Tài liệu Sử dụng sóng siêu âm trích ly isoflavone

  • Số trang: 32 |
  • Loại file: PDF |
  • Lượt xem: 230 |
  • Lượt tải: 0
thuvientrithuc1102

Đã đăng 15893 tài liệu

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA TP. HCM KHOA KỸ THUẬT HÓA HỌC BỘ MÔN CÔNG NGHỆ THỰC PHẨM O Tiểu luận môn học Các kỹ thuật hiện đại trong CNTP Tên đề tài: Sử dụng sóng siêu âm trích ly isoflavone GVHD: PGS TS. LÊ VĂN VIỆT MẪN HVTH: MAI THỊ HẢI ANH NGUYỄN THỊ NGÂN NGUYỄN NGỌC TÚ ANH NGUYỄN THỊ NGUYÊN THẢO NĂM HỌC 2010 - 2011 Sử dụng Sóng siêu âm trích ly Isoflavone MỞ ĐẦU Isoflavons là một phytoestrogen có nhiều tiềm năng trong phòng và chữa bệnh. Có nhiều phương pháp trích ly isoflavones, từ truyền thống đến hiện đại. Sử dụng sóng siêu âm trong trích ly isoflavons là một kỹ thuật hiện đại góp phần khắc phục một số nhược điểm của phương pháp truyền thống như giảm lượng dung môi, giảm thời gian chiết, an toàn và hiệu quả và thân thiện với môi trường hơn so với phương pháp truyền thống. Tuy nhiên trích ly bằng sóng siêu âm có nhiều vấn đề cần quan tâm nghiên cứu để tăng hiệu quả trích ly, đó là các thông số tối ưu ảnh hưởng đến quy trình như dung môi, tỷ lệ dung môi - mẫu, trạng thái mẫu, nhiệt độ, thời gian ly trích, nguồn năng lượng sóng siêu âm để đạt hiệu quả cao nhất. Trang 1 Sử dụng Sóng siêu âm trích ly Isoflavone 2. GIỚI THIỆU CHUNG 2.1 Sóng siêu âm 2.1.1 Khái niệm Siêu âm là sóng cơ học hình thành do sự lan truyền dao động của các phần tử trong không gian có tần số lớn hơn giới hạn trên ngưỡng nghe của con người (1620kHz). Ngoài ra, sóng siêu âm có bản chất là sóng dọc hay sóng nén, nghĩa là trong trường siêu âm các phần tử dao động theo phương cùng với phương truyền của sóng. Các thông số của quá trình siêu âm: - Tần số (Frequency, Hz): là số dao động phần tử thực hiện được trong 1 giây, (Hz). - Biên độ (Amplitude): biểu thị mức độ thay đổi áp suất (so với áp suất cân bằng của môi trường) trong quá trình dao động. - Cường độ (Intensity, W/m 2): là năng lượng mà sóng siêu âm truyền trong một đơn vị thời gian qua một đơn vị diện tích đặt vuông góc với phương truyền âm. Công thức tính I = P/S; trong đó P là công suất của nguồn âm (W), S là diện tích miền truyền âm (m 2). - Mức cường độ âm (Sound pressure level, B): là đại lượng được tính bởi công thức: L = lg(I/Io). Trong đó I là cường độ âm tại điểm cần tính, Io là cường độ âm chuẩn (âm ứng với tần số f = 1000 Hz) có giá trị là: 10-12 W/m 2. Hình 2.1: Các khoảng tần số của sóng siêu âm Con người có thể nghe được sóng âm có tần số từ 16 Hz đến 18 kHz. Sóng siêu âm là tên gọi của những sóng có tần số cao hơn 18 kHz. Giới hạn trên của tần số sóng siêu âm thường là 5 MHz đối với chất khí và 500 MHz đối với chất lỏng hay chất rắn. Trong phạm vi ứng dụng, sóng siêu âm được chia ra thành sóng siêu âm tần số thấp, năng lượng cao (20kHz-100kHz) và sóng siêu âm tần số cao, biên Trang 2 Sử dụng Sóng siêu âm trích ly Isoflavone độ nhỏ (2MHz-10MHz) (Kuldiloke J., 2002). Sử dụng sóng siêu âm năng lượng cao trong công nghệ thực phẩm ngày càng được khảo sát tỉ mỉ. Phần lớn các nghiên cứu đều áp dụng tần số sóng trong khoảng từ 20 kHz đến 40 kHz (Povey M.I.W. and Mason T.J, 1998). Sóng âm nghe thấy Sóng siêu âm năng lượng cao Phạm vi sóng mở rộng Sóng siêu âm biên độ nhỏ 16 Hz – 18 kHz 20 kHz – 100 kHz 20 kHz – 2 MHz 5 MHz – 10 MHz Hình 2.2. Phạm vi tần số sóng siêu âm 2.1.2 Thiết bị phát sóng siêu âm Thiết bị phát sóng siêu âm cũng phải gồm có 3 phần tối cần thiết sau: - Bộ phận chuyển phần lớn điện năng thành dòng điện xoay chiều tần số cao để vận hành bộ phận biến đổi . - Bộ phận biến đổi chuyển dòng điện xoay chiều tần số cao thành những dao động. Phần lớn thiết bị phát sóng siêu âm ngày nay sử dụng kỹ thuật áp điện. Hình dạng và kích thước của bộ phận này phụ thuộc vào tần số làm việc, bộ phận 20 kHz có chiều dài gấp đôi bộ phận 40 kHz. Năng lượng qua bộ biến đổi sẽ chuyển ngược lại thành bình phương tần số dao động, vì vậy thiết bị năng lượng cao tần số thấp được chú trọng. Bộ phận biến đổi nối với hệ thống truyền sóng thông qua một thiết bị phụ (Povey M.I.W. and Mason T.J, 1998). - Hệ thống truyền sóng sẽ truyền những dao động vào trong lòng chất lỏng. Trong thiết bị phát sóng siêu âm dạng bể, bộ phận biến đổi được gắn ở đáy bể và truyền trực tiếp dao động vào chất lỏng trong bồn. Tuy nhiên, đối với thiết bị năng lượng cao (thiết bị dạng thanh/que) dao động được khuyếch đại và truyền vào môi Trang 3 Sử dụng Sóng siêu âm trích ly Isoflavone trường lỏng nhờ thiết bị trung gian gắn với bộ phận biến đổi. Theo thời gian, đầu của bộ phận trung gian này có thể bị mòn và bị giảm chiều dài cần thiết vì vậy người ta phải lắp đầu có thể tháo gỡ được (Povey M.I.W. and Mason T.J, 1998). Hình 2.3. Thiết bị phát sóng siêu âm dạng thanh 2.1.3 Nguyên lý tác động của sóng siêu âm 2.1.3.1 . Hiện tượng xâm khí thực Khi sóng siêu âm được truyền vào môi trường chất lỏng, các chu trình kéo và nén liên tiếp được tạo thành. Trong điều kiện bình thường, các phân tử chất lỏng ở rất gần nhau nhờ liên kết hóa học. Khi có sóng siêu âm, trong chu trình nén các phân tử ở gần nhau hơn và trong chu trình kéo chúng bị tách ra xa. Áp lực âm trong chu trình kéo đủ mạnh để thắng các lực liên kết giữa các phân tử và tạo thành những bọt khí nhỏ. Bọt khí trở thành hạt nhân của hiện tượng xâm thực khí, bao gồm bọt khí ổn định và bọt khí tạm thời (Kuldiloke J., 2002). Bọt khí ổn định là nguồn gốc của những bong bóng khí nhỏ, kích thước của chúng dao động nhẹ trong các chu trình kéo và nén. Sau hàng ngàn chu trình, chúng tăng thêm về kích thước. Trong suốt quá trình dao động, bọt khí ổn định có thể chuyển thành bọt khí tạm thời. Sóng siêu âm làm rung động những bọt khí này, tạo nên hiện tượng “ sốc sóng “ và hình thành dòng nhiệt bên trong chất lỏng. Bọt khí ổn định có thể lôi kéo những bọt khí khác vào trong trường sóng, kết hợp lại với nhau và tạo thành dòng nhiệt nhỏ (Kuldiloke J., 2002). Các bọt khí tạm thời có kích cỡ thay đổi rất nhanh chóng, chỉ qua vài chu Trang 4 Sử dụng Sóng siêu âm trích ly Isoflavone trình chúng bị vỡ ra. Trong suốt chu trình kéo/nén, bọt khí kéo giãn và kết hợp lại cho đến khi đạt được cân bằng hơi nước ở bên trong và bên ngoài bọt khí. Diện tích bề mặt bọt khí trong chu trình kéo lớn hơn trong chu trình nén, vì vậy sự khuyếch tán khí trong chu trình kéo lớn hơn và kích cỡ bọt khí cũng tăng lên trong mỗi chu trình. Các bọt khí lớn dần đến một kích cỡ nhất định mà tại đó năng lượng của sóng siêu âm không đủ để duy trì pha khí khiến các bọt khí nổ tung dữ dội. Khi đó các phân tử va chạm với nhau mãnh liệt tạo nên hiện tượng “ sốc sóng “ trong lòng chất lỏng, kết quả là hình thành những điểm có nhiệt độ và áp suất rất cao (50000C và 5x104kPa) với vận tốc rất nhanh 106 oC/s (Kuldiloke J., 2002). Hình 2.4. Quá trình hình thành, phát triển và vỡ của bọt khí Hiện tượng xâm thực khí mở đầu cho rất nhiều phản ứng do có sự hình thành các ion tự do trong dung dịch; thúc đẩy các phản ứng hóa học nhờ có sự trộn lẫn các chất phản ứng với nhau; tăng cường phản ứng polymer hoá và depolymer hóa bằng cách phân tán tạm thời các phần tử hay bẻ gãy hoàn toàn các liên kết hóa học trong chuỗi polymer; tăng hiệu suất đồng hoá; hỗ trợ trích ly các chất tan như enzyme từ tế bào động vật, thực vật, nấm men hay vi khuẩn; tách virus ra khỏi tế bào bị nhiễm; loại bỏ các phần tử nhạy cảm bao gồm cả vi sinh vật (Kuldiloke J., 2002). Trang 5 Sử dụng Sóng siêu âm trích ly Isoflavone 2.1.3.2 Hiện tượng vi xoáy Sóng siêu âm cường độ cao truyền vào trong lòng chất lỏng sẽ gây nên sự kích thích mãnh liệt. Tại bề mặt tiếp xúc giữa 2 pha lỏng/rắn hay khí/rắn, sóng siêu âm gây nên sự hỗn loạn cực độ do tạo thành những vi xoáy. Hiện tượng này làm giảm ranh giới giữa các pha, tăng cường sự truyền khối đối lưu và thúc đẩy xảy ra sự khuyếch tán ở một vài trường hợp mà khuấy trộn thông thường không đạt được (Kuldiloke J., 2002). 2.1.4 Các hiệu ứng vật lý và hóa học khi chiếu siêu âm lên hệ chất lỏng 2.1.4.1 Hiện tượng sủi bóng (cavitation): Sóng siêu âm được tạo ra bằng các dao động cơ học ở tần số cao hơn 15kHz. Khi truyền trong môi trường lỏng, các phần tử trong trường siêu âm trải qua các chu trình nén (compression) và duỗi (rarefaction) và những dao động này sẽ lan truyền cho các phần tử kế cận. Khi năng lượng đủ lớn, tại chu trình duỗi, tương tác giữa các phân tử sẽ vượt quá lực hấp dẫn nội tại và các lỗ hổng nhỏ trong lòng chất lỏng được hình thành. Hiện tượng trên còn được gọi là hiện tượng sủi bóng. Những bóng sủi này sẽ lớn dần lên bởi quá trình khuếch tán một lượng nhỏ các cấu tử khí (hoặc hơi) từ pha lỏng trong suốt pha dãn nở và không được hấp thụ hoàn toàn trở lại trong quá trình nén. 2.1.4.2 Hiện tượng vỡ bóng Khi chúng đạt đến một thể tích mà chúng không còn có thể hấp thu được năng lượng, chúng vỡ ra một cách đột ngột và nhanh chóng. Trong suốt quá trình vỡ, nhiệt độ và áp suất sẽ tăng lên rất cao (khoảng 4000K và 1000atm). Thể tích chất lỏng bị gia nhiệt là rất nhỏ và nhiệt nhanh chóng bị tiêu tan, mặc dù nhiệt độ tại vùng này thì rất cao trong vài s. Mặt khác, nhiệt độ và áp suất cao tạo ra khi nổ bong bóng sẽ dẫn tới sự tạo thành các gốc tự do như là H và OH.  Các yếu tố ảnh hưởng đến khả năng hình thành và vỡ bóng Một số thông số như là tần số và biên độ của sóng siêu âm, nhiệt độ và độ nhớt của môi trường ảnh hưởng đến mức độ tạo bong bóng khí. Sự hình thành các lỗ hổng hay bóng khí có thể bị giới hạn ở tần số cao hơn 2,5 MHz. Kích thước bong bóng khí thu được ở tần số thấp hơn 2,5 MHz là tối đa và do đó những bong bóng khí này sẽ tạo ra năng lượng lớn khi vỡ. Trang 6 Sử dụng Sóng siêu âm trích ly Isoflavone Siêu âm với biên độ cao hơn sẽ hình thành hiện tượng sủi bong bóng với cường độ mạnh hơn. Bong bóng được hình thành nhanh hơn ở nhiệt độ cao hơn do tăng áp suất hơi và giảm sức căng. Tuy nhiên sức căng hơi cao hơn sẽ làm yếu đi cường độ nổ bong bóng. Độ nhớt của chất lỏng cũng ảnh hưởng đến hiện tượng sủi bong bóng. Trong môi trường có độ nhớt cao, sự lan truyền của các phần tử trong trường siêu âm bị cản trở và do đó làm giảm mức độ sủi bong bóng. Trong trường hợp này, siêu âm có tần số thấp hơn và năng lượng cao hơn có khả năng xuyên thấu vào thực phẩm tốt hơn là siêu âm có tần số cao hơn. 2.1.5 Ứng dụng của sóng siêu âm Siêu âm là một lĩnh vực đang được nghiên cứu và có tiềm năng phát triển trong ngành công nghệ thực phẩm. Sóng siêu âm có tần số từ 20kHz đến trên 25MHz thường được ứng dụng rộng rãi trong nhiều lĩnh vực. Có 2 lĩnh vực được ứng dụng chính trong công nghiệp thực phẩm: - Siêu âm tần số cao và năng lượng thấp: còn được gọi là siêu âm chuẩn đoán, trong khoảng tần số 20 – 60 MHz [51]. Phần này được sử dụng như một kỹ thuật phân tích, không làm phá hủy cấu trúc của mẫu, điều này được ứng dụng để xác định tính chất thực phẩm, đo tốc độ dòng chảy, kiểm tra bao gói thực phẩm ....(Floros, J. D., 1994). - Tần số thấp và siêu âm năng lượng cao (2 MHz – 10 MHz): được ứng dụng rộng rãi như một quá trình hỗ trợ trong hàng loạt các lĩnh vực như: kết tinh, sấy, bài khí, trích ly, lọc, đồng hoá, làm mềm thịt, quá trình oxi hoá, quá trình tiệt trùng … (Floros, J. D., 1994). 2.2 Giới thiệu về Isoflavone 2.2.1 Cấu tạo Hình 2.5: Cấu tạo isoflavone Trang 7 Sử dụng Sóng siêu âm trích ly Isoflavone Bảng 2.1. Danh sách các isoflavone TÊN R1 R2 R3 Daidzein H H H Glycitein H OCH3 H OH H H Daidzin H H Glucisyl Glycitin H OCH3 Glucosyl Genistin OH H Glucosyl Acetyl hoặc Malonyl daidzin H H Acetyl hoặc Malonyl glycitin H OCH3 Acetyl hoặc Malonyl genistin OH H Genistein R3O Glucosyl-COCH3 hoặc Glucosyl-COCH2COOH Glucosyl-COCH3 hoặc Glucosyl-COCH2COOH Glucosyl-COCH3 hoặc Glucosyl-COCH2COOH 2.2.2 Nguồn gốc và tính chất Isoflavone là các chất hữu cơ thuộc nhóm polyphenol có liên quan với flavonoid (isoflavone và flavonoid khác nhau ở vị trí gắn của vòng benzen). Sự khác biệt trong cấu tạo phân tử giữa isoflavone và flavones ở vị trí gắn nhóm phenyl vào gốc chromone (vị trí 3 ở isoflavone và vị trí 2 ở flavones) Isoflavone có nguồn gốc từ thảo mộc, có nhiều trong đậu nành. Những hợp chất có thành phần tương tự như isoflavon vẫn được tìm thấy trong một số loài thực vật như: cỏ 3 lá, cỏ linh lăng, cây dong…nhưng chúng không ăn được. Cho đến nay, đậu nành là loại thực phẩm duy nhất có chứa chất isoflavone. Đó là lý do tại sao đậu nành đã thu hút được sự chú ý, tập trung nghiên cứu từ các nhà khoa học. Cơ chế hoạt động và chức năng isoflavone như những hoocmon nữ và mang tính lành giúp cơ thể chống lại chứng loãng xương, bệnh tim mạch, và 1 số loại ung thư. Thường xuyên sử dụng isoflavone làm giảm tỷ lệ các bệnh tiền mãn kinh và Trang 8 Sử dụng Sóng siêu âm trích ly Isoflavone các triệu chứng mãn kinh khác. Theo đánh giá của Branca và Lorenzetti đề nghị sử dụng 50 - 110mg isoflavone mỗi ngày từ 6 - 12 tháng cải thiện chất lượng xương. 3 CÁC PHƯƠNG PHÁP TRÍCH LY ISOFLAVON 3.1 Phương pháp cổ điển Các kỹ thuật truyền thống sử dụng soxhlet, Shaking, stirring là những kỹ thuật phổ biến được sử dụng để ly trích isoflavon. Các yếu tố ảnh hưởng: Dung môi: Theo nghiên cứu của Eldridge (1982) sử dụng dung môi MeOH và EtOH và etylacetate và MeCN với đậu nành tách béo để trích ly isoflavones. Theo đánh giá này 80% MeOH sẽ cho hiệu quả trích ly isflovones là cao nhất và hầu hết là được tái sinh được isoflavon. Thời gian ly trích hiệu quả là 4h, tỉ lệ dung môi: mẫu thì nó sẽ khác nhau từ 14:1 - 45:1 một khi điều kiện ly trích được thiết lập phương pháp này được sử dụng để xác định hàm lương isflavones từ bột đậu nành, protein concentrates và isolate. Một nghiên cứu đi tiên phong bởi Murphy (1981) đã so sánh những dung môi khác nhau như MeOH, ACE, MeCN và chloroform-MeOH kết quả đã chỉ ra rằng với dung môi tinh khiết thì nó sẽ làm tăng hiệu quả trích ly tổng hàm lượng isoflavones chủ yếu (Gi, Ge, Di và De) và theo nghiên cứu này thì MeCN cùng với nước hoặc acid thì cho hiệu quả trích ly cao hơn những dung môi còn lại. Theo Murphy thì 80% methanol và 83% acid acetonitrile trở thành dung môi được sử dụng phổ biến trong việc ly trích isoflavones. Phương pháp này được phát triển bởi Murphy và nó phụ thuộc vào lượng mẫu thể tích dung môi lượng nước thêm vào và kỹ thuật khuầy đảo . Theo Song et al cùng cộng sự (1998) đã đánh giá lại phương pháp của Murphy và báo cáo rằng việc sử dụng nước thêm vào acid HCl và MeCN làm tăng khả năng phục hồi isoflavones đối với hầu hết thực phẩm từ đậu nành thì 7ml nước thì cho hiệu quả lớn nhất trong việc trích ly sử dụng một tỉ lệ dung môi và mẫu cao Trang 9 Sử dụng Sóng siêu âm trích ly Isoflavone hơn 6ml/g những điều tra này trên mầm đậu nành (có hàm lượng isoflavones cao trên 10mg/g ). Theo Achouri (2005) nghiên cứu ly trích isoflavon từ đậu nành tách béo (DSM) và protein đậu nành isolate (PSI) kết luận rằng : DSM: 80%MeCN thì làm tăng hiệu quả ly trích malonyl isoflavon và aglycones, 80% MeOH có hiệu quả hơn trong việc ly trích glucoside. SPI:80% EtOH cho hiệu quả trích ly aglycon cao nhất. EtOH: hiệu quả ly trích cao, ít độc, thân thiện với môi trường, giá thành rẻ Số lần trích ly: càng tăng thì hiệu quả càng cao. Ví dụ với mẫu DSM tăng từ 65% đấn 74% sau 5 lần ly trích , SPI: 107 đến 147% Nhiệt độ: theo Barnes và cộng sự (1994) sử dụng ly trích ispoflavon ở 600C, khi tăng nhiệt độ lên 800C tăng tốc độ ly trích. Coward cùng cộng sự (1998) đã đánh giá ảnh hưởng của nhiệt độ lên việc ly trích isoflavones từ thức ăn từ đậu nành. Isoflavones β-glucoside conjugates được ly trích bởi dung môi là 80% MeOH tại các khoảng nhiệt độ phòng, 40C và ở 800C, thời gian từ 2- 72 giờ bằng việc đảo trôn hoặc lắc rung. 40C: cho nồng độ malonyl glucosides cao nhất và nồng độ β-glucoside conjugates thấp nhất 800C: có sự chuyển hóa từ malonyl glucosides conjugate thành β-glucoside conjugates, tuy nhiên tổng lượng isoflavons trích ly được vẫn không thay đổi. 3.2 Phương pháp hiện đại 3.2.1 Kỹ thuật trích ly bằng sóng siêu âm (Ultrasound-assisted extraction UAF) sẽ được trình bày chi tiết ở mục 3. 3.2.2 Kỹ thuật trích ly bằng vi sóng Là những nguồn sóng có chiều dài bước sóng từ 1mm đến 1m, hoặc từ tần số 300 MHz đến 300GHz ly trích bằng sóng siêu âm dựa vào nguồn năng lượng hấp thụ bởi các phân tử hóa học có cực. Hiệu quả của phương pháp sử dụng vi sóng phụ thuộc vào các yếu tố: Trang 10 Sử dụng Sóng siêu âm trích ly Isoflavone  Tính chất dung môi  Vật liệu mẫu  Thành phần được ly trích Kỹ thuật này được sử dụng gần đây trong một vài trường hợp như trích ly isoflavon từ đậu nành hay các loại đậu, sắn dây. Hiệu quả ly trích isoflavon từ đậu nành bằng vi sóng được trình bày trong bảng 2.2 Bảng 2.2. Kỹ thuật trích ly isoflavones từ đậu nành bằng vi sóng Theo Rostangno et al và công sự, trích ly isoflavon từ đậu nành phụ thuộc các yếu tố:  Loại dung môi  Nhiệt độ  Thể tích dung môi  Chuẩn bị mẫu  Thời gian ly trích Trang 11 Sử dụng Sóng siêu âm trích ly Isoflavone a. Dung môi: tinh khiết, MeOH, EtOH, và nước b. Lượng dung môi: dưới 50% EtOH, 50% MeOH. 50% EtOH trích ly tổng lượng isoflavon cao nhất, lượng nước sử dụng thấp hơn 50% làm giảm hiệu quả trích ly. c. Tỷ lệ mẫu:dung môi: 0,5:25(g/ml) hiệu qủa cao nhất d. Kích cỡ mẫu: nhỏ tốt hơn e. Thời gian trích ly: khoảng 20 phút f. Hiệu suất : khoảng 75%-95% Theo nghiên cứu gần đây của Careri et al và cộng sự (2007) đã nghiên cứu việc thủy phân mẫu kết hợp với sử dụng sóng siêu âm. Việc thủy phân mẫu trước khi sử dụng vi sóng giúp ổn định mẫu có thể ly trích được gần như hầu hết lượng isoflavon có trong mẫu. Nhìn chung việc sử dụng vi sóng để trích ly isoflavon cho hiệu quả cao khi kết hợp với việc thủy phân mẫu. Tuy nhiên cần nghiên cứu các thông số trong quá trình ổn định như áp lực sử dụng và một số vấn đề liên quan như ẩm độ, hoạt động của enzyme β-glucosidase, kích cỡ mẫu. 3.2.3 Kỹ thuật chiết lỏng cao áp (PLE) Là phương pháp kết hợp nhiệt độ tăng cao (50 – 200OC) và áp suất (100 – 140atm) với các dung môi lỏng (không đạt điểm tới hạn) để tiến hành trích ly nhanh và hiệu quả các chất cần phân tích từ các cơ chất mẫu rắn và nửa rắn. Nhiệt độ cao làm cho độ hòa tan và tốc độ khuếch tán các cơ chất trong mẫu tăng cao, trong khi đó áp suất cao giữ cho dung môi dưới điểm sôi tạo điều kiện cho dung môi xâm nhập vào cơ chất mẫu rắn dễ dàng hơn. Kỹ thuật này có những tên gọi khác nhau, như trích ly dung môi tăng tốc (ASE), trích ly lỏng cao áp (PLE), và trích ly dung môi cao áp (PSE). PLE được sử dụng trong nhiều trường hợp trích ly isoflavone từ đậu nành, thực phẩm từ đậu nành và các cơ chất khác (sắn dây,…) Ưu nhược điểm của PLE: Trang 12 Sử dụng Sóng siêu âm trích ly Isoflavone Ưu điểm: nhiệt độ trích ly cao làm tăng độ hòa tan, tốc độ khuếch tán của các hợp chất trong mẫu ra dung môi. Áp suất cao cho phép dung môi duy trì ở trạng thái lỏng ở nhiệt độ cao và làm tăng sự xâm nhập của dung môi vào trong cơ chất mẫu. Nhược điểm: nhiệt độ sử dụng cao hơn so với các phương pháp thông thường và do đó làm giảm phẩm chất hoặc làm biến đổi chất lượng của isoflavone trong quá trình trích ly. Chỉ trích ly nhanh và hiệu quả từ cơ chất mẫu là rắn hoặc bán rắn. 3.2.4 Kỹ thuật trích ly siêu tới hạn Tổng quan Kỹ thuật trích ly chất lỏng siêu tới hạn (SFE) là quy trình tách một hợp chất (chất chiết) từ những hợp chất khác (chất ban đầu) dùng những chất lỏng siêu tới hạn như một dung môi tách. Chất lỏng siêu tới hạn là chất có nhiệt độ và áp suất trên điểm nhiệt độ tới hạn của nó. Chúng có thể đâm xuyên qua hầu hết những mẫu vật liệu thực vật như khí ga, do bởi hệ số khuếch tán ánh sáng cao và độ nhớt của chúng thấp. Nó là dạng trung gian giữa thể rắn và thể lỏng. Thêm nữa, gần tới điểm tới hạn, những thay đổi nhỏ về nhiệt độ và áp suất dẫn đến những thay đổi lớn về tỷ trọng, cho phép nhiều đặc tính cũng bị thay đổi và để thu nhận chất chiết có tính chọn lọc. Tác nhân chiết thường được dùng phổ biến nhất là CO2, bởi chi phí và độc tính của nó thấp và dễ dàng đạt được thông số tới hạn là 31,1 ◦C/74,8 atm. Hơn nữa, CO2 là chất vô cực có thể hòa tan các chất vô cực và hòa tan các hợp chất có cực ở mức độ vừa phải. Sự thêm vào của chất hỗ trợ có cực ( ví dụ như MeOH) để CO2 siêu tới hạn (SC-CO2) là cách đơn giản và hiệu quả nhất để làm thay đổi tính có cực của CO2 dựa trên các chất lỏng để làm tăng sự hòa tan của các chất cần phân tích. Các chất hỗ trợ cũng có thể khắc phục những tương tác giữa chất cần phân tích và chất ban đầu, bằng cách tăng hiệu suất trích ly của các hợp chất hữu cơ có cực. Nguyên tắc Một hệ thống SFE tiêu biểu gồm một bơm áp lực lớn dẫn chất lỏng và một Trang 13 Sử dụng Sóng siêu âm trích ly Isoflavone buồng trích ly chứa mẫu mà nó giúp duy trì áp lực và nhiệt độ chính xác (hình I.1). Dung môi hữu cơ (cũng có thể gọi là chất hỗ trợ) có thể được thêm vào chất lỏng để làm tăng khả năng hòa tan; khi đó có thể sử dụng các đường ống nối lại nhau hay thêm vào một bơm phụ. Bởi sự bất lợi của các đường ống này ( thiếu sự linh hoạt trong sử dụng dung môi và tỉ lệ chất hỗ trợ thay đổi trong suốt đường ống), việc dùng bơm phụ tốt hơn mặc dù chi phí đầu tư ban đầu cao hơn. SFE có thể thực hiện bằng phương pháp động hoặc tĩnh. Áp lực trong hệ thống được duy trì bởi sự cố định hay thay đổi, tiếp đó làm cho áp suất không phụ thuộc vào dòng chảy. Cuối chu trình, chất lỏng được giảm áp và các chất phân tích được chứa trong dung môi hữu cơ. Các điều kiện như dung môi, nhiệt độ đóng vai trò quan trọng đầu tiên đảm bảo sự thu hiệu quả các hợp chất chiết. Vì có nhiều thông số ảnh hưởng đến hiệu quả trích ly , SFE cho phép mức độ chọn lọc cao. Mặc dù, ở khía cạnh khác, điều này làm cho mức độ tối ưu hóa hoàn tooàn kém và khó khăn trong việc vận hành. Hình 2.6: Nguyên lý hoạt động của hệ thống SFE và các thông số ảnh hưởng Các phương pháp sử dụng chất lỏng siêu tới hạn để trích ly isoflavon từ đậu nành Mặc dù SFE là một trong những kỹ thuật trích ly isoflavon phức tạp nhất do nhiều có nhiều biến đổi và sự tương tác giữa các chất với nhau, mà có thể ảnh hưởng đến hiệu quả, một số nhà nghiên cứu đã ứng dụng thành công SFE để chiết tách isoflavon từ các dạng khác nhau của đậu nành như bột, mầm và bánh đậu nành, chẳng hạn như: Mẫu dùng để đánh giá phương pháp là hạt đậu nành sấy thăng Trang 14 Sử dụng Sóng siêu âm trích ly Isoflavone hoa, loại isoflavon là Gi-Ge-De, điều kiện trích ly: chu trình động kéo dài 20 phút, chu kỳ tĩnh 10 phút, tốc độ lưu lượng CO2 1ml/phút, thời gian trích ly 90 phút, đá trap loại ODS, dung môi sấy: 1,5ml MeOH, tốc độ dòng khí sấy 0,5 ml/phút, trọng lượng mẫu 1g, buồng trích 10ml, chất hỗ trợ 70%EtOH, nồng độ chất hỗ trợ 10mol%. Ở hầu hết các phương pháp và kỹ thuật hiện đại, tính chất ổn định của isoflavon dưới những điều kiện chiết tách khác nhau cho tới bây giờ vẫn chưa được nghiên cứu. Đây là một điều hết sức quan trọng vì kỹ thuật này thường sử dụng nhiệt độ tương đối cao. Những yếu tố cơ bản có tính ổn định của các kỹ thuật trước đó có lẽ ứng dụng cho SFE và do đó có thể cân nhắc các biến đổi trong một mặt nào đó của isoflavon trong suốt quá trình chiết tách. Do đó, việc đánh giá tính chất ổn định của isoflavon trong các điều kiện SFE khác nhau, chẳng hạn như nhiệt độ, thời gian, số lượng và loại chất bổ trợ thì cần một cách cấp bách. Cho đến nay, các phương pháp chiết tách chỉ phát triển ở một mức độ giới hạn mà thôi, Chandra et al. đã kiểm tra một số lượng có hạn các điều kiện với áp suất , số lượng và loại chất bổ trợ khác nhau trong việc chiết tách một số loại isoflavon (De và Ge) từ các nguồn đậu nành khác nhau. Việc đánh giá các điều kiện trích ly cho thấy ở 50 ◦C, 600 atm và 20% EtOH chiết suất được số lượng isoflavon cao nhất (gần 93%). Đáng lưu ý là sự phát triển của phương pháp này biểu diễn những tiêu chuẩn khác nhau trên giấy lọc đã vắt cạn mà nó được trích ly sau đó bằng SCCO2. Những điều kiện được đánh giá cao nhất đó là dùng phương pháp chiết tách De và Ge từ miso, tàu hũ, và món ăn từ đậu nành và bột từ đậu nành dùng với các mẫu từ 2 đến 10g. Mặc dù có những khắc phục lớn, nhưng phương pháp này bị gới hạn bởi những điều kiện về xác định số lượng isoflavon. Sau đó, Rostagno et al. đã đánh giá cách dùng CO2 siêu tới hạn trong chiết tách isoflavon từ hạt đậu nành (Gi, Ge and De) sử dụng nhiệt độ, áp suất và nồng độ chất bổ trợ khác nhau. Số lượng lớn nhất của Gi and Ge thu được tại 70 ◦C/200 bar/10mol%, trong khi đó số lượng lớn nhất của De thu được tại 50 ◦C/360 bar/10mol%. Trong phương pháp chiết tách của Gi và Ge thì ảnh hưởng của nhiệt độ được theo dõi hơn cả trong khi ở phương pháp chiết tách của De thì yếu tố áp lực Trang 15 Sử dụng Sóng siêu âm trích ly Isoflavone lại được chú trọng hơn cả. Sự tương tác giữa nhiệt độ và áp lực cũng được theo dõi trong quá trình chiết tách isoflavon. Sự giảm hiệu suất chiết tách do tăng nhiệt độ có thể được giải thích do sự giảm tỉ trọng chất lỏng siêu tới hạn, trong khi đó sự giảm hiệu quả chiết tách do tăng áp suất có thể được cho là do sự giảm hệ số khuếch tán của chất lỏng, mà có thể gây ra sự tương tác với mẫu. Mặc dù vậy, đáng lưu ý rằng tính chất ổn đinh của isoflavon không đạt tới được, chỉ có glucoside (Gi) và aglycones thì ổn định và malonyl glucoside thì không xác định được. Do việc điều chỉnh nhiệt độ cao vừa phải tạo sự thoái biến trong suốt quá trình chiết tách điều đó ảnh hưởng đến kết quả đạt được sau này. Có những tác giả đã đưa ra đề nghị rằng sự thủy phân enzyme của Di có lẽ xuất hiện trong quá trình chiết tách và ảnh hưởng đến những kết quả sau này, bởi nhiệt độ chiết thích hợp nhất là 50◦C gần với nhiệt độ tối ưu cho hoạt động của glucosidase. Gần đây, Kao et al. đã thay đổi những điều kiện thí nghiệm được đánh giá khả quan bởi Rostagno et al. [118] đó là dùng 70% EtOH như một chất hỗ trợ thay vì 70% MeOH và nghiên cứu một phạm vi tương tự của nhiệt độ và áp suất cho SFE của isoflavone (tất cả gồm 12 công thức hóa học chính hiện diện trong hạt đậu nành) từ bánh làm từ đậu nành. Mặt quan trọng của phương thức này , bên cạnh sự phục hồi lớn (87,3% khi được so sánh với sự trích ly bằng ly tâm), đó là số lượng taats cả các dạng cấu tạo hóa học của isoflavon vì đó là báo cáo đầu tiên của việc sử dụng những chất lỏng siêu tới hạn cho việc ly trích malonyl và acetyl isoflavone. Những kết quả cho thấy số lượng lớn nhất của malonyl glucoside và glucoside thu được tại 60◦C và 350 bar, trong khi ở một mức độ cao của acetyl glucoside và aglycone là sản xuất tại 80◦C và 350 bar. Số lượng cao nhất của isoflavone tổng thu được ở 60◦C/350 bar, có thể dẫn đến nồng độ khả quan của malonyl and glucosides trong mẫu. Mặc dù một sự hỗ trợ khác được sử dụng đến đó là sự tương tác của nhiệt độ và áp suất giống nhau như Rostagno et al. [118] đã báo cáo. Mặc dù, khi trong hầu hết các nghiên cứu, tính ổn định không được đánh giá và những kết quả có thể bị ảnh hưởng sự thoái biến của malonyl và glucoside isoflavone tới các dạng acetyl and aglycone tương ứng. Có những tác giả đã cho rằng, mặc dù dùng nhiệt độ thấp hơn nhiệt độ nấu và nướng, sự thoái hóa vẫn có thể xuất hiện có sự kết hợp với áp suất. Tổng số malonyl glucoside giảm sau khi tăng Trang 16 Sử dụng Sóng siêu âm trích ly Isoflavone nhiệt độ trích ly, mà đòi hỏi phải có sự hòa tan của các dạng cấu tạo hóa học này hoặc có sự biến đổi acetyl glucoside, glucoside hay aglycone, mà điều này có lẽ giải thích những số lượng cao nhất thu được tại 80◦C. Araujo et al. [cũng đã kiểm tra các điều kiện nhiệt độ, áp suất, chất hỗ trợ và nồng độ chất hỗ trợ khác nhau cho SFE của De và Ge từ mầm hạt đậu nành sau khi thủy phân. Lượng isoflavon cao nhất thu được của phương pháp này tại 60 ◦C, 380 bar sử dụng phương pháp trích ly động và tĩnh ba chu kỳ trong 15 phút với sự thêm vào 10 mol% của 80% MeCN. Hơn nữa, những chất hỗ trợ và sự khác nhau về áp suất có những tác động có ý nghĩa tới hiệu quả trích ly. Không có isoflavon nào mà không được trích ly với các chất hỗ trợ và ảnh hưởng nổi bật của của áp suất trong lượng thu được từ 2 loại isoflavon này (De và Ge) được cho là do sự giảm áp suất hơi thích hợp và tăng tỉ trọng của chất lỏng và động học của của các hợp chất từ mẫu ban đầu. Khi tăng áp suất sự hấp thụ diễn ra nhanh hơn và sự hòa tan tốt hơn điều đó có giá trị cho việc trích ly. Họ cũng khảo sát xu hướng giống nhau bởi Rostagno et al., đó là việc nâng cao lượng chất trích ly bằng cách tăng áp suất phụ thuộc vào nhiệt độ với sự tương quan giữu áp suất và nhiệt độ. Hơn nữa, những khác biệt chính của các chất hỗ trợ thử nghiệm. Dùng 80% MeOH, 80% EtOH and 80% MeCN như chất hỗ trợ, một lượng có liên quan đến aglycone được trích ly theo lần lượt 9.61%, 11.27% và 25.65% khi được so sánh với việc khuấy tương ứng. Rõ ràng, dùng phương thức đề nghị là 80% MeCN thì hiệu quả hơn 80% EtOH và 80% MeOH. Một cách tiếp cận khác là sử dụng SC-CO2 trước đây để làm giàu hay làm sạch mẫu chất nền với isoflavon bằng cách chuyển các hợp chất từ chất nền, như bài báo cáo của Yu et al., ở đây đưa ra các mầm đậu nành được tách dầu bởi SC-CO2 và được dùng để sản xuất protein đậu nành giàu isoflavone. Một trong những giới hạn của nghiên cứu này là việc dùng chiến lược cùng một thời điểm để đánh giá khách quan các điều kiện trích ly mà các chất lỏng siêu tới hạn không được đề cập nhiều, do đó có nhiều sự khác biệt và tương tác mà chúng ảnh hưởng đến hiệu suất hơn là các kỹ thuật trích ly khác. Bước tiến tốt nhất đó là việc sử dụng SC-CO2 nhưng chỉ mới dung trong thí nghiệm, nó thích hợp cho Trang 17 Sử dụng Sóng siêu âm trích ly Isoflavone các điều kiện trích ly. Có nhiều ảnh hưởng khác nhau đến việc trích ly dung SFE, không chỉ gồm áp lực, nhiệt độ, loại và số lượng chất hỗ trợ mà còn có các yếu tố khác như các chu trình động và tĩnh học, tốc độ dòng CO2, cấu tạo đá trap, dung môi sấy và tốc độ sấy… Cấu tạo đá trap và các điều kiện tách rửa (dung môi, tốc độ dòng chảy và nhiệt độ) cho đến nay chưa được nghiên cứu và có lẽ cúng ảnh hưởng đến sự tách lấy isoflavon và cần được đầu tư trong tương lai. Mẫu cũng là nhân tố quan trọng bởi kích thước hạt và những tương tác với chất nền (ví dụ tương tác với hoạt tính của glucosidase). Các thành phần của mẫu như dầu có thể cản trở việc trích ly các hợp chất mà phụ thuộc vào tỉ trọng chất lỏng. Hơn nữa, những điều kiện trích ly có thể có những tác động lớn đến một thông số trích ly nào đó, và những khác nhau trong việc trích ly có chọn lọc nên được nghiên cứu kỹ tạo nên hiệu quả trích ly cao nhất. Vì vậy, nhiều nghiên cứu vẫn cần định rõ tiềm năng của các chất lỏng siêu tới hạn trong việc trích ly isoflavon từ hạt đậu nành và các thực phẩm từ đậu nành. 4. SỬ DỤNG SÓNG SIÊU ÂM TRÍCH LY ISOFLAVONE 4.1. Quy trình trích ly (lấy ví dụ từ đậu nành) UAE Hình 2.7: Sơ đồ trích ly isoflavones từ đậu nành Trang 18 Sử dụng Sóng siêu âm trích ly Isoflavone Thuyết minh quy trình: Từ mẫu có nguồn gốc từ đậu nành qua một số khâu xử lý mẫu: đồng hóa, nghiền, sấy, lạnh đông (đối với dạng mẫu lỏng: nước uống từ đậu nành,…),thủy phân…ta thu được mẫu nguyên liệu đem trích ly. Trích ly: có thể sử dụng các phương pháp truyền thống hoặc hiện đại đã nêu trên, sản phẩm sau khi trích ly sẽ qua một số khâu xử lý như: ly tâm, lọc, cô đặc, thủy phân, chiết lỏng cao áp,… Sản phẩm sau khi tinh sạch được phân tích, định lượng bằng một số phương pháp: GC/GC-MS, HPLC/HPLC-MS,… Ở đây ta tìm hiểu hiệu quả quá trình trích ly bằng sóng siêu âm: Hiệu quả trích ly các hợp chất khi sử dụng sóng siêu âm tăng lên là nhờ sự tạo thành các bọt khí trong dung môi khi sóng truyền qua. Dưới tác dụng của sóng, các bọt khí bị kéo nén, sự tăng áp suất và nhiệt độ làm các bọt khí nổ vỡ, tạo nên hiện tượng “sốc sóng”. Khi sự nổ vỡ của các bọt khí ở gần bề mặt pha rắn, xảy sự mất đối xứng, sinh ra tia dung môi có tốc độ cao vào thành tế bào, do đó làm tăng sự xâm nhập của dung môi vào tế bào và làm tăng bề mặt tiếp xúc giữa pha rắn và pha lỏng. Điều này làm tăng sự truyền khối và phá vỡ cấu trúc tế bào. Sự nổ vỡ của các bọt khí làm tăng sự thoát ra của các chất nội bào vào dung dịch. Sử dụng nhiệt độ cao trong kĩ thuật UAE có thể làm tăng hiệu quả trích ly vì nó làm tăng sự hình thành và nổ vỡ các bọt khí. Một vài thông số, cũng giống như trong các kĩ thuật truyền thống, có thể ảnh hưởng đến hiệu quả trích ly các chất khi sử dụng sóng siêu âm như: sự phân cực và lượng dung môi, khối lượng và loại mẫu, thời gian trích ly và 1 số thông số của sóng siêu âm như: tần số, cường độ, số dao động sẽ ảnh hưởng lớn đến động lực trích ly. UAE được sử dụng để trích ly isoflavone từ hạt đậu nành, thực phẩm chế biến từ đậu và từ nhiều nguồn cơ chất khác như đậu phụng, cỏ ba lá, rễ và cây sắn dây, rễ cây Hoàng kỳ, rễ cam thảo… Một trong những nghiên cứu đầu tiên về trích ly isoflavone từ đậu được thực Trang 19
- Xem thêm -