Tài liệu Tchprobe

  • Số trang: 169 |
  • Loại file: PDF |
  • Lượt xem: 355 |
  • Lượt tải: 0

Tham gia: 14/02/2015

Mô tả:

User’s Manual Touch Probe Cycles iTNC 530 NC Software 340 490-03 340 491-03 340 492-03 340 493-03 340 494-03 English (en) 8/2006 TNC Model, Software and Features TNC Model, Software and Features This manual describes functions and features provided by TNCs as of the following NC software numbers. TNC model NC software number iTNC 530 340 490-03 iTNC 530 E 340 491-03 iTNC 530 340 492-03 iTNC 530 E 340 493-03 iTNC 530 programming station 340 494-03 The suffix E indicates the export version of the TNC. The export version of the TNC has the following limitations: „ Linear movement is possible in no more than 4 axes simultaneously. The machine tool builder adapts the useable features of the TNC to his machine by setting machine parameters. Some of the functions described in this manual may not be among the features provided by the TNC on your machine tool. TNC functions that may not be available on your machine include: „ Tool measurement with the TT Please contact your machine tool builder to become familiar with the features of your machine. Many machine manufacturers, as well as HEIDENHAIN, offer programming courses for the TNCs. We recommend these courses as an effective way of enhancing your TNC programming skill and sharing information and ideas with other TNC users. User’s Manual: All TNC functions that have no connection with touch probes are described in the User’s Manual of the iTNC 530. Please contact HEIDENHAIN if you need a copy of this User’s Manual. Part number: 533 190-xx smarT.NC user documentation: The new smarT.NC operating mode is described in a separate Pilot. Please contact HEIDENHAIN if you require a copy of this Pilot. Part number: 533 191-xx. HEIDENHAIN iTNC 530 3 TNC Model, Software and Features Software options The iTNC 530 features various software options that can be enabled by you or your machine tool builder. Each option is to be enabled separately and contains the following respective functions: Software option 1 Cylinder surface interpolation (Cycles 27, 28, 29 and 39) Feed rate in mm/min on rotary axes: M116 Tilting the machining plane (Cycle 19, PLANE function and 3-D ROT soft key in the Manual operating mode) Circle in 3 axes (with tilted working plane) Software option 2 Block processing time 0.5 ms instead of 3.6 ms 5-axis interpolation Spline interpolation 3-D machining: „ M114: Automatic compensation of machine geometry when working with tilted axes „ M128: Maintaining the position of the tool tip when positioning with tilted axes (TCPM) „ FUNCTION TCPM: Maintaining the position of the tool tip when positioning with tilted axes (TCPM) in selectable modes „ M144: Compensating the machine’s kinematic configuration for ACTUAL/NOMINAL positions at end of block „ Additional parameters finishing/roughing and tolerance for rotary axes in Cycle 32 (G62) „ LN blocks (3-D compensation) DCM Collision software option Function which dynamically monitors areas defined by the machine manufacturer to prevent collisions. Additional conversational language software option Function for enabling the conversational languages Slovenian, Slovak, Norwegian, Latvian, Estonian, Korean. DXF Converter software option Extract contours from DXF files (R12 format). 4 TNC Model, Software and Features Global Program Settings software option Function for superimposing coordinate transformations in the Program Run modes. AFC software option Function for adaptive feed-rate control for optimizing the machining conditions during series production. HEIDENHAIN iTNC 530 5 TNC Model, Software and Features Feature content level (upgrade functions) Along with software options, significant further improvements of the TNC software are managed via the Feature Content Level upgrade functions. Functions subject to the FCL are not available simply by updating the software on your TNC. All upgrade functions are available to you without surcharge when you receive a new machine. Upgrade functions are identified in the manual with FCL n, where n indicates the sequential number of the feature content level. You can purchase a code number in order to permanently enable the FCL functions. For more information, contact your machine tool builder or HEIDENHAIN. 6 FCL 3 functions Description Touch probe cycle for 3-D probing Page 145 Touch probe cycles for automatic datum setting using the center point of a slot/ ridge Page 67 Feed-rate reduction for the machining of contour pockets with the tool being in full contact with the workpiece User’s Manual PLANE function: Entry of axis angle User’s Manual User documentation as a contextsensitive help system User’s Manual smarT.NC: Programming of smarT.NC and machining can be carried out simultaneously User’s Manual smarT.NC: Contour pocket on point pattern smarT.NC Pilot smarT.NC: Preview of contour programs in the file manager smarT.NC Pilot smarT.NC: Positioning strategy for machining point patterns smarT.NC Pilot FCL 2 functions Description 3-D line graphics User’s Manual Virtual tool axis User’s Manual USB support of block devices (memory sticks, hard disks, CD-ROM drives) User’s Manual Filtering of externally created contours User’s Manual Description Possibility of assigning different depths to each subcontour in the contour formula User’s Manual DHCP dynamic IP-address management User’s Manual Touch-probe cycle for global setting of touch-probe parameters Page 149 smarT.NC: Graphic support of block scan smarT.NC Pilot smarT.NC: Coordinate transformation smarT.NC Pilot smarT.NC: PLANE function smarT.NC Pilot TNC Model, Software and Features FCL 2 functions Location of use The TNC complies with the limits for a Class A device in accordance with the specifications in EN 55022, and is intended for use primarily in industrially-zoned areas. HEIDENHAIN iTNC 530 7 TNC Model, Software and Features New functions of software 340 49x-02 „ New machine parameter for defining the positioning speed (see “Touch trigger probe, rapid traverse for positioning: MP6151” on page 23) „ New machine parameter for consideration of basic rotation in Manual Operation (see “Consider a basic rotation in the Manual Operation mode: MP6166” on page 22) „ Cycles 420 to 431 for automatic tool measurement were improved so that the measuring log can now also be displayed on the screen (see “Recording the results of measurement” on page 106) „ A new cycle that enables you to set global touch probe parameters was introduced (see “FAST PROBING (touch probe cycle 441, ISO: G441, FCL-2 function)” on page 149) New functions of software 340 49x-03 „ New cycle for setting a datum in the center of a slot (see “SLOT CENTER REFERENCE POINT (touch probe cycle 408, ISO: G408, FCL 3 function)” on page 67) „ New cycle for setting a datum in the center of a ridge (see “RIDGE CENTER REFERENCE POINT (touch probe cycle 409, ISO: G409, FCL 3 function)” on page 70) „ New 3-D probing cycle (see “MEASURING IN 3-D (touch probe cycle 4, FCL 3 function)” on page 145) „ Cycle 401 now also allows you to compensate workpiece misalignment by rotating the rotary table (see “BASIC ROTATION from two holes (touch probe cycle 401, ISO: G401)” on page 50) „ Cycle 402 now also allows you to compensate workpiece misalignment by rotating the rotary table (see “BASIC ROTATION over two studs (touch probe cycle 402, ISO: G402)” on page 52) „ In the cycles for datum setting, the results of measurement are available in the Q parameters Q15X (see “Measurement results in Q parameters” on page 66) 8 TNC Model, Software and Features Functions changed since the predecessor versions 340 422-xx and 340 423-xx „ The management of more than one block of calibration data was changed (see “Managing more than one block of calibrating data” on page 32) HEIDENHAIN iTNC 530 9 Contents 1 2 3 4 Introduction Touch Probe Cycles in the Manual and Electronic Handwheel Modes Touch Probe Cycles for Automatic Workpiece Inspection Touch Probe Cycles for Automatic Tool Measurement HEIDENHAIN iTNC 530 11 1 Introduction ..... 17 ss˜ FmF"d˜ mOph"›apm˜pm˜p¤4^˜p*F˜©4dF’  sG ¤m4›apm  sG p¤4^˜zp*F˜4©4dF’˜am˜›^F˜"m¤"d˜"m=˜dF4›pma4˜ "m=§^FFd˜hp=F’  sn p¤4^˜zp*F˜4©4dF’˜Op˜"¤›ph"›a4˜pzF"›apm  sn s¢˜FOpF˜ p¤˜›"›˜pcamV˜§a›^˜p¤4^˜p*F˜©4dF’  ¢s "¨ah¤h˜›"¦F’F˜›p˜›p¤4^˜zpam›9˜–s¬  ¢s "OF›©˜4dF""m4F˜›p˜›p¤4^˜zpam›9˜–sT¬  ¢s aFm›˜›^F˜amO"F=˜›p¤4^˜zp*F˜›p˜›^F˜zpV"hhF=˜zp*F˜=aF4›apm9˜–s–Q  ¢s pm’a=F˜"˜*"’a4˜p›"›apm˜am˜›^F˜"m¤"d˜zF"›apm˜hp=F9˜–s––  ¢¢ ¤d›azdF˜hF"’¤FhFm›9˜–s•¬  ¢¢ pmOa=Fm4F˜am›F¦"d˜Op˜h¤d›azdF˜hF"’¤FhFm›9˜–s•s  ¢¢ p¤4^˜›aVVF˜zp*F:˜zp*amV˜OFF=˜"›F9˜–s¢¬  ¢ p¤4^˜›aVVF˜zp*F:˜"za=˜›"¦F’F˜Op˜zp’a›apmamV9˜–sQ¬  ¢ p¤4^˜›aVVF˜zp*F:˜"za=˜›"¦F’F˜Op˜zp’a›apmamV9˜–sQs  ¢ ¤mmamV˜›p¤4^˜zp*F˜4©4dF’  ¢T    ˜a˜Q¬ 13 2 Touch Probe Cycles in the Manual and Electronic Handwheel Modes ..... 25 ¢s˜ m›p=¤4›apm  ¢– ¦F¦aF§  ¢– FdF4›amV˜zp*F˜4©4dF’  ¢– F4p=amV˜hF"’¤F=˜¦"d¤F’˜Oph˜›^F˜›p¤4^˜zp*F˜4©4dF’  ¢• a›amV˜›^F˜hF"’¤F=˜¦"d¤F’˜Oph˜›p¤4^˜zp*F˜4©4dF’˜am˜="›¤h˜›"*dF’  ¢G a›amV˜›^F˜hF"’¤F=˜¦"d¤F’˜Oph˜›p¤4^˜zp*F˜4©4dF’˜am˜›^F˜zF’F›˜›"*dF  ¢n ¢¢˜"da*"›amV˜"˜p¤4^˜aVVF˜p*F  ¬ m›p=¤4›apm  ¬ "da*"›amV˜›^F˜FOOF4›a¦F˜dFmV›^  ¬ "da*"›amV˜›^F˜FOOF4›a¦F˜"=a¤’˜"m=˜4phzFm’"›amV˜4Fm›F˜ha’"daVmhFm›  s a’zd"©amV˜4"da*"›apm˜¦"d¤F’  ¢ "m"VamV˜hpF˜›^"m˜pmF˜*dp4c˜pO˜4"da*"›amV˜="›"  ¢ ¢˜phzFm’"›amV˜pczaF4F˜a’"daVmhFm›   m›p=¤4›apm   F"’¤amV˜›^F˜*"’a4˜p›"›apm   "¦amV˜›^F˜*"’a4˜p›"›apm˜am˜›^F˜zF’F›˜›"*dF  T a’zd"©amV˜"˜*"’a4˜p›"›apm  T p˜4"m4Fd˜"˜*"’a4˜p›"›apm  T ¢T˜F››amV˜›^F˜"›¤h˜§a›^˜"˜_˜p¤4^˜p*F  Q m›p=¤4›apm  Q "›¤h˜’F››amV˜am˜"m©˜"¨a’  Q pmF˜"’˜="›¤hI¤’amV˜zpam›’˜"dF"=©˜zp*F=˜Op˜"˜*"’a4˜p›"›apm˜|’FF˜OaV¤F˜"›˜aV^›}  – pmF˜"’˜="›¤hI§a›^p¤›˜¤’amV˜zpam›’˜›^"›˜§FF˜"dF"=©˜zp*F=˜Op˜"˜*"’a4˜p›"›apm  – a4dF˜4Fm›F˜"’˜="›¤h  • Fm›F˜damF˜"’˜="›¤h  G F››amV˜="›¤h˜zpam›’˜¤’amV˜^pdF’—4©dam=a4"d˜’›¤=’  n ¢Q˜F"’¤amV˜pczaF4F’˜§a›^˜"˜_˜p¤4^˜p*F  T¬ m›p=¤4›apm  T¬ p˜Oam=˜›^F˜4pp=am"›F˜pO˜"˜zp’a›apm˜pm˜"m˜"daVmF=˜§pczaF4F9  T¬ am=amV˜›^F˜4pp=am"›F’˜pO˜"˜4pmF˜am˜›^F˜§pcamV˜zd"mF  T¬ p˜hF"’¤F˜§pczaF4F˜=ahFm’apm’  Ts p˜Oam=˜›^F˜"mVdF˜*F›§FFm˜›^F˜"mVdF˜FOFFm4F˜"¨a’˜"m=˜"˜’a=F˜pO˜›^F˜§pczaF4F  T¢ ¢–˜’amV˜›^F˜p¤4^˜p*F˜ ¤m4›apm’˜§a›^˜F4^"ma4"d˜p*F’˜p˜a"d˜ "¤VF’  T m›p=¤4›apm  T 14 3 Touch Probe Cycles for Automatic Workpiece Inspection ..... 45 s˜F"’¤amV˜pczaF4F˜a’"daVmhFm›  T– ¦F¦aF§  T– ^""4›Fa’›a4’˜4phhpm˜›p˜"dd˜›p¤4^˜zp*F˜4©4dF’˜Op˜hF"’¤amV˜§pczaF4F˜ha’"daVmhFm›  T•  ˜ ˜|›p¤4^˜zp*F˜4©4dF˜T¬¬:˜ 9 T¬¬}  TG  ˜ ˜Oph˜›§p˜^pdF’˜|›p¤4^˜zp*F˜4©4dF˜T¬s:˜ 9˜ T¬s}  Q¬  ˜ ˜p¦F˜›§p˜’›¤=’˜|›p¤4^˜zp*F˜4©4dF˜T¬¢:˜ 9˜ T¬¢}  Q¢  ˜ ˜4phzFm’"›apm˜¦a"˜p›"©˜"¨a’˜|›p¤4^˜zp*F˜4©4dF˜T¬:˜ 9 T¬}  QQ  ˜ ˜|›p¤4^˜zp*F˜4©4dF T¬T:˜ 9 T¬T}  QG phzFm’"›amV˜§pczaF4F˜ha’"daVmhFm›˜*©˜p›"›amV˜›^F˜˜"¨a’˜|›p¤4^˜zp*F˜4©4dF˜T¬Q:˜ 9 T¬Q}  Qn ¢˜¤›ph"›a4˜"›¤h˜F››amV  – ¦F¦aF§  – ^""4›Fa’›a4’˜4phhpm˜›p˜"dd˜›p¤4^˜zp*F˜4©4dF’˜Op˜="›¤h˜’F››amV  –Q F"’¤FhFm›˜F’¤d›’˜am˜˜z""hF›F’  –– ˜˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF T¬G:˜ 9˜ T¬G:˜ ˜˜O¤m4›apm}  –•   ˜˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF T¬n:˜ 9˜ T¬n:˜ ˜˜O¤m4›apm}  •¬ ˜ ˜  ˜ ˜ ˜|›p¤4^ zp*F˜4©4dF˜Ts¬:˜ 9˜ Ts¬}  • ˜ ˜ ˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF˜Tss:˜ 9˜ Tss}  •– ˜ ˜  ˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF˜Ts¢:˜ 9˜ Ts¢}  •n ˜ ˜ ˜ ˜ ˜|›p¤4^ zp*F˜4©4dF˜Ts:˜ 9˜ Ts}  G¢ ˜ ˜ ˜ ˜˜|›p¤4^ zp*F˜4©4dF˜TsT:˜ 9˜ TsT}  GQ ˜ ˜  ˜ ˜˜|›p¤4^˜zp*F˜4©4dF˜TsQ:˜ 9˜ TsQ}  GG ˜ ˜˜|›p¤4^˜zp*F˜4©4dF˜Ts–:˜ 9˜ Ts–}  ns ˜ ˜ ˜˜ ˜|›p¤4^˜zp*F˜4©4dF˜Ts•:˜ 9˜ Ts•}  nT ˜˜˜˜T˜ ˜|›p¤4^ zp*F˜4©4dF˜TsG:˜ 9˜ TsG}  n– ˜ ˜˜ ˜|›p¤4^˜zp*F˜4©4dF˜Tsn:˜ 9˜ Tsn}  nn    ˜a˜Q¬ 15 ˜¤›ph"›a4˜pczaF4F˜F"’¤FhFm›  s¬Q ¦F¦aF§  s¬Q F4p=amV˜›^F˜F’¤d›’˜pO˜hF"’¤FhFm›  s¬– F"’¤FhFm›˜F’¤d›’˜am˜˜z""hF›F’  s¬G d"’’aOa4"›apm˜pO˜F’¤d›’  s¬G pdF"m4F˜hpma›pamV  s¬G ppd˜hpma›pamV  s¬n FOFFm4F˜’©’›Fh˜Op˜hF"’¤FhFm›˜F’¤d›’  s¬n  ˜˜|›p¤4^˜zp*F˜4©4dF˜¬:˜ 9 QQ}  ss¬ ˜˜|›p¤4^˜zp*F˜4©4dF˜s}  sss ˜ ˜|›p¤4^˜zp*F˜4©4dF˜T¢¬:˜ 9 T¢¬}  ss¢ ˜ ˜|›p¤4^˜zp*F˜4©4dF˜T¢s:˜ 9 T¢s}  ssT ˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF T¢¢:˜ 9˜ T¢¢}  ss• ˜ ˜ ˜  ˜|›p¤4^ zp*F˜4©4dF T¢:˜ 9˜ T¢}  s¢¬ ˜ ˜ ˜ ˜|›p¤4^ zp*F˜4©4dF˜T¢T:˜ 9˜ T¢T}  s¢ ˜  ˜  ˜|›p¤4^ zp*F 4©4dF T¢Q:˜ 9˜ T¢Q}  s¢– ˜  ˜  ˜|›p¤4^˜zp*F˜4©4dF T¢–:˜ 9˜ T¢–}  s¢G ˜ ˜|›p¤4^˜zp*F˜4©4dF˜T¢•:˜ 9˜ T¢•}  s¬ ˜˜ ˜ ˜|›p¤4^ zp*F 4©4dF˜T¬:˜ 9˜ T¬}  s¢ ˜˜|›p¤4^˜zp*F˜4©4dF’˜Ts:˜ 9˜ Ts}  sQ T˜zF4a"d˜©4dF’  sTs ¦F¦aF§  sTs  ˜˜|›p¤4^˜zp*F˜4©4dF˜¢}  sT¢  ˜˜  ˜|›p¤4^˜zp*F˜4©4dF˜n}  sT   ˜|›p¤4^˜zp*F˜4©4dF˜}  sTT   ˜ ˜_˜|›p¤4^˜zp*F˜4©4dF˜T:˜ ˜˜O¤m4›apm}  sTQ ˜ ˜ ˜|›p¤4^˜zp*F˜4©4dF ˜TT¬:˜ 9˜ TT¬}  sT• ˜  ˜|›p¤4^˜zp*F˜4©4dF TTs:˜ 9 TTs:˜ _¢˜O¤m4›apm}  sTn 4 Touch Probe Cycles for Automatic Tool Measurement ..... 151 Ts˜ppd˜F"’¤FhFm›˜§a›^˜›^F˜˜ppd˜p¤4^˜p*F  sQ¢ ¦F¦aF§  sQ¢ F››amV˜›^F˜h"4^amF˜z""hF›F’  sQ¢ m›aF’˜am˜›^F˜›ppd˜›"*dF˜  sQT a’zd"©˜›^F˜F’¤d›’˜pO˜hF"’¤FhFm›  sQQ T¢˜¦"ad"*dF˜©4dF’  sQ– ¦F¦aF§  sQ– aOOFFm4F’˜*F›§FFm˜©4dF’˜s˜›p˜˜"m=˜©4dF’ TGs˜›p˜TG  sQ– "da*"›amV˜›^F˜˜|›p¤4^˜zp*F˜4©4dF˜¬˜p˜TG¬:˜ 9˜ TG¬}  sQ• F"’¤amV˜›^F˜›ppd˜dFmV›^˜|›p¤4^˜zp*F˜4©4dF ˜s˜p˜TGs:˜ 9˜ TGs}  sQG F"’¤amV˜›^F˜›ppd˜"=a¤’˜|›p¤4^˜zp*F˜4©4dF˜¢˜p˜TG¢:˜ 9˜ TG¢}  s–¬ F"’¤amV˜›^F˜›ppd˜"=a¤’˜|›p¤4^˜zp*F˜4©4dF˜˜p˜TG:˜ 9˜ TG}  s–¢ 16 1 Introduction 1.1 General Information on Touch Probe Cycles 1.1 General Information on Touch Probe Cycles The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe. If you are carrying out measurements during program run, be sure that the tool data (length, radius) can be used from the calibrated data or from the last TOOL CALL block (selected with MP7411). Function Whenever the TNC runs a touch probe cycle, the 3-D touch probe approaches the workpiece in one linear axis. This is also true during an active basic rotation or with a tilted working plane. The machine tool builder determines the probing feed rate in a machine parameter (see “Before You Start Working with Touch Probe Cycles” later in this chapter). When the probe stylus contacts the workpiece, Z Y „ the 3-D touch probe transmits a signal to the TNC: the coordinates of the probed position are stored, F „ the touch probe stops moving, and „ returns to its starting position at rapid traverse. If the stylus is not deflected within a distance defined in MP 6130, the TNC displays an error message. 18 X F MAX 1 Introduction 1.1 General Information on Touch Probe Cycles Touch probe cycles in the Manual and Electronic Handwheel modes In the Manual and Electronic Handwheel operating modes, the TNC provides touch probe cycles that allow you to: „ Calibrate the touch probe „ Compensate workpiece misalignment „ Set datums Touch probe cycles for automatic operation Besides the touch probe cycles, which you can use in the Manual and Electronic Handwheel modes, the TNC provides numerous cycles for a wide variety of applications in automatic mode: „ Calibrating the touch probe (Chapter 3) „ Compensating workpiece misalignment (Chapter 3) „ Setting datums (Chapter 3) „ Automatic workpiece inspection (Chapter 3) „ Automatic workpiece measurement (Chapter 4) You can program the touch probe cycles in the Programming and Editing operating mode via the TOUCH PROBE key. Like the most recent fixed cycles, touch probe cycles use Q parameters with numbers of 400 and above as transfer parameters. Parameters with the same function that the TNC requires in several cycles always have the same number: For example, Q260 is always assigned the clearance height, Q261 the measuring height, etc. To simplify programming, the TNC shows a graphic during cycle definition. In the graphic, the parameter that needs to be entered is highlighted (see figure at right). HEIDENHAIN iTNC 530 19 1.1 General Information on Touch Probe Cycles Defining the touch probe cycle in the Programming and Editing mode of operation 8 The soft-key row shows all available touch probe functions divided into groups. 8 Select the desired probe cycle, for example datum setting. Digitizing cycles and cycles for automatic tool measurement are available only if your machine has been prepared for them. 8 Select a cycle, e.g. datum setting at pocket. The TNC initiates the programming dialog and asks for all required input values. At the same time a graphic of the input parameters is displayed in the right screen window. The parameter that is asked for in the dialog prompt is highlighted. 8 Enter all parameters requested by the TNC and conclude each entry with the ENT key. 8 The TNC ends the dialog when all required data has been entered. Example: NC blocks 5 TCH PROBE 410 DATUM INSIDE RECTAN. Q321=+50 ;CENTER IN 1ST AXIS Q322=+50 ;CENTER IN 2ND AXIS Q323=60 ;1ST SIDE LENGTH Q324=20 ;2ND SIDE LENGTH Q261=-5 ;MEASURING HEIGHT Q320=0 ;SET-UP CLEARANCE Q260=+20 ;CLEARANCE HEIGHT Q301=0 ;TRAVERSE TO CLEARANCE HEIGHT Q305=10 ;NO. IN TABLE Page Q331=+0 ;DATUM Cycles for automatic measurement and compensation of workpiece misalignment Page 46 Q332=+0 ;DATUM Q303=+1 ;MEAS. VALUE TRANSFER Cycles for automatic datum setting Page 63 Q381=1 ;PROBE IN TS AXIS Q382=+85 ;1ST CO. FOR TS AXIS Group of measuring cycles Soft key Cycles for automatic workpiece inspection Page 105 Calibration cycles, special cycles Page 141 Cycles for automatic tool measurement (enabled by the machine tool builder) Page 152 20 Q383=+50 ;2ND CO. FOR TS AXIS Q384=+0 ;3RD CO. FOR TS AXIS Q333=+0 ;DATUM 1 Introduction
- Xem thêm -