Tài liệu Tập mờ loại hai và suy diễn với tập mờ loại hai

  • Số trang: 82 |
  • Loại file: PDF |
  • Lượt xem: 92 |
  • Lượt tải: 0
thuvientrithuc1102

Đã đăng 15893 tài liệu

Mô tả:

Vò c«ng ®oµn bé gi¸o dôc vµ ®µo t¹o tr−êng ®¹i häc b¸ch khoa hµ néi --------------------------------------- luËn v¨n th¹c sÜ khoa häc c«ng nghÖ th«ng tin ngµnh : c«ng nghÖ th«ng tin TËp mê lo¹i hai vµ suy diÔn víi tËp mê lo¹i hai Vò c«ng ®oµn 2006 - 2008 Hµ Néi 2008 Hµ Néi 2008 Môc lôc Môc lôc............................................................................................................ 1 Danh môc h×nh vÏ............................................................................................ 3 Më ®Çu............................................................................................................. 5 Ch−¬ng 1. C¬ b¶n vÒ tËp mê ........................................................................... 7 1.1. TËp mê.................................................................................................. 7 1.2. C¸c phÐp to¸n tËp hîp trªn tËp mê ....................................................... 8 1.3. Quan hÖ mê ........................................................................................ 10 1.3.1. Quan hÖ mê trªn cïng kh«ng gian .............................................. 10 1.3.2. Quan hÖ mê vµ phÐp hîp thµnh trªn c¸c kh«ng gian kh¸c nhau. 13 1.4. C¬ b¶n vÒ suy diÔn mê ....................................................................... 14 1.5. Nguyªn lý më réng ............................................................................ 17 1.6. KÕt luËn ch−¬ng ................................................................................. 18 Ch−¬ng 2. tËp mê lo¹i hai ............................................................................. 19 2.1. Giíi thiÖu chung................................................................................. 19 2.2. Hµm thuéc lo¹i hai ............................................................................. 19 2.2.1. Kh¸i niÖm tËp mê lo¹i hai ........................................................... 19 2.2.2. §Þnh nghÜa tËp mê lo¹i hai vµ c¸c kh¸i niÖm.............................. 19 2.2.3. Hµm thuéc trªn vµ hµm thuéc d−íi ............................................ 26 2.3. TËp mê lo¹i hai nhóng........................................................................ 27 2.4. C¸c phÐp to¸n trªn tËp mê lo¹i hai..................................................... 30 2.4.1. Hîp cña c¸c tËp mê lo¹i hai ........................................................ 30 2.4.2. Giao cña c¸c tËp mê lo¹i hai ....................................................... 32 2.4.3. PhÇn bï cña mét tËp mê lo¹i hai ................................................. 33 2.5. KÕt luËn ch−¬ng ................................................................................. 36 Ch−¬ng 3. Suy diÔn víi tËp mê lo¹i hai ........................................................ 37 3.1. Quan hÖ mê lo¹i hai vµ phÐp hîp thµnh ............................................. 37 3.1.1. Kh¸i niÖm chung ......................................................................... 37 3.1.2. Quan hÖ mê lo¹i hai vµ phÐp hîp thµnh trªn cïng mét kh«ng gian ............................................................................................................... 38 3.1.3. Quan hÖ mê lo¹i hai vµ phÐp hîp thµnh trªn c¸c kh«ng gian kh¸c nhau ....................................................................................................... 41 3.1.4. PhÐp hîp thµnh cña mét tËp mê lo¹i hai vµ mét quan hÖ mê lo¹i hai .......................................................................................................... 42 3.2. TÝch §ª-c¸c cña c¸c tËp mê lo¹i hai .................................................. 43 3.3. C¸c d¹ng luËt mê................................................................................ 45 3.4. Mét sè ph−¬ng ph¸p suy diÔn mê lo¹i hai ......................................... 46 3.4.1. Suy diÔn mê dùa vµo phÐp hîp thµnh.......................................... 46 3.4.2. Suy diÔn mê dùa trªn sù t−¬ng tù cña c¸c tËp mê....................... 48 3.5. NhËn xÐt ............................................................................................. 57 1 Ch−¬ng 4. HÖ logic mê lo¹i hai kho¶ng........................................................ 59 4.1. §Þnh nghÜa.......................................................................................... 59 4.2. Hµm thuéc trªn vµ hµm thuéc d−íi cña tËp mê lo¹i hai kho¶ng........ 60 4.3. PhÐp to¸n hîp vµ giao cña tËp mê lo¹i hai kho¶ng ............................ 62 4.4. Suy diÔn víi tËp mê lo¹i hai kho¶ng .................................................. 63 4.5. Gi¶m lo¹i vµ khö mê .......................................................................... 68 4.6. ThiÕt kÕ hÖ logic mê lo¹i hai kho¶ng b»ng ph−¬ng ph¸p lan truyÒn ng−îc BP (Back-Propagation) ................................................................... 70 4.7. øng dông cña hÖ logic mê lo¹i hai kho¶ng ........................................ 76 4.8. KÕt luËn ch−¬ng ................................................................................. 79 KÕt luËn ......................................................................................................... 80 Tµi liÖu tham kh¶o......................................................................................... 81 2 Danh môc h×nh vÏ H×nh 1-1: C¸c hµm ®é thuéc cho xe néi ®Þa vµ xe ngo¹i nhËp dùa trªn tû lÖ phÇn tr¨m c¸c thµnh phÇn s¶n xuÊt trong n−íc …………………………… 7 H×nh 1-2: C¸c hµm thuéc: (a) µ A (x) vµ µ B (x) , (b) µ A∪ B (x) , (c) µ A∩ B (x) , (d) µ B (x) …………………………………………………………………… 9 H×nh 1-3: ®å thÞ hµm thuéc cña quan hÖ mê µ c (| x − y |) ………………… 11 H×nh 1-4 ………………………………………………………………… 16 H×nh 2-1: (a) hµm thuéc lo¹i mét, (b) vÕt mê hµm thuéc lo¹i mét, (c) FOU …………………………………………………………………………… 20 H×nh 2-2: VÝ dô vÒ hµm thuéc lo¹i hai ………………………………… 21 H×nh 2-3: (a): mét tËp mê lo¹i hai Gaussian. (b): hµm thuéc thø cÊp Gaussian t¹i x = 4 ……………………………………………………… 23 H×nh 2-4 ……………………………………………………………… 24 H×nh 2-5: FOU d¹ng tam giac ………………………………………… 25 H×nh 2-6: FOU cña hµm thuéc s¬ cÊp Gaussian víi tham sè gi¸ trÞ trung b×nh m kh«ng ch¾c ch¾n ……………………………………………… 26 H×nh 2-7: FOU cña hµm thuéc s¬ cÊp Gaussian víi tham sè ®é lÖch chuÈn δ kh«ng ch¾c ch¾n ………………………………………………………… 26 H×nh 2-8: VÝ dô vÒ mét tËp lo¹i mét nhóng (®−êng ®øt t« ®Ëm) trong mét tËp mê lo¹i hai……………………………………………………………… 28 H×nh 2-9: Mét tËp mê lo¹i hai nhóng vµ mét tËp mê lo¹i mét nhóng ®−îc g¾n víi hµm thuéc lo¹i hai ®−îc biÓu diÔn trong H×nh 2-2………………. 29 H×nh 3-1: HÖ logic mê lo¹i hai ………………………………………… 37 H×nh 4-1: VÝ dô vÒ hµm thuéc cña mét tËp mê lo¹i 2 kho¶ng trong kh«ng gian rêi r¹c. MiÒn t« ®en trong mÆt ph¼ng x-u lµ FOU ………………….. 60 H×nh 4-2: (a) minh ho¹ cho vÝ dô 4-1, (b) minh ho¹ cho vÝ dô 4-2 ……….62 l H×nh 4-3: X¸c ®Þnh f l vµ f . (a) sö dông minimum t-norm. (b) sö dông product t-norm. ………………………………………………………… …67 H×nh 4-4: X¸c ®Þnh µ B~ ( y ) . (a) sö dông minimum t-norm. (b) sö dông l product t-norm …………………………………………………………......67 3 H×nh 4-5: X¸c ®Þnh µ ~ B ( y ) . (a) sö dông minimum t-norm. (b) sö dông product t-norm …………………………………………………………….68 H×nh 4-6: Minh ho¹ cho tËp mê lo¹i 2 kho¶ng ®¬n trÞ cã hai luËt. (a) FOU ~ ~ ~ ~ cña F11 vµ F21 trong luËt 1. (b) FOU cña F12 vµ F22 trong luËt 2 …………..73 H×nh 4-7: Gi¸ trÞ trung b×nh vµ ®é lÖch chuÈn cña RMSEs1, RMSEns1, RMSEs2 . (a) gi¸ trÞ trung b×nh, (b) ®é lÖch chuÈn ……………………… . 78 4 Më ®Çu Lý thuyÕt tËp mê lo¹i hai ®−îc Zadeh ®−a ra tõ n¨m 1975. TËp mê lo¹i hai ngµy cµng ®−îc kh¼ng ®Þnh vÞ trÝ −u viÖt cña m×nh trong viÖc c¶i thiÖn vµ n©ng cao chÊt l−îng xö lý th«ng tin so víi nhiÒu ph−¬ng ph¸p truyÒn thèng kh¸c. Ngµy nay, Logic mê ®−îc øng dông trong thùc tiÔn ®Æc biÖt lµ trong lÜnh vùc dù b¸o, khai ph¸ tri thøc, ®iÒu khiÓn mê… Tuy nhiªn, viÖc tÝnh to¸n vµ xö lý th«ng tin dùa trªn tËp mê lo¹i hai nãi chung cã ®é phøc t¹p rÊt lín, ®iÒu nµy ®· ¶nh h−ëng kh«ng nhá tíi kh¶ n¨ng øng dông cña tËp mê lo¹i hai vµo gi¶i quyÕt c¸c bµi to¸n thùc tÕ. ChÝnh v× vËy, nh÷ng n¨m trë l¹i ®©y, lý thuyÕt tËp mê lo¹i hai nhËn ®−îc rÊt nhiÒu sù quan t©m nghiªn cøu cña nhiÒu nhµ khoa häc. Mét trong nh÷ng h−íng nghiªn cøu ®ã lµ t×m ra c¸c ph−¬ng ph¸p lµm gi¶m ®é phøc t¹p tÝnh to¸n trong c¸c hÖ logic mê lo¹i hai. Suy diÔn víi tËp mê lo¹i hai lµ mét kh©u quan träng trong hÖ logic mê lo¹i hai. Ph−¬ng ph¸p suy diÔn quyÕt ®Þnh rÊt lín tíi chÊt l−îng vµ ®é phøc t¹p tÝnh to¸n cña toµn hÖ. Víi môc ®Ých t×m hiÓu nghiªn cøu vÒ tËp mê lo¹i 2, ®−îc sù h−íng dÉn cña PGS.TS. TrÇn §×nh Khang – Khoa CNTT - §¹i Häc B¸ch Khoa Hµ Néi, t«i lùa chän ®Ò tµi “TËp mê lo¹i hai vµ suy diÔn víi tËp mê lo¹i hai”. §Ò tµi thùc hiÖn t×m hiÓu nghiªn cøu nh÷ng vÊn ®Ò c¬ b¶n ®èi víi tËp mê lo¹i hai, mét sè ph−¬ng ph¸p suy diÔn ®èi víi tËp mê lo¹i hai tæng qu¸t vµ tËp mê lo¹i hai kho¶ng. §Ò tµi ®−îc chia thµnh c¸c phÇn sau: Ch−¬ng 1. C¬ b¶n vÒ tËp mê: Ch−¬ng nµy tr×nh bµy c¸c kh¸i niÖm c¬ b¶n vÒ tËp mê nãi chung lµm c¬ së ®Ó t×m hiÓu, nghiªn cøu c¸c ®Æc tr−ng cña tËp mê lo¹i hai. Ch−¬ng 2. TËp mê lo¹i hai: TËp mê lo¹i hai lµ sù ph¸t triÓn vµ më réng cña tËp mê lo¹i mét nh»m kh¾c phôc nh÷ng nh−îc ®iÓm cña tËp mê lo¹i mét. Ch−¬ng nµy tr×nh bµy nh÷ng kh¸i niÖm vµ nh÷ng ®Æc tr−ng c¬ b¶n cña tËp mê lo¹i hai. C¸c phÐp to¸n tËp hîp trªn tËp mê lo¹i hai còng ®−îc tr×nh bµy ë ®©y, c¸c phÐp to¸n nµy lµ c«ng cô kh«ng thÓ thiÕu ®Ó thùc hiÖn c¸c phÐp suy diÔn mê. 5 Ch−¬ng 3. Mét sè ph−¬ng ph¸p suy diÔn trªn tËp mê lo¹i hai: Ch−¬ng nµy tr×nh bµy mét sè ph−¬ng ph¸p suy diÔn víi tËp mê lo¹i hai. Hai ph−¬ng ph¸p suy diÔn ®−îc tr×nh bµy ë ®©y ®ã lµ ph−¬ng ph¸p suy diÔn dùa trªn phÐp hîp thµnh vµ ph−¬ng ph¸p suy diÔn dùa trªn ®é t−¬ng tù. Tõ ®ã ®−a ra nh÷ng ph©n tÝch ®¸nh gi¸, ®©y lµ mét c¬ së quan träng ®Ó lùa chän ph−¬ng ph¸p suy diÔn phï hîp khi thiÕt kÕ vµ x©y dùng c¸c øng dông logic mê. Ch−¬ng 4: TËp mê lo¹i hai kho¶ng: TËp mê lo¹i hai tæng qu¸t béc lé mét sè nh−îc ®iÓm nh− ®é phøc t¹p tÝnh to¸n lín. Do cã cÊu tróc ®Æc biÖt nªn viÖc tÝnh to¸n vµ suy diÔn trªn tËp mê lo¹i hai kho¶ng cã ®é phøc t¹p nhá h¬n rÊt nhiÒu lÇn so víi tËp mê lo¹i hai tæng qu¸t. ChÝnh v× vËy, tËp mê lo¹i hai kho¶ng th−êng ®−îc øng dông trong c¸c hÖ logic mê. Ch−¬ng nµy tr×nh bµy nh÷ng ®Æc tr−ng c¬ b¶n cña tËp mê lo¹i hai kho¶ng vµ ph−¬ng ph¸p suy diÔn trªn tËp mê lo¹i hai kho¶ng. 6 Ch−¬ng 1. C¬ b¶n vÒ tËp mê 1.1. TËp mê §Þnh nghÜa 1-1: TËp mê F x¸c ®Þnh trong kh«ng gian X ®−îc ®Þnh nghÜa nh− sau: F = {(x, µ F µ F µ (x) )| x ∈ X} víi ®−îc gäi lµ hµm thuéc cña tËp mê F vµ µ F F (x) ∈ [0, 1] (1-1) (x) lµ gi¸ trÞ ®é thuéc cña x ∈ X vµo F. §Ó thuËn tiªn cho viÖc biÓu diÔn, ng−êi ta ký hiÖu tËp mê F : F= ∫µ F ( x) / x , khi X liªn tôc (1- 2) X ë ®©y, c¸c kÝ hiÖu ∫ F= ∑ µ vµ ∑ X F ( x) / x , khi X rêi r¹c (1-3) kh«ng ph¶i lµ phÐp tÝch ph©n vµ tæng ®¹i sè mµ lµ tËp hîp tÊt c¶ c¸c phÇn tö x ∈ X kÕt hîp víi gi¸ trÞ ®é thuéc µ F (x) t−¬ng øng cña chóng. µ (x) 1 µ F µ (x) D (x) 0.5 0 25 50 75 100 x H×nh 1-1. C¸c hµm ®é thuéc cho xe néi ®Þa vµ xe ngo¹i nhËp dùa trªn tû lÖ phÇn tr¨m c¸c thµnh phÇn s¶n xuÊt trong n−íc 7 VÝ dô 1-1: H×nh 1-1 m« t¶ viÖc ph©n lo¹i tËp c¸c « t« thµnh hai tËp néi ®Þa (D) vµ ngo¹i nhËp (F) theo tû lÖ phÇn tr¨m c¸c linh kiÖn ®−îc s¶n xuÊt trong n−íc. ë ®©y, F vµ D lµ c¸c tËp mê cã c¸c hµm thuéc t−¬ng øng lµ µ F (x) vµ µ D (x) ; x lµ tû lÖ phÇn tr¨m c¸c linh kiÖn s¶n xuÊt trong n−íc. Mét chiÕc « t« ®−îc coi lµ néi ®Þa nÕu cã µ D (x) > µ F (x) , ng−îc l¹i nã ®−îc coi lµ xe ngo¹i nhËp. Th«ng th−êng, ®å thÞ sö dông ®Ó m« t¶ cho c¸c hµm thuéc cña mét tËp mê cã d¹ng h×nh tam gi¸c, h×nh thang, Gaussian .v.v. C¸c hµm thuéc th−êng ®−îc lùa chän mét c¸ch tïy ý trªn c¬ së kinh nghiÖm cña ng−êi sö dông vÒ lÜnh vùc liªn quan hoÆc ph−¬ng ph¸p tÝnh to¸n tèi −u mµ hä lùa chän. 1.2. C¸c phÐp to¸n tËp hîp trªn tËp mê Trong lý thuyÕt tËp mê, c¸c phÐp to¸n tËp hîp ®−îc ®Þnh nghÜa th«ng qua c¸c hµm thuéc cña chóng. Gi¶ sö A vµ B lµ hai tËp mê x¸c ®Þnh trªn kh«ng gian X ®−îc ®Æc tr−ng bëi c¸c hµm thuéc t−¬ng øng lµ µ A (x) vµ µ B (x) . §Þnh nghÜa 1-2: Hîp cña hai tËp mê A vµ B, ký hiÖu A∪ B , cã hµm thuéc ®−îc ®Þnh nghÜa: µ A∪ B (x) = max[ µ (x) , µ (x) ] A (1-4) B §Þnh nghÜa 1-3: Giao cña hai tËp mê A vµ B, ký hiÖu A∩ B , cã hµm thuéc ®−îc ®Þnh nghÜa: (1-5) (x) = min[ (x) , (x) ] µ µ A∩ B µ A B PhÇn bï cña tËp mê A, ký hiÖu A vµ hµm thuéc ®−îc ®Þnh nghÜa: µ A (x) = 1 - µ A (x) (1-6) XÐt vÝ dô sau: VÝ dô 1-2: Cho hai tËp mê A vµ B cã hµm thuéc ®−îc x¸c ®Þnh nh− sau: µ 0, nÕu 0 ≤ x ≤ 0.5 ⎧ (x) = ⎨ −2 A ⎩1 /[1 + ( x − 0.5) ], nÕu 0.5 ≤ x ≤ 1 8 (1-7) µ B (x) = 1 ,0≤ x≤ 1 1 + ( x − 0.707) 4 µ H×nh 1-2 d−íi ®©y m« t¶ c¸c hµm thuéc µ A A (x) , (1-8) µ B (x) , µ A∪ B (x) , µ A∩ B (x) , (x) 1 µ B µ (x) A (x) µ 1 x 0.5 0.707 µ A∩ B (x) x 0.5 0.707 (a) 1 A∪ B (b) 1 (x) µ B x 0.5 0.707 µ (x) B (x) x 0.5 0.707 (c) (d) H×nh 1-2: C¸c hµm thuéc: (a) (b) µ A∪ B (x) , (c) µ A∩ B µ A (x) vµ (x) , (d) µ B µ B (x) , (x) VÝ dô nµy cho thÊy phÐp hîp, giao cña mét tËp mê víi phÇn bï cña nã cã kÕt qu¶ kh¸c so víi trong tËp râ. Bëi v×, râ rµng A ∪ A ≠ X vµ A ∩ A ≠ φ . Ngoµi viÖc sö dông c¸c phÐp to¸n maximum vµ minimum, ng−êi ta cßn cã thÓ ®Þnh nghÜa c¸c phÐp hîp vµ phÐp giao kh¸c cho tËp mê. Ch¼ng h¹n, Zadeh ®Þnh nghÜa hai phÐp to¸n hîp vµ giao cho tËp mê nh− sau: 9 1. PhÐp hîp: µ 2. PhÐp giao: µ A∪ B (x) = µ (x) + A∩ B A µ B (x) - µ A ( x) µ ( x) (1-9) B (x) = µ ( x) µ ( x) A (1-10) B Sau ®ã, Klir vµ Yuan ®Þnh nghÜa hai phÐp to¸n t-conorm cho phÐp hîp vµ t-norm cho phÐp giao sö dông cho tËp mê: PhÐp to¸n t-conorm (cßn gäi lµ s-norms) ®−îc sö dông cho phÐp hîp, ®−îc ký hiÖu lµ ⊕ . Maximum vµ phÐp tæng ®¹i sè lµ phÐp to¸n t-conorm. D−íi ®©y lµ hai vÝ dô vÒ t-conorm: ™ x ⊕ y = min(1, x+y) (1-11) ™ ⎧ x nÕu y = 0 x ⊕ y = ⎪⎨ y nÕu x = 0 ⎪1 nÕu ng−îc l¹i ⎩ (1-12) PhÐp t-norm ®−îc sö dông cho phÐp giao, ®−îc ký hiÖu lµ ∗ . Minimun vµ hµm ®¹i sè lµ t-norm. D−íi ®©y lµ hai vÝ dô vÒ t-norm. ™ x ∗ y=max(0, x+y-1) (1-13) ™ ⎧ x nÕu y = 1 x ∗ y = ⎪⎨ y nÕu x = 1 ⎪0 nÕu ng−îc l¹i ⎩ (1-14) ViÖc ®Þnh nghÜa c¸c t-conom, t-norm vµ phÐp lÊy phÇn bï kh¸c nhau sö dông trong lý thuyÕt tËp mê cung cÊp cho chóng ta mét sù lùa chän phong phó h¬n khi x©y dùng hÖ logic mê. 1.3. Quan hÖ mê Quan hÖ mê thÓ hiÖn ®é thuéc cña sù xuÊt hiÖn hoÆc kh«ng xuÊt hiÖn cña sù kÕt hîp, sù ¶nh h−ëng hoÆc tÝnh chÊt liªn kÕt gi÷a c¸c phÇn tö cña hai hay nhiÒu tËp mê. 1.3.1. Quan hÖ mê trªn cïng kh«ng gian §Þnh nghÜa 1-4: Gäi U vµ V lµ hai kh«ng gian nÒn. Quan hÖ mê, R(U,V) lµ mét tËp mê trong kh«ng gian cña tÝch §ª-c¸c U × V. TËp mê nµy lµ tËp con cña U × V vµ ®−îc ®Æc tr−ng bëi hµm thuéc µ R ( x, y ) , víi x ∈ U vµ y ∈ V . R(U,V) = {((x,y), µ R ( x, y ) )| (x,y) ∈ U × V }, víi 10 µ R ( x, y ) ∈ [0,1] (1-15) VÝ dô 1-3: Gi¶ sö U vµ V lµ hai tËp c¸c sè thùc. XÐt quan hÖ mê “môc tiªu x lµ gÇn víi môc tiªu y”. Hµm thuéc cña quan hÖ mê nµy ®−îc x¸c ®Þnh nh− sau: µ c (| x − y |) ≡ max{(5− | x − y |) / 5,0} (1-16) Hµm thuéc cña quan hÖ nµy ®−îc diÔn t¶ trong H×nh 1-3. Chó ý r»ng kho¶ng c¸ch gi÷a hai môc tiªu x vµ y ®−îc x¸c ®Þnh bëi |x-y|, ®−îc hiÓu nh− lµ mét biÕn phô thuéc. µ c (| x − y |) 1 |x-y| 5 H×nh 1-3: §å thÞ hµm thuéc cña quan hÖ mê µ c (| x − y |) V× c¸c quan hÖ mê lµ c¸c tËp mê trong kh«ng gian §ª-c¸c nªn lý thuyÕt tËp hîp vµ c¸c phÐp to¸n sè häc cã thÓ ®−îc ®Þnh nghÜa vµ sö dông ®èi víi c¸c quan hÖ mê nµy bëi viÖc sö dông c¸c phÐp to¸n hîp, giao, lÊy phÇn bï mµ chóng ta ®· ®Þnh nghÜa ë c¸c phÇn tr−íc. Gi¶ sö R(U,V) vµ S(U,V) viÕt t¾t lµ R vµ S lµ hai quan hÖ mê trong cïng kh«ng gian tÝch §ª-c¸c UxV. C¸c phÐp hîp vµ giao cña hai quan hÖ nµy víi c¸c thµnh phÇn cña nã ®−îc ®Þnh nghÜa: µ R ∩ S ( x , y ) = µ R ( x, y ) ∗ µ S ( x, y ) (1-17) µ R ∪ S ( x , y ) = µ R ( x , y ) ⊕ µ S ( x, y ) (1-18) ë ®©y, ∗ lµ c¸c t-norm vµ ⊕ lµ c¸c t-conorm. VÝ dô 1-4: Xem xÐt møc ®é phï hîp cña hai quan hÖ mê sau ®©y: “u gÇn víi v” vµ “u nhá h¬n v”; vµ quan hÖ mê “u gÇn v” hoÆc “u nhá h¬n v”. TÊt c¶ c¸c quan hÖ nµy cïng kh«ng gian tÝch §ª-c¸c UxV. §Ó ®¬n gi¶n, chóng ta gi¶ sö r»ng U={u1, u2} = {2, 12} vµ V ={v1, v2, v3} = {1, 7, 13}. Chóng ta sÏ tÝnh to¸n gi¸ trÞ ®é thuéc cña c¸c thµnh phÇn trong phÐp hîp vµ giao cña hai quan hÖ nµy. Hµm thuéc cho c¸c quan hÖ mê “gÇn” vµ “nhá” ký hiÖu lµ 11 µ c (u, v) vµ µ s (u, v) . C¸c sè trong µ c (u, v) vµ µ s (u, v) ®−îc chän ®Ó phï hîp víi kh¸i niÖm sù so s¸nh hai sè trong U vµ V. u1 u2 µ c (u, v) ≡ v1 v2 v3 ⎛ 0.9 ⎜⎜ ⎝ 0.1 0.4 0.4 0.1⎞ ⎟ 0.9 ⎟⎠ v1 v2 v3 ⎛0 ⎜⎜ ⎝0 0.6 1 ⎞ ⎟ 0 0.3 ⎟⎠ u µ s (u , v) ≡ 1 u2 (1-19) (1-20) Gi¶ sö dïng minimum t-norm ( ∧ ) vµ maximum t-conorm ( ∨ ) cho c¸c phÐp hîp vµ giao khi ®ã: µ c∪ s (u i , v j ) = µ c (u i , v j ) ∨ µ s (u i , v j ) (1-21) µ c∩ s (u i , v j ) = µ c (u i , v j ) ∧ µ s (u i , v j ) (1-22) vµ ë ®©y, i = 1, 2 vµ j = 1, 2, 3. Sö dông c¸c c«ng thøc (1-21) vµ (1-22), ta cã: µ c∪s (u, v) ≡ u1 u2 µ c∩s (u, v) ≡ u1 u2 v1 v2 v3 ⎛ 0.9 ⎜⎜ ⎝ 0.1 0.6 0.4 1 ⎞ ⎟ 0.9 ⎟⎠ v1 v2 v3 ⎛0 ⎜⎜ ⎝0 0.4 0 0.1 ⎞ ⎟ 0.3 ⎟⎠ (1-23) (1-24) Tõ (1-23) vµ (1-24) chóng ta thÊy r»ng “u gÇn v” hoÆc “u nhá h¬n v” phï hîp h¬n nhiÒu so víi “u gÇn v” vµ “u nhá h¬n v” bëi v× gi¸ trÞ ®é thuéc µ c∪s (u, v) t−¬ng ®èi lín, trong khi ®ã gi¸ trÞ ®é thuéc µ c∩ s (u, v) t−¬ng ®èi nhá. 12 1.3.2. Quan hÖ mê vµ phÐp hîp thµnh trªn c¸c kh«ng gian kh¸c nhau §Þnh nghÜa 1-5: Gi¶ sö R(U,V) lµ mét quan hÖ mê trªn kh«ng gian tÝch §ª-c¸c U × V vµ S(V,W) lµ mét quan hÖ mê trªn kh«ng gian tÝch §ª-c¸c V × W cã c¸c hµm thuéc t−¬ng øng lµ µ R ( x, y ) vµ µ S ( y, z ) víi µ R ( x, y ) ∈ [0,1] , µ S ( y, z ) ∈ [0,1]. PhÐp hîp thµnh gi÷a quan hÖ mê R vµ S ký hiÖu lµ R o S, lµ mét quan hÖ mê cã hµm thuéc µ Ro S ( x, z ) ®−îc ®Þnh nghÜa: µ Ro S ( x, z ) = supy ∈ V[ µ (x,y) ∗ R µ S (y,z)] (1-25) ë ®©y to¸n tö supremum chÝnh lµ hµm maximum vµ to¸n tö ∗ lµ mét tnorm, ch¼ng h¹n nh− hµm minimum. Nh− vËy, sup-star ë ®©y ®−îc hiÓu nh− c¸c sup-min vµ sup-product t−¬ng ®−¬ng víi c¸c max-min vµ max-product. VÝ dô 1-5: Gi¶ sö c lµ mét quan hÖ mê “u gÇn v” trªn kh«ng gian tÝch §ªc¸c U × V, ë ®©y U={u1, u2} vµ V={v1,v2,v3}, víi c¸c gi¸ trÞ ®−îc cho nh− sau: U={2,12}, V={1,7,13}; gi¸ trÞ ®é thuéc cña quan hÖ mê nµy ®−îc cho bëi (1-19). Vµ mb mét quan hÖ mê “v lín h¬n nhiÒu w” trªn kh«ng gian V × W, ë ®©y W={w1, w2}={4.8}, gi¸ trÞ ®é thuéc µ mb (v, w) ®−îc cho trong (1-26) d−íi ®©y: w1 v1 ⎛ 0 µ mb (v, w) = v2 ⎜⎜ 0.6 v3 ⎜⎝ 1 w2 0 ⎞ ⎟ 0 ⎟ 0.7 ⎟⎠ (1-26) Ph¸t biÓu “u gÇn v” vµ “v lín h¬n nhiÒu w” thÓ hiÖn phÐp hîp thµnh gi÷a hai quan hÖ mê c vµ mb nã lµ mét tËp mê cã hµm thuéc µ comb (u, w) ®−îc x¸c ®Þnh theo (1-25) vµ minimun-tnorm nh− sau: µ c o mb (u i , w j ) = [ µ (u i , v1 ) ∧ µ (v1 , w j ) ] ∨ [ µ (u i , v 2 ) ∧ µ (v 2 , w j ) ] c mb c ∨ [ µ (u i , v3 ) ∧ µ (v3 , w j ) ] c mb (1-27) mb víi i = 1,2 ; j = 1,2,3; ∧ thÓ hiÖn minimum vµ ∨ thÓ hiÖn maximum. Ch¼ng h¹n: 13 µ c o mb (u1 , w1 ) = [ µ (u1 , v1 ) ∧ µ (v1 , w1 ) ] ∨ [ µ (u1 , v 2 ) ∧ µ (v 2 , w1 ) ] c mb c mb (1-28) ∨ [ µ (u1 , v3 ) ∧ µ (v3 , w1 ) ] c mb = [0.9 ∧ 0] ∨ [0.4 ∧ 0.6] ∨ [0.1 ∧ 1] = 0 ∨ 0.4 ∨ 0.1 = 0.4 TÝnh to¸n t−¬ng tù cho c¸c phÇn tö cßn l¹i chóng ta cã ma trËn ®é thuéc cña c¸c thµnh phÇn cña quan hÖ mê µ comb (u, w) nh− sau: µ c o mb (u , w) = u1 u2 w1 ⎛ 0.4 ⎜⎜ ⎝ 0.9 w2 0.1 0.7 (1-29) ⎞ ⎟⎟ ⎠ Chó ý: Trong tr−êng hîp V = U, khi ®ã hµm thuéc µ R µ R (x,y) trë thµnh µ R (x) hoÆc (y), vÝ dô quan hÖ mê “y lµ mét sè trung b×nh vµ y nhá h¬n z”. v× V=U, khi ®ã phÐp hîp thµnh sup-star trong (1-25) trë thµnh: supy ∈ V[ µ R (x,y) ∗ µ S (y,z)] = supx ∈ U[ µ R (x) ∗ µ S (x,z)] (1-30) ®©y chØ lµ hµm cña mét biÕn ®Çu ra z. Nh− vËy, chóng ta cã thÓ ®¬n gi¶n ký hiÖu µ Ro S ( x, z ) thµnh µ Ro S (z ) , vµ ta cã µ Ro S (z ) = supx ∈ U[ µ (x) ∗ R µ S (x,z)] (1-31) 1.4. C¬ b¶n vÒ suy diÔn mê LuËt mê lµ mét thµnh phÇn chÝnh trong hÖ logic mê. Trong Logic mê c¸c luËt th−êng ®−îc ph¸t biÓu d−íi d¹ng mÖnh ®Ò if – then (nÕu – th×): If x is A, then y is B, víi x ∈ X vµ y ∈ Y (nÕu x lµ A th× y lµ B, víi x ∈ X vµ y ∈ Y) MÖnh ®Ò trªn lµ mét quy t¾c thÓ hiÖn mèi quan hÖ gi÷a hai tËp mê A vµ B, hµm thuéc cña mèi quan hÖ nµy ký hiÖu lµ µ A→ B ( x, y ) , víi µ A→ B (x,y) ∈ [0,1]. ë ®©y, µ A→ B (x,y) x¸c ®Þnh ®é thuéc cña mèi quan hÖ gi÷a x vµ y trong kh«ng gian tÝch §ª-c¸c X × Y. 14 Hµm thuéc cña mèi quan hÖ mê gi÷a hai tËp mê A vµ B cã thÓ ®−îc x¸c ®Þnh theo c¸c C«ng thøc (1-32) – (1-34) d−íi ®©y: µ A→ B µ A→ B µ A→ B ( x, y ) = 1- min[ µ (x) , 1 - µ A ( x, y ) = max[1- µ A (x) , µ B B ( y) ] ( y) ] ( x, y ) =1- µ (x) (1- µ ( y ) ) A (1-32) (1-33) (1-34) B Trong Logic mê, luËt Modus Ponen ®−îc tæng qu¸t hãa nh− sau: Gi¶ thiÕt: x lµ A* PhÐp kÐo theo: NÕu x lµ A th× y lµ B KÕt luËn: y lµ B* Trong ®ã A*, A, B*, B lµ c¸c tËp mê. Tõ d¹ng thøc Modus Ponen tæng qu¸t cña luËt chóng ta thÊy cã sù kh¸c nhau ë tªn gäi cña gi¶ thiÕt (A vµ A*) vµ kÕt luËn (B vµ B*). §iÒu nµy nãi lªn r»ng, trong logic mê, tËp mê gi¶ thiÕt A* kh«ng ph¶i lóc nµo còng trïng víi tËp mê gi¶ thiÕt A cña luËt if-then. Vµ tËp mê kÕt luËn B* kh«ng ph¶i lu«n trïng víi kÕt luËn B cña luËt if-then. Trong logic râ, mét luËt chØ ®−îc ®èt ch¸y nÕu vµ chØ nÕu gi¶ thiÕt trïng víi vÕ tr¸i cña luËt vµ kÕt qu¶ chÝnh lµ vÕ ph¶i cña luËt. Trong logic mê, luËt ®−îc ®èt ch¸y víi mét ®é thuéc kh¸c 0 cña sù t−¬ng tù gi÷a gi¶ thiÕt vµ vÕ tr¸i cña luËt; vµ kÕt qu¶ lµ mét ®é thuéc kh¸c 0 cña sù t−¬ng tù gi÷a kÕt luËn vµ vÕ ph¶i cña luËt. LuËt mê d¹ng Modus Ponen tæng qu¸t lµ mét kÕt cÊu mê; ë ®©y, quan hÖ mê thø nhÊt lµ mét tËp mê ®¬n thuÇn A*. Do vËy, sö dông (1-31), µ B ( y ) * nhËn ®−îc tõ phÐp hîp thµnh sup-star nh− sau: µ B* ( y) = sup x∈ X [ µ * ( x) ∗ µ A A→ B ( x, y )] (1-35) §Ó hiÓu râ h¬n vÒ (1-35), chóng ta sÏ xem xÐt vÝ dô sau ®©y. Trong vÝ dô nµy, chóng ta gi¶ sö r»ng tËp mê A* lµ mét tËp mê ®¬n trÞ (singleton), cßn gäi lµ bé mê hãa ®¬n trÞ. ⎧1 víi x = x ' = ( x ) µ A* ⎨0 víi x ≠ x ' vµ ∀ x∈ X ⎩ 15 (1-36) Víi bé mê hãa ®¬n trÞ, (1-35) trë thµnh: µ = B* ( y) = sup x∈ X sup [µ x∈ X A→ B [ µ * ( x) ∗ µ A ( x ' , y ),0] = A→ B µ ( x, y )] A→ B ( x' , y) (1-37) Nh− vËy, víi bé mê hãa ®¬n trÞ viÖc tÝnh to¸n supermum dÔ dµng h¬n, bëi v× µ A ( x) chØ kh¸c kh«ng t¹i mét ®iÓm duy nhÊt, x’. * VÝ dô 1-6: Sö dông (1-32) cho µ B* µ A→ B ( x, y ) , khi ®ã (1-37) trë thµnh ( y ) = 1- min[ µ ( x ' ) , 1 A µ B ( y) ] §å thÞ minh häa kÕt qu¶ phÐp hîp thµnh ®−îc ®−a ra trong H×nh 1-4. µ B ( y) ®−îc thÓ hiÖn trong h×nh (a); chóng ta tÝnh to¸n 1- µ B ( y) vµ ®−îc thÓ µ chóng ta x¸c ®Þnh ®−îc min[ µ hiÖn trong h×nh (b); ®é thuéc A A ( x ' ) còng ®−îc ®−a ra trong h×nh (b), sau ®ã (x' ) , 1 - µ h×nh (b). Chó ý r»ng, gi¸ trÞ ®é thuéc µ A B ( y ) ], còng ®−îc thÓ hiÖn trong ( x ' ) trong h×nh (b) ®−îc chän mét µ ( x ) ∈ [0,1]. Cuèi cïng, chóng ta 1- min[ µ ( x ) , 1 - µ ( y ) ] vµ ®−îc thÓ hiÖn trong h×nh (c). ' c¸ch tïy ý víi x¸c ®Þnh ®−îc A ' A µ B B 1 - min[ µ ( x ' ) , ( y) 1− µ 1 µ 1 A 1- ( y) µ B ( y) ] 1 (x' ) min[ µ ( x ' ) , 1- µ A B ( y) ] y y (a) B A (b) y (c) H×nh 1-4 16 1.5. Nguyªn lý më réng C«ng cô ®Ó tÝnh to¸n c¸c phÐp hîp, giao vµ phÇn bï cña mét tËp mê lo¹i hai lµ nguyªn lý më réng cña Zadeh (1975); Dubois vµ Prade (1980). Sau ®©y lµ nguyªn lý më réng tæng qu¸t. TÝch §ª-c¸c cña r tËp râ bÊt kú X1, X2, …, Xr , ký hiÖu X1 × X2 × … × Xr lµ mét tËp râ cña tËp tÊt c¶ c¸c bé r phÇn tö ®−îc ®¸nh chØ sè (x1, x2, …, xr) víi xi ∈ Xi , i = 1 ..r X = X1 × X2 × … × Xr = {(x1, x2, …, xr) | x1 ∈ X1, …, xr ∈ Xr} Gäi f lµ mét ¸nh x¹ tõ kh«ng gian X vµo kh«ng gian Y, khi ®ã: y = f(x1, x2, …, xr) ∈ Y TiÕp theo, gi¶ sö A1, A2, …Ar lÇn l−ît lµ c¸c tËp mê lo¹i mét trong X1, X2, …Xr. Khi ®ã, nguyªn lý më réng cho phÐp chóng ta ¸nh x¹ r tËp mê lo¹i mét A1, A2, …Ar thµnh mét tËp mê lo¹i mét B ®−îc x¸c ®Þnh trªn Y qua mét hµm f nh− sau, B = f(A1, A2, …Ar) víi: ⎧sup min{µ ( x ), µ ( x ), ..., µ ( x )} r 1 2 A1 A2 Ar ⎪⎪ −1 y ( , , .. ) ∈ ( ) x1 x 2 x r f µ B ( y) = ⎨ −1 ⎪ 0 if f ( y ) = φ ⎪⎩ (1-38) ë ®©y f-1(y) ký hiÖu tËp tÊt c¶ c¸c ®iÓm x1 ∈ X1, …, xr ∈ Xr tháa m·n: y = f(x1, x2, …, xr) §Ó tÝnh to¸n (1-38), tr−íc tiªn chóng ta x¸c ®Þnh c¸c gi¸ trÞ x1, x2, ..xr tháa m·n y = f(x1, x2, …, xr), sau ®ã tÝnh to¸n c¸c gi¸ trÞ µ A ( x1 ) , …, µ A ( x r ) vµ 1 x¸c ®Þnh min{ µ A ( x1 ) , …, 1 µ Ar ( x1 ) }. NÕu cã nhiÒu h¬n mét bé sè (x1, …, xr) cho cïng mét gi¸ trÞ y = f(x1, x2, …, xr), khi ®ã lín nhÊt cña c¸c min( µ A ( x1 ) , …, 1 r µ Ar µ B ( y ) ®−îc x¸c ®Þnh lµ gi¸ trÞ ( x r ) ) øng víi mçi bé sè. Trong ®Þnh nghÜa nguyªn lý më réng cña m×nh, Zadeh sö dông minimum t-norm vµ maximum t-conrm. Ngoai ra, Mizumoto, Tanaka vµ Dubois cßn sö dông c¸c t-norm vµ t-conorm. Khi sö dông mét t-norm kh¸c thay cho minimum trong (1-38), chóng ta sÏ thay thÕ thµnh phÇn sup-min bëi sup-star. Mét c¸ch tæng qu¸t, tËp mê lo¹i mét B ®−îc x¸c ®Þnh tõ r tËp mê lo¹i mét A1, A2, …Ar lÇn l−ît x¸c ®Þnh trªn X1, X2, …Xr qua hµm f ®−îc ®Þnh nghÜa: 17 B = f(A1, A2, …Ar) = ∫ x1∈ X 1 ...∫ xr ∈ X r µ A1 ( x1 ) ∗ ... ∗ µ ( x r ) / f ( x1 ,.., x r ) Ar (1-39) cho tr−êng hîp Xi , i =1 ..r lµ kh«ng gian liªn tôc vµ B = f(A1, A2, …Ar) = ∑ x1∈X 1 ...∑ x ∈X r r µ A1 ( x1 ) ∗ ... ∗ µ ( x r ) / f ( x1 ,.., x r )) Ar (1-40) cho tr−êng hîp Xi , i =1 ..r lµ kh«ng gian rêi r¹c VÝ dô nÕu f(x1, x2) = x1x2/(x1+x2) khi ®ã: B = f(A1, A2) = ∫ x1∈ X 1 ∫ x2 ∈ X 2 µ A1 ( x1 ) ∗ µ ( x r ) / A2 x1 x 2 x1 + x 2 1.6. KÕt luËn ch−¬ng Trong ch−¬ng nµy ®· tr×nh bµy s¬ l−îc vÒ kh¸i niÖm tËp mê, c¸c phÐp to¸n tËp hîp trªn tËp mê bao gåm c¸c phÐp to¸n hîp, giao, lÊy phÇn bï. Ngoµi ra, cßn giíi thiÖu vÒ quan hÖ mê vµ c¬ b¶n vÒ suy diÔn mê. TËp mê trong ch−¬ng nµy cã ®é thuéc cña mçi phÇn tö trong kh«ng gian nÒn lµ mét sè thùc thuéc ®o¹n [0, 1], do ®ã ®−îc gäi lµ tËp mê lo¹i mét ®Ó ph©n biÖt víi kh¸i niÖm tËp mê lo¹i hai ®−îc ®−a ra ë ch−¬ng tiÕp theo. 18 Ch−¬ng 2. tËp mê lo¹i hai 2.1. Giíi thiÖu chung Trong Ch−¬ng mét ®· ®Ò cËp nh÷ng vÊn ®Ò c¬ b¶n nhÊt cña lý thuyÕt tËp mê. Tuy nhiªn, lý thuyÕt tËp mê th«ng th−êng (tËp mê lo¹i mét) tiÒm Èn nh÷ng m©u thuÉn nhÊt ®Þnh. §ã lµ ®Ó ph¸t triÓn bÊt cø hÖ logic mê nµo, ng−êi thiÕt kÕ ph¶i x©y dùng hµm thuéc cho c¸c tËp mê sö dông trong hÖ, hay lµ ph¶i m« t¶ sù kh«ng ch¾c ch¾n b»ng c¸c hµm thuéc râ rµng, ch¾c ch¾n. §iÒu ®ã cã nghÜa lµ viÖc biÓu diÔn sù kh«ng ch¾c ch¾n l¹i sö dông c¸c ®é thuéc mµ b¶n th©n chóng lµ c¸c sè thùc chÝnh x¸c. N¨m 1975, Zadeh giíi thiÖu kh¸i niÖm tËp mê lo¹i hai nh»m gi¶i quyÕt vÊn ®Ò trªn. §ã lµ thay v× ®é thuéc lµ mét sè thùc nh− víi tËp mê th«ng th−êng, víi tËp mê lo¹i hai, ®é thuéc lµ mét tËp mê lo¹i mét trªn ®o¹n [0, 1]. TËp mê lo¹i hai th−êng ®−îc sö dông trong nh÷ng tr−êng hîp khã x¸c ®Þnh chÝnh x¸c gi¸ trÞ ®é thuéc cña c¸c phÇn tö trong kh«ng gian nÒn. Trong ch−¬ng nµy sÏ ®Ò cËp ®Õn kh¸i niÖm tËp mê lo¹i hai, c¸c phÐp to¸n vµ c¸c tÝnh chÊt trªn nã. 2.2. Hµm thuéc lo¹i hai 2.2.1. Kh¸i niÖm tËp mê lo¹i hai §èi víi tËp mê lo¹i mét, ®é thuéc cña c¸c phÇn tö lµ c¸c gi¸ trÞ sè thùc trong kho¶ng [0, 1]. Trong tr−êng hîp chóng ta kh«ng thÓ x¸c ®Þnh ®−îc gi¸ trÞ ®é thuéc cña c¸c phÇn tö, khi ®ã chóng ta cã sö dông c¸c tËp mê lo¹i mét ®Ò biÓu diÔn gi¸ trÞ ®é thuéc ®ã. Më réng tËp mê lo¹i mét b»ng c¸ch cho phÐp c¸c ®é thuéc lµ c¸c tËp mê lo¹i mét trong kho¶ng [0, 1] ta ®−îc kh¸i niÖm tËp mê lo¹i hai. Mét trong nh÷ng −u ®iÓm cña tËp mê lo¹i hai so víi tËp mê lo¹i mét ®ã lµ nã cho phÐp biÓu diÔn c¸c gi¸ trÞ ®é thuéc b»ng c¸c gi¸ trÞ mê, c¸c gi¸ trÞ ng«n ng÷ chø kh«ng ph¶i lµ c¸c gi¸ trÞ sè hoµn toµn chÝnh x¸c. 2.2.2. §Þnh nghÜa tËp mê lo¹i hai vµ c¸c kh¸i niÖm H×nh 2-1 (a) biÓu diÔn hµm thuéc cña mét tËp mê lo¹i mét. DÞch chuyÓn c¸c ®iÓm trªn ®å thÞ nµy sang ph¶i vµ sang tr¸i mét ®o¹n kh«ng nhÊt thiÕt b»ng nhau, vÕt mê ®−îc t¹o ra nh− H×nh 2-1 (b). T¹i mét gi¸ trÞ cô thÓ cña x gäi lµ x’, gi¸ trÞ hµm thuéc kh«ng cßn lµ mét gi¸ trÞ ®¬n n÷a, mµ lµ mét tËp 19
- Xem thêm -