử lý nước thải, phân từ các trang trại chăn nuôi gia súc và gia cầm. Nhiên liệu sinh khối (NLSK) có thể ở dạng rắn, lỏng, khí … được đốt để phóng thích năng lượng. Sinh khối, đặc biệt là gỗ, than gỗ cung cấp phần năng lượng đáng kể trên thế giới. Ít nhất một nửa dân số thế giới dựa trên nguồn năng lượng chính từ sinh khối. Con người đã sử dụng chúng để sưởi ấm và nấu ăn cách đây hàng ngàn năm. Sinh khối cũng có thể chuyển thành dạng nhiên liệu lỏng như metanol, etanol dùng trong các động cơ đốt trong, hay thành dạng khí sinh học (biogas) ứng dụng cho nhu cầu năng lượng ở quy mô gia đình. Có thể nói việc sử dụng hiệu quả năng lượng sinh khối đang là vấn đề rất được quan tâm trên thế giới nhằm giảm một phần sức ép về sử dụng nhiên liệu, phát triển nguồn năng lượng sạch và thiết thực cho tương lai. Cũng như nhiều quốc gia khác, việc sử dụng năng lượng gió, năng lượng mặt trời, gas sinh học đang được áp dụng tại Việt Nam nhưng sản lượng còn thấp và quy mô không lớn. Bên cạnh đó Việt Nam có một tiềm năng NLSK rất lớn đó là những sản phẩm thừa trong quá trình chế biến nông lâm sản như rơm SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -4- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN rạ, trấu, mùn cưa, bã mía …v.v. và một số chất thải nông nghiệp khác nhưng cũng chưa được khai thác đúng với tiềm năng của nó. Và để tận dụng các nguồn nguyên liệu đó ,trong đồ án này em xin đề xuất ý tưởng “ Thiết kế hệ thống thiết bị khí hóa sinh khối năng suất nhỏ phục vụ nhu cầu cung cấp năng lượng cho nông nghiệp nông thôn” với mục tiêu giúp bà con nông dân… ở khu vực nông thôn có thể ứng dụng trong thực tiễn. Đồ án bao gồm những nội dung chính như sau: Phần I : Tổng quan về sinh khối Phần II : Cơ sở hóa học của quá trình khí hóa sinh khối Phần III : Công nghệ khí hóa sinh khối Phần IV : Thiết kế dây chuyển khí hóa sinh khối Phần V : Kết Luận SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -5- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN PHẦN I: TỔNG QUAN VỀ SINH KHỐI 1.1 Các khái niệm cơ bản về sinh khối 1.1.1 Sinh khối là gì ? Sinh khối là vật liệu hữu cơ có nguồn gốc từ sinh vật có khả năng tái tạo ngoại trừ nguồn nguyên liệu hóa thạch. Trong sản xuất năng lượng và ngành công nghiệp, sinh khối đề cập đến ở đây là nguyên liệu có nguồn gốc từ sinh vật sống mà có thể sử dụng làm nhiên liệu hay cho sản xuất công nghiệp. Thông thường sinh khối là phần chất cây trưởng thành sử dụng như là nhiên liệu sinh học, bao gồm cả phần chất thực vật và động vật được dùng để sản xuất sợi, tạo than đá hay dầu mỏ. Sinh khối không phải là vật liệu hữu cơ được tạo bởi quá trình địa chất tạo than đá hay dầu mỏ. Trong thời kỳ sơ khai, sinh khối là nguồn năng lượng chính cho con người đến tận thế kỷ 19. Sang thế kỷ 20, năng lượng sinh khối được thay thế dần bằng dầu và than đá, xa hơn nữa là khí và năng lượng nguyên tử. Câu trả lời cho lý do hiện nay năng lượng sinh khối đang được quan tâm chính là đặc tính của sinh khối: sinh khối có khẳ năng tái tạo, dự trữ trong nhiều nguồn sẵn có, có khả năng lưu trữ và thay thế dầu. 1.1.2. Nguồn năng lượng từ sinh khối Năng lượng sinh khối (hay năng lượng từ vật liệu hữu cơ) có thể sản xuất tại chỗ, có ở khắp nơi, tương đối rẻ và là nguồn tài nguyên tái tạo. Năng lượng sinh khối ( NLSK) khác các dạng năng lượng tái sinh khác: Một là: không giống năng lượng gió và sóng, năng lượng sinh khối có thể kiểm soát được. Hai là: cùng một lúc năng lượng sinh khối vừa cung cấp nhiệt, vừa sản xuất điện năng. NLSK có hai dạng chính: Thứ nhất: Các loại phế thải nông SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -6- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN nghiệp dạng hạt nhỏ, thí dụ trấu, vỏ hạt điều, vỏ đậu phộng, rơm rạ, …v.v. Thứ hai: Sinh khối gỗ: có thể thu hoạch từ các khu vực trồng cây, thí dụ gỗ cây cao su, cây điều, cây bắp, …v.v. NLSK có thể biến chất thải, phế phẩm của ngành nông, lâm nghiệp thành nhiệt và năng lượng. Ngoài ra năng lượng sinh khối có thể đóng góp đáng kể vào mục tiêu chống thay đổi khí hậu do ưu điểm sinh khối là một loại chất đốt sạch hơn so với các loại nhiên liệu hóa thạch do không chứa lưu huỳnh, chu trình cố định CO2 ngắn. Ngoài ra các loại sinh khối có thể dự trữ, cung cấp loại nhiên liệu khô, đồng nhất và chất lượng ổn định. NLSK có thể cung cấp cả nhiệt lẫn điện. Khí hóa sinh khối là gì? Đó là một quá trình hóa học, chuyển hóa các loại nhiên liệu dạng rắn thành một hỗn hợp khí đốt, gọi là khí “gas” (CO + H2 + CH4). Khí hóa bao gồm việc đốt không cháy hết NLSK. Có bốn quá trình khác nhau xảy ra trong lò khí hóa, gồm: sấy khô, nhiệt phân, đốt cháy và biến đổi thành khí. Khi biến đổi sinh khối thành khí (gas) thì quá trình có hiệu suất cao, có thể ứng dụng với một dãy công suất rộng (một vài trăm kW), có thể sử dụng cho các thiết bị nhiệt và sản xuất điện, vốn đầu tư ban đầu và chi phí sản xuất điện thấp. Đồng thời quá trình biến đổi sinh khối thành khí cho phép điều khiển quy trình tốt hơn, đốt sạch hơn trong các thiết bị sử dụng khí, loại bỏ tất cả ô nhiễm liên quan đến sử dụng sinh khối. 1.2. Vai trò của sinh khối Hiện nay, trên qui mô toàn cầu NLSK là nguồn năng lượng lớn thứ tư, chiếm tới 14 - 15 % tổng năng lượng tiêu thụ. Ở các nước phát triển sinh khối thường là nguồn năng lượng lớn nhất, đóng góp khoảng 35% tổng số năng lượng. Từ sinh khối, có thể sản xuất ra nhiên liệu khí cũng như nhiên liệu lỏng làm chất đốt hay nhiên liệu cho động cơ. Vì vậy lợi ích của nguồn năng lượng SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -7- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN sinh khối là rất to lớn nhưng bên cạnh đó chúng ta cũng cần phải lưu ý những khó khăn khi sử dụng NLSK. 1.2.1. Lợi ích ¾ Lợi ích kinh tế - Phát triển nông thôn là một trong những lợi ích chính của việc phát triển năng lượng sinh khối, tạo thêm công ăn việc làm cho người lao động (sản xuất, thu hoạch…). - Thúc đẩy sự phát triển công nghiệp năng lượng, công nghiệp sản xuất các thiết bị chuyển hóa năng lượng, …v.v. - Giảm sự phụ thuộc vào dầu, than, đa dạng hóa nguồn cung cấp nhiên liệu. Ta có thể đánh giá lợi ích kinh tế của việc sử dụng năng lượng sinh khối thông qua bảng sau: Bảng 1. Nguồn năng lượng từ NLSK so với các nguồn năng lượng tái sinh khác [7] Năng lượng phát Mặt trời Gió Sinh khối Tổng đầu tư (triệu USD) 1,830 12,700 6,300 Quy mô nhà máy(Kw) 10,000,000 10,000,000 Công suất điện phát hàng năm(M kw/h) 1,000,00 0 12 1,100 20 17,500 70 61,300 Đơn vị đầu tư (USD/ KW) 1.66 0.72 0.10 Tỷ lệ hoạt động hàng năm(%) ¾ Lợi ích môi trường: đây là một nguồn năng lượng khá hấp dẫn với nhiều ích lợi to lớn cho môi trường. SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -8- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN - Năng lượng sinh khối có thể tái sinh được. - Năng lượng sinh khối tận dụng chất thải làm nhiên liệu, do đó nó vừa làm giảm lượng rác vừa biến chất thải thành sản phẩm hữu ích. Đốt sinh khối cũng thải ra CO2 nhưng lượng S và tro thấp hơn đáng kể so với việc đốt than bitum. Ta cũng có thể cân bằng lượng CO2 thải vào khí quyển nhờ trồng cây xanh hấp thụ chúng. Vì vậy NLSK lại được tái tạo thay thế cho sinh khối đã sử dụng nên cuối cùng không làm tăng CO2 trong khí quyển. Như vậy, phát triển NLSK làm giảm sự thay đổi khí hậu bất lợi, giảm hiện tượng mưa axit, giảm sức ép về bãi chôn lấp …v.v. 1.2.2. Khó khăn ¾ So với nhiên liêu hóa thạch thì mật độ năng lượng/đơn vị sinh khối là thấp ¾ Khó sử dụng, đặc biệt là nguồn từ thực phẩm ¾ Quá trình chuyển đổi năng lượng phức tạp ¾ Nếu tập trung vào nguồn sinh khối gỗ thì gây tác động tiêu cực đến môi trường, phá rừng, xói mòn đất, sa mạc hóa, và những hậu quả nghiêm trọng khác Có thể thấy so sánh về hiệu quả đầu tư cũng như hiệu suất năng lượng thì nguồn NLSK là nguồn nhiên liệu mang lại lợi ích rất cao. NLSK có nhiều dạng, và những lợi ích kể trên chủ yếu tập trung vào những dạng sinh khối mang tính tái sinh, tận dụng từ phế phẩm nông lâm nghiệp. Tuy nhiên việc phát triển năng lượng sinh khối ở nước ta hiện nay vẫn chưa được khai thác triệt để, nhiều dự án vẫn chưa triển khai do còn gặp nhiều khó khăn về công nghệ, về phân bố nguồn nguyên liệu, về nguồn vốn hỗ trợ đầu tư của nhà nước…v.v. SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  -9- ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN 1.3. Thành phần và tính chất hóa học của sinh khối Các nguyên liệu sinh khối bao gồm gỗ, cành cây nhỏ, rễ, vỏ cây, bã mía, rơm rạ, trấu, lá cây, phân động vật , phế phẩm nông lâm nghiệp, rác thải sinh hoạt … v.v. Thành phần hóa học của NLSK chủ yếu gồm ba thành phần là : ¾ Lignin: chiếm 15%-25%. Công thức hóa học (C10H12O4)n. Nó có cấu trúc phức của các aromatic, nó chống lại được các quá trình chuyển hóa hóa học sinh khối, để chuyển hóa nó cần nhiệt độ cao. ¾ Hemicellulose: chiếm 23%-32%, công thức hóa học [C5(H2O)4]n, là polyme của các phân tử đường 5 cacbon, 6 cacbon. Nó là thành phần dễ bị depolyme hóa, đường 5 cacbon khó biến đổi hơn do năng lượng liên kết của nó lớn hơn đường 6 cacbon. ¾ Cellulose: chiếm 38%-50%, công thức hóa học [C6(H2O)5]n, là polyme của glucoza, nhạy với sự tấn công của enzym, glucoza là thành phần dễ biến đổi. Bảng 2. Thành phần hóa học của một số loại rơm từ cây nông nghiệp Loại Lúa Lúa mạch Lúa mì Lúa mạch đen Ngũ cốc Lignin (%) 12 14 17 19 17 Cellulose (C6-fractinon, %) 36 34 40 38 38 Hemicellulose (C5- fraction, %) 25 25 28 30 32 Tro (%) 27 27 15 13 13 Nhiên liệu sinh khối có một vài tính chất hóa học thuận lợi cho các quá trình chuyển hóa nhưng so với các dạng nhiên liệu nền tảng là cacbon thì NLSK có hàm lượng tro thấp và khả năng phản ứng cao. Tuy nhiên, độ ẩm cao luôn có xu hướng tạo nhựa và hàm lượng tro dẫn đến điểm nóng chảy chất rắn thấp khi SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 10 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN mà hiện tại nhiệt là thách thức đối với một số phương pháp chuyển hóa. Một số NLSK có hàm lượng nitơ và clo cao. Sự kết hợp của kiềm và clo có thể tạo hợp chất gây ăn mòn thiết bị chuyển hóa. Hàm lượng nitơ cao làm tăng khả năng hình thành oxit nitơ, nhưng hàm lượng lưu huỳnh lại thấp hơn nhiều loại nhiên liệu khác như than thì làm giảm khă năng tạo lưu huỳnh trong quá trình chuyển đổi. Ngoài các thành phần chính, NLSK vẫn còn phần nhỏ các thành phần khác như khoáng (là thành phần tạo nên tro của nó). Gỗ là loại NLSK chính cho các quá trình chế biến. Thành phần khoáng của gỗ nhỏ hơn 1% khối lượng trên nguyên liệu khô và chủ yếu là thành phần hữu cơ. Thành phần chủ yếu hình thành tro là các kim loại kiềm và kiềm thổ, chúng chiếm hơn 80% chất vô cơ trong gỗ. Các kim loại khác tồn tại trong gỗ như muối của oxanat và cacbonat hoặc các ion kim loại bị liên kết chặt với nhóm cacboxyl hoặc cacbohydrat. Còn nguyên tố P và Si có chủ yếu trong công thức este nhưng Si cũng ở dạng SiO2, xem bảng 3: Bảng 3. Thành phần các nguyên tố của gỗ Nguyên tố Cacbon Hydro Oxi Nitơ Lưu huỳnh Natri Clo Silic Nhôm Sắt Mangie Canxi Photpho Thành phần (%) 50,7-53,1 59,7-60,3 40,4-43,2 0,04-0,2 0,006-0,012 0,015-0,021 0,007-0,023 0,001-0,0046 0,0003-0,0035 0,0013-0,0039 0,007-0,025 0,038-0,092 0,0045-0,0105 SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 11 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Nhiên liệu sinh khối chứa năng lượng trong các liên kết hóa học trong các thành phần của nó giống như cacbonhydrat. Thành phần oxi trong NLSK cao hơn trong nhiên liệu hóa thạch nên về cơ bản năng lượng của nó thấp hơn nhiên liệu hóa thạch. Năng lượng sử dụng tối đa theo lý thuyết từ NLSK là năng lượng hóa học của nó. Với một dạng nhiên liệu phức tạp, đa dạng và nhiều cấu trúc liên kết như sinh khối thì năng lượng của nó có thể được đặc trưng qua thành phần nguyên tố có trong nó. Bảng 4 dưới là thành phần các nguyên tố của các loại NLSK (cây bạch dương, rơm từ các cây ngũ cốc, bã mía, tảo nâu,than củi, trấu, rơm lúa). Bảng 4. Thành phần các nguyên tố một số loại nhiên liệu sinh khối [1] Loại C Thành phần nguyên tố(%) H O N S Tro Nhiệt trị (MJ/kg) Bạch dương Ngũ cốc 49 6 43 0 0 1 19.2 44 6 43 1 0 6 18.2 Mía 45 5 40 0 0 10 17.8 Tảo nâu 28 4 24 5 1 42 10.9 Than củi 80.3 3.1 11.3 0.2 0 3.4 31.02 Trấu 38.5 5.7 39.8 0.5 0 15.5 15.3 Rơm 39.2 5.1 35.8 0.6 0.1 19.2 15.8 1.4. Tiềm năng sinh khối của Việt Nam SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 12 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Nguồn sinh khối chủ yếu gồm gỗ và phụ phẩm cây trồng. Tiềm năng các nguồn này theo đánh giá của Viện Năng lượng được trình bày ở các bảng sau: Bảng 5. Tiềm năng sinh khối gỗ năng lượng [6] Nguồn cung cấp Tiềm năng (triệu tấn) Rừng tự nhiên Rừng trồng Đất không rừng Cây trồng phân tán Cây công nghiệp và ăn quả Phế liệu gỗ TỔNG 6,842 3,718 3,850 6,050 2,400 1,649 25,090 Quy dầu tương đương (triệu tấn) 2,390 1,300 1,350 2,120 0,840 0,580 8,780 Tỷ lệ (%) 27,2 14,8 15,4 24,1 9,6 6,6 100,0 Bảng 6. Tiềm năng sinh khối phụ phẩm nông nghiệp [6] Nguồn cung cấp Rơm rạ Trấu Bã mía Các loại khác TỔNG Tiềm năng (triệu tấn) Quy dầu tương đương (triệu tấn) 32,52 6,50 4,45 9,00 53,43 7,30 2,16 0,82 1,80 12,08 Tỷ lệ (%) 60,4 17,9 6,8 14,9 100,0 Từ các bảng trên ta thấy, tiềm năng SK là rất lớn. Theo báo cáo của Hội Công nghiệp sinh khối Châu Âu, SK có thể đảm bảo tới 15% nhu cầu năng lượng của các nước công nghiệp vào năm 2020. Hiện tại nguồn này mới chỉ đạt 1% nhu cầu. Sinh khối có thể cung cấp năng lượng cho 100 triệu hộ gia đình tương đương với công suất có thể thay thế 400 nhà máy điện truyền thống lớn. SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 13 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Lợi thế của NLSK là có thể dự trữ và sử dụng khi cần, chúng luôn có tính ổn định và là nguồn năng lượng có thể tái tạo. Giá thành của NLSK luôn rẻ hơn các loại nhiên liệu khác,ví dụ : sử dụng 2-4 kg chất thải sinh khối tương đương 1 kg than, trong đó giá của 1 kg chất thải sinh khối chỉ bằng 5-10% giá 1 kg than. Nếu sản xuất điện năng từ sinh khối thì giá thành điện cũng giảm từ 10-30% so với nguồn nguyên liệu hóa thạch. Ở nước ta, nếu tận dụng triệt để nguồn NLSK từ rơm rạ, bã mía thì ước tính cũng sản xuất được khoảng 605.000.000 KW điện trong một năm. 1.5. Hiện trạng sử dụng sinh khối của Việt Nam Trong tổng tiêu thụ năng lượng toàn quốc, NLSK vẫn chiếm tỷ lệ lớn, tới trên một nửa. Mặc dù giá trị tuyệt đối vẫn không ngừng tăng nhưng tỷ lệ giảm dần do năng lượng thương mại tăng nhanh hơn. Bảng tiếp theo cho thấy các lĩnh vực sử dụng sinh khối hiện nay. Bảng 7. Sử dụng sinh khối theo lĩnh vực Năng lượng cuối cùng Nhiệt Điện Tổng tiêu thụ (koe) Tỷ lệ (%) Bếp đun 10667 76,2 Lò nung 903 6,5 Lò đốt 2053 14,7 Đồng phát 377 2,7 Tổng 14000 100,0 Bảng trên cho thấy trên ba phần tư sinh khối hiện được sử dụng phục vụ đun nấu gia đình với các bếp đun cổ truyền hiệu suất thấp. Bếp cải tiến tuy đã được nghiên cứu thành công nhưng chưa được ứng dụng rộng rãi mà chỉ có một vài dự án nhỏ, lẻ tẻ ở một số địa phương. SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 14 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Một phần tư sinh khối còn lại được sử dụng trong sản xuất: - Sản xuất vật liệu xây dựng, gốm sứ hầu hết dùng các lò tự thiết kế theo kinh nghiệm, đốt bằng củi hoặc trấu, chủ yếu ở phía Nam. - Sản xuất đường, tận dụng bã mía để đồng phát nhiệt và điện ở tất cả 43 nhà máy đường trong cả nước với trang thiết bị nhập từ nước ngoài. - Sấy lúa và các nông sản: hiện ở Đồng bằng Cửu long có hàng vạn máy sấy đang hoạt động. Những máy sấy này do nhiều cơ sở trong nước sản xuất và có thể dùng trấu làm nhiên liệu. Riêng dự án Sau thu hoạch do Đan Mạch tài trợ triển khai từ 2001 đã có mục tiêu lắp đặt 7000 máy sấy. - Công nghệ cacbon hoá sinh khối sản xuất than củi được ứng dụng ở một số địa phương phía Nam nhưng theo công nghệ truyền thống, hiệu suất thấp. - Một số công nghệ khác như đóng bánh sinh khối, khí hoá trấu hiện ở giai đoạn nghiên cứu, thử nghiệm. PHẦN II : CƠ SỞ HÓA HỌC CỦA QUÁ TRÌNH KHÍ HÓA SINH KHỐI 2.1. Giới thiệu quá trình khí hóa sinh khối Khí hóa sinh khối là quá trình dùng oxy (hoặc không khí, hoặc không khí giàu oxy, hoặc oxy thuần, hơi nước hoặc hydro, nói chung gọi là chất khí hóa) phản ứng với sinh khối ở nhiệt độ cao chuyển nhiên liệu từ dạng rắn sang dạng nhiên liệu khí. Nhiên liệu này được gọi chung là khí sinh khối với thành phần cháy được chủ yếu là CO,H2,CH4...dùng làm nhiên liệu khí dân dụng, trong công nghiệp hoặc sử dụng làm nguyên liệu cho tổng hợp NH3,tổng hợp CH3OH… SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 15 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Khí hóa sinh khối là quá trình tổng cộng của các phản ứng đồng thể và dị thể của sinh khối. Tùy thuộc vào mục đích của quá trình khí hóa, có thể nhận được sản phẩm khí chứa CO, H2 và CH4. Hỗn hợp khí sản phẩm chứa CO + H2 có các tỷ lệ khác nhau giữa các cấu tử có thể được dùng cho các quá trình tổng hợp hóa học. - C + O2 ↔ CO2 (1) - C + CO2 ↔ 2CO (2) - C + H2O ↔ CO + H2 - C + 2H2 ↔ CH4 - CO + 3H2 ↔ CH4 + H2O (5) - CO + H2O ↔ CO2 + H2 (6) (3) (4) Các phản ứng đồng thể (5-6) và dị thể (1-4) xảy ra kèm theo sự thay đổi mạnh năng lượng của hệ thống. Các số liệu về hằng số cân bằng và entanpi của hệ thống các phản ứng quan trọng thường được dẫn ra trong các sổ tay hóa lý. Lựa chọn công nghệ khí hóa sinh khối dựa vào nhiều thông số quan trọng ¾ Chất lượng của nguồn nguyên liệu. ¾ Sản phẩm chính của công nghệ. Mỗi loại sinh khối có thể sử dụng làm nguyên liệu cho nhiều phương pháp khí hóa sinh khối khác nhau. Tùy thuộc kích cỡ của sinh khối mà có thể lựa chọn các công nghệ khí hóa. Công nghệ khí hóa phổ biến hiện nay là: khí hóa tầng cố định và khí hóa tầng sôi 2.2. Cơ chế phản ứng của các phản ứng chính trong quá trình khí hóa sinh khối 2.2.1. Cơ chế phản ứng C + H2O SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 16 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Cùng là phản ứng dị thể và thu nhiệt mạnh cho nên các đặc điểm của phản ứng C + CO2 đều đúng với phản ứng C + H2O. Phản ứng chỉ có tiến hành với vận tốc tương đối lớn nên t0 > 8000C. Nhưng phản ứng giữa C và hơi nước phức tạp hơn phản ứng C + CO2 vì phản ứng C + H2O có thể xảy ra theo 2 chiều hướng khác nhau sinh ra CO và CO2: - C+ H2O - C + 2H2O = CO + = CO H2 + – Q1 2H2 – Q2 Nếu trong gió có chứa nhiều hơi nước thì ngoài sản phẩm CO và CO2 ra còn có khả năng tiến hành phản ứng sau: - CO + H2O = CO2 + H2 + Q Vấn đề cơ bản khi xét cơ chế phản ứng C + H2O là xem xét CO là sản phẩm bậc nhất; CO2 là sản phẩm bậc nhất hay cả CO và CO2 đều là sản phẩm bậc nhất tạo thành đồng thời cùng 1 lúc. Vì vậy đối với phản ứng này cũng tồn tại 3 giả thiết khác nhau: ¾ Giả thiết 1 : Cho rằng sản phẩm bậc nhất chỉ là CO2, nghĩa là khi cho C và hơi nước tác dụng với nhau thì tiến hành phản ứng: - C + 2H2O = CO + 2 H2 – Q Còn sự có mặt của CO trong sản phẩm phản ứng giải thích bằng phản ứng bậc 2 như sau: - CO2 + C = 2 CO - Q ¾ Giả thiết 2 : Cho rằng cả CO và CO2 là sản phẩm bậc nhất và chúng tạo thành đồng thời cùng lúc; Phản ứng tiến hành như sau: - C+ H2O = CO + - C + 2H2O = CO2 SVTH:TRẦN QUANG HUY MSSV:20061405 + H2 – Q1 2 H 2 – Q2 Lớp HD2- K51  - 17 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Đây là giả thiết đến nay được nhiều nhà nghiên cứu thừa nhận nhất. Trong 2 loại giả thiết trên, chúng ta chỉ viết phương trình phản ứng đối với phản ứng tổng cộng, không đi vào các giai đoạn trung gian của chúng. ¾ Giả thiết 3 : Gần đây có một số giả thiết mới cho rằng chỉ CO là sản phẩm bậc nhất, còn CO2 là sản phẩm bậc 2. Giả thiết này giải thích được khá nhiều trường hợp thực nghiệm nên cũng được nhiều nhà nghiên cứu ủng hộ. Cơ chế của chúng được tiến hành qua các giai đoạn sau: ¾ Giai đoạn 1: Hấp thụ hơi nước trên bề mặt sinh khối theo phản ứng: - C + H2O ↔ C + ( H2O ) hphu ¾ Giai đoạn 2 : Tạo phức chất bề mặt theo phản ứng: - C + ( H2O ) hphu ↔CxOy + (H2)hphu ¾ Giai đoạn 3 : Phân hủy phức chất hoạt động bề mặt CxOy với sự tham gia của hơi nước từ không khí. - CxOy + H2O = (CO)hphu + H2 Đây là phản ứng bậc 1 đối với hơi nước và sự phân hủy phức chất có sự tham gia của phân tử hơi nước. Phản ứng tiến hành trong điều kiện nhiệt độ thấp và nồng độ của hơi nước tương đối cao. ¾ Giai đoạn 4 : Nhả (CO)hphu và (H2)hphu trên bề mặt sinh khối ra ngoài dòng khí theo phản ứng: - (CO)hphu ↔ CO. - (H2)hphu ↔ H2. 2.2.2 Cơ chế phản ứng của C + CO2: SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 18 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN Phản ứng C + CO2 và C + H2O trong vùng khử là 2 phản ứng quan trọng nhất để tạo ra các cấu tử có ích trong khí hóa sinh khối là CO và H2. Khi nghiên cứu cơ chế phản ứng này ta cũng sẽ gặp một số khó khăn vì đây cũng là phản ứng dị thể tiến hành qua nhiều giai đoạn trung gian, và phản ứng thu nhiệt nhiều nên rất khó giữ cho nhiệt độ phản ứng không đổi, nghĩa là khó giữ được sự đẳng nhiệt của phản ứng. Vì phản ứng thu nhiệt mạnh nên đặc điểm của nó là phản ứng chỉ tiến hành ở nhiệt độ cao t0 > 8000C , nếu ở nhiệt độ t0 < 8000C tốc độ phản ứng rất bé không đáng kể. Giữ cho nhiệt độ phản ứng C + CO2 không đổi khó hơn là trường hợp đối với phản ứng C + O2 vì trong trường hợp phản ứng cháy, muốn lấy nhiệt ra ngoài người ta có thể dùng nito thổi qua. Còn đối với phản ứng thu nhiệt C + CO2 trong phòng thí nghiệm thì thường dùng phương pháp đốt ngoài, lò đốt bằng phương pháp điện và nhiệt được truyền từ thành ngoài của lò vào tâm của ống đựng sinh khối. Nhưng vì sinh khối là 1 chất dẫn nhiệt xấu nên lượng nhiệt truyền từ thành vào bao giờ cũng thấp hơn lượng nhiệt cần thiết cho phản ứng. Theo tru-kha-nop cơ chế phản ứng C + CO2 tiến hành qua các giai đoạn sau: ¾ Giai đoạn 1 : Hấp thụ CO2 trên bề mặt sinh khối theo phản ứng sau: - C + CO2 ↔ (CO2)hphu + C ¾ Giai đoạn 2 : Tạo hợp chất trung gian hoạt động bề mặt: - (CO2)hphu + C ↔ CxOy - CxOy –là hợp chất trung gian hoạt động bề mặt . ¾ Giai đoạn 3 : Phân hủy hợp chất bề mặt dưới tác dụng của nhiệt độ: Ở nhiệt độ cao chúng sẽ tự phân hủy theo phản ứng sau: SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 19 - ĐỒ ÁN TỐT NGHIỆP TRƯỜNG ĐH BKHN - CxOy → n(CO)hphu + pC Đó là phản ứng bậc 0 đối với CO2 vì khi phân hủy không cần có sự tham gia của CO2 vào phản ứng. Ở nhiệt độ thấp thì sự phân hủy hợp chất bề mặt có thể tiến hành theo sơ đồ sau với sự tham gia của CO2 của dòng khí. - CxOy + CO2 → m(CO)hphu + pC Đó là phản ứng bậc 1 đối với CO2 vì sự phân hủy của hợp chất bề mặt có sự tham gia của 1 phân tử khí CO2. ¾ Giai đoạn 4 : Nhả (CO)hphu theo phản ứng: - (CO)hphu ↔ gC + CO Như vậy bậc của phản ứng C + CO2 thay đổi từ 0 → 1 tủy theo điều kiện tiến hành phản ứng. 2.3. Các yếu tố ảnh hưởng tới quá trình khí hóa sinh khối. 2.3.1 Ảnh hưởng của áp suất Quá trình khí hóa xảy ra ở áp suất nhất định. Thực tế thì để quá trình hóa khí hoạt động thì áp suất tối thiểu phải là 10bar và có thể đạt đến 100bar. Ở áp suất cao cực độ, như việc tổng hợp amoniăc ( 130 – 150bar ) hay như quá trình hóa khí ở áp suất 70 – 100bar trở lên thì không thực tế cho yêu cầu thiết bị. Ở áp suất quá cao thì kích thước thiết bị sẽ lớn cũng như việc lựa chọn vật liệu làm lò hóa khí trở nên khó khăn dẫn đến chi phí kinh tế sẽ rất cao. Vì vậy việc lựa chọn áp suất cho quá trình hóa khí là tùy thuộc vào yêu cầu của quá trình hay thiết bị và mục đích sử dụng cuối cùng sao cho chi phí đầu tư là thấp nhất. Mỗi giá trị áp suất nhất định thì thành phần khí tổng hợp sẽ thay đổi khác nhau.Như vậy tùy thuộc vào sản phẩm khí ra theo yêu cầu cần sử dụng SVTH:TRẦN QUANG HUY MSSV:20061405 Lớp HD2- K51  - 20 -
- Xem thêm -

Tài liệu liên quan