Đăng ký Đăng nhập
Trang chủ Sóng mặt rayleigh với điều kiện biên trở kháng...

Tài liệu Sóng mặt rayleigh với điều kiện biên trở kháng

.PDF
41
33
87

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------- Nguyễn Quỳnh Xuân SÓNG MẶT RAYLEIGH VỚI ĐIỀU KIỆN BIÊN TRỞ KHÁNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2017 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------ Nguyễn Quỳnh Xuân Sóng mặt Rayleigh với điều kiện biên trở kháng Chuyên ngành: Cơ học vật rắn Mã số: 60440107 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TS. Phạm Chí Vĩnh Hà Nội - 2017 Mục lục 1 2 PHƯƠNG TRÌNH TÁN SẮC CỦA SÓNG RAYLEIGH VỚI ĐIỀU KIỆN BIÊN TRỞ KHÁNG 6 1.1 Phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Phương trình đặc trưng. . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Điều kiện biên trở kháng . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Phương trình tán sắc . . . . . . . . . . . . . . . . . . . . . . . . . 10 CÔNG THỨC VẬN TỐC SÓNG 13 2.1 Điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất tiếp . . . 13 2.2 Điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất pháp . . 25 2.3 Sự tồn tại và duy nhất của sóng Rayleigh . . . . . . . . . . . . . 32 Kết luận 34 2 LỜI CẢM ƠN Lời đầu tiên trong luận văn này cho phép em được gửi lời cảm ơn chân thành, sâu sắc tới thầy Phạm Chí Vĩnh, người đã tận tình chỉ bảo, hướng dẫn, giúp đỡ em hoàn thành luận văn tốt nghiệp này. Em cũng xin bày tỏ lòng biết ơn chân thành tới toàn thể các thầy cô giáo đã dạy dỗ em trong suốt 6 năm học đại học và sau đại học, đặc biệt là các thầy, cô trong bộ môn Cơ học, Đại Học Khoa Học Tự Nhiên, Đại Học Quốc Gia Hà Nội. Nhân dịp này em cũng xin được gửi lời cảm ơn chân thành tới gia đình, bạn bè và các anh chị trong nhóm semina đã luôn bên em, cổ vũ, động viên, giúp đỡ em trong suốt quá trình học tập và thực hiện luận văn tốt nghiệp. Hà Nội, ngày tháng năm 2017 Học viên Cao học Nguyễn Quỳnh Xuân 3 LỜI MỞ ĐẦU Trong phần lớn các nghiên cứu về sóng Rayleigh, bán không gian đàn hồi được giả thiết là tự do đối với ứng suất, tức là ứng suất bằng không trên mặt biên của nó. Sóng mặt tương ứng được gọi là "Sóng Rayleigh tự do ứng suất". Mặc dù vậy, trong nhiều bài toán thực tế của âm học, điện từ học,..., điều kiện biên trở kháng (impedance boundary conditions), liên hệ tuyến tính các hàm cần tìm và các đạo hàm của chúng trên biên, xuất hiện thường xuyên, tham khảo chẳng hạn các bài báo [4]-[16] đối với lĩnh vực âm học, [17]-[8] đối với lĩnh vực điện-từ học, và các tài liệu tham khảo trong đó. Mặt khác, khi nghiên cứu sóng Rayleigh truyền trong các bán không gian đàn hồi phủ các lớp mỏng, các tác giả thường thay thế (một cách gần đúng) toàn bộ ảnh hưởng của lớp mỏng lên bán không gian bằng các điều kiện trên biên phân chia của chúng, được gọi là "các điều kiện biên hiệu dụng" (effective boundary conditions), tham khảo chẳng hạn [1]-[24]. Các điều kiện biên hiệu dụng có dạng điều kiện biên trở kháng. Sau đó, sóng Rayleigh được xem xét như truyền trong bán không gian đàn hồi, không bị phủ (lớp mỏng), nhưng chịu các điều kiện biên trở kháng. Sóng mặt tương ứng được gọi là sóng Rayleigh với (chịu) điều kiện biên trở kháng. Ngày nay, cấu trúc lớp mỏng gắn với một lớp dày, mô hình hóa như một bán không gian phủ lớp mỏng, đang được sử dụng rất rộng rãi trong công nghệ hiện đại, như đã nhấn mạnh trong các tài liệu tham khảo [9, 14]. Do vậy, việc nghiên cứu sóng Rayleigh với điều kiện biên trở kháng là đòi hỏi của thực tế. Bài toán truyền sóng Rayleigh trong bán không gian đàn hồi đẳng hướng chịu điều kiện biên trở kháng được Godoy và cộng sự [7] nghiên cứu gần đây. Các tác giả đã tìm ra phương trình tán sắc và chứng minh được sự tồn tại và duy nhất của sóng. Mặc dù vậy, công thức của vận tốc sóng vẫn chưa được 4 tìm ra. Đối với sóng mặt Rayleigh, vận tốc của nó là một đại lượng vật lý cơ bản, được các nhà nghiên cứu trong các lĩnh vực khoa học khác nhau quan tâm. Nó được nói đến trong hầu hết các sách chuyên khảo về sóng trong các môi trường đàn hồi. Nó liên quan đến hàm Green trong nhiều bài toán động lực học của bán không gian, và là một công cụ tiện lợi để đánh giá không phá hủy các đặc trưng cơ học của các kết cấu trước và trong khi chịu tải. Do vậy, công thức giải tích của vận tốc sóng Rayleigh có ý nghĩa đặc biệt quan trọng về cả phương diện lý thuyết lẫn ứng dụng thực tiễn. Mục đích chính của luận văn là tìm ra công thức vận tốc sóng Rayleigh chịu điều kiện biên trở kháng. Để tìm ra công thức này, phương pháp hàm biến phức được sử dụng. Nội dung của luận văn được trình bầy trong hai chương: • Chương 1: Phương trình tán sắc của sóng Rayleigh với điều kiện biên trở kháng. Trình bày tổng quan về sóng mặt Rayleigh: các phương trình cơ bản, phương trình đặc trưng. Điều kiện biên trở kháng, quá trình tìm ra phương trình tán sắc của sóng mặt Rayleigh trong bán không gian đàn hồi chịu điều kiện biên trở kháng. Cách rút ra phương trình này được trình bày vắn tắt trong nghiên cứu của Godoy và các công sự [7]. • Chương 2: Công thức vận tóc sóng Rayleigh 2.1. Công thức vận tốc sóng Rayleigh cho trường hợp điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất tiếp. 2.2. Công thức vận tốc sóng Rayleigh cho trường hợp điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất pháp. Những kết quả chính của chương 2.1 đã được đăng trên tạp chí European Journal of MechanicsA/Solids Link: http://www.sciencedirect.com/science/article/pii/S0997753816302595 5 Chương 1 PHƯƠNG TRÌNH TÁN SẮC CỦA SÓNG RAYLEIGH VỚI ĐIỀU KIỆN BIÊN TRỞ KHÁNG 1.1 Phương trình cơ bản Xét bán không gian đàn hồi đẳng hướng nén được x2 ≥ 0 (Hình 1.1). Giả sử bán không gian đàn hồi chịu trạng thái biến dạng phẳng: Hình 1.1 ui = ui ( x1 , x2 , t), i = 1, 2, u3 ≡ 0, (1.1) trong đó ui là các thành phần chuyển dịch của vecto chuyển dịch, t là thời gian. Các thành phần ứng suất σij liên hệ với các thành phần chuyển dịch bởi 6 hệ thức: σ11 = (λ + 2µ)u1,1 + λu2,2 , σ22 = λu1,1 + (λ + 2µ)u2,2 , (1.2) σ12 = µ(u1,2 + u2,1 ) , trong đó dấu phẩy chỉ đạo hàm theo các biến không gian xk , λ, µ là các hằng số Lame. Bỏ qua lực khối, phương trình chuyển động có dạng [2]: σ11,1 + σ12,2 = ρü1 , σ12,1 + σ22,2 = ρü2 , (1.3) dấu chấm chỉ đạo hàm theo biến thời gian t, ρ là mật độ khối lượng. Quy ước: Trong các phần tiếp theo, dấu phẩy chỉ đạo hàm theo các biến không gian, dấu chấm (trên) chỉ đạo hàm theo biến thời gian. Thay (1.2) vào (1.3) ta có:   ⇔ ⇔                (λ + 2µ)u1,11 + µu1,22 + (λ + µ)u2,12 = ρü1 , (λ + µ)u1,12 + µu2,11 + (λ + 2µ)u2,22 = ρü2 , λ + 2µ µ λ+µ u1,11 + u1,22 + u2,12 = ü1 , ρ ρ ρ λ+µ µ λ + 2µ u1,12 + u2,11 + u2,22 = ü2 , ρ ρ ρ   λ + 2µ µ λ + 2µ µ u1,11 + u1,22 + − u2,12 = ü1 , ρ ρ  ρ ρ λ + 2µ µ µ λ + 2µ − u1,12 + u2,11 + u2,22 = ü2 , ρ ρ ρ ρ (1.4) hay: c2L u1,11 + c2T u1,22 + (c2L − c2T )u2,12 = ü1 , (1.5) (c2L − c2T )u1,12 + c2L u2,22 + c2T u2,11 = ü2 , p p trong đó: c L = (λ + 2µ)/ρ và c T = µ/ρ tương ứng là vận tốc sóng dọc, sóng ngang. Cùng với các phương trình chuyển động (1.5) và điều kiện biên trở kháng (xem Chương 2), điều kiện tắt dần ở vô cùng phải được thỏa mãn, tức là: ui = 0 (i = 1, 2) khi x2 → +∞ . (1.6) 7 1.2 Phương trình đặc trưng. Giả sử sóng Rayleigh truyền với vận tốc c (> 0), số sóng k (> 0), theo hướng x1 và tắt dần theo hướng x2 . Khi đó, các thành phần chuyển dịch u1 , u2 của sóng được tìm dưới dạng: u1 = Ae−kbx2 eik( x1 −ct) , u2 = Be−kbx2 eik( x1 −ct) , (1.7) trong đó k = ω/c > 0 là số sóng, A, B (không đồng thời triệt tiêu) và b là các hằng số cần tìm, trong đó b phải có phần thực dương để đảm bảo điều kiện tắt dần của sóng (1.6). Từ (1.7) ta có: u1,1 = Ae−kbx2 (ik)eik( x1 −ct) = iku1 , u1,11 = Ae−kbx2 (ik)2 eik( x1 −ct) = −k2 u1 , u1,12 = (−kb) Ae−kbx2 (ik )eik( x1 −ct) = −k2 bi u1 , u1,2 = (−kb) Ae−kbx2 eik( x1 −ct) = −kbu1 , u1,22 = (−kb)2 Ae−kbx2 eik( x1 −ct) = k2 b2 u1 , u2,1 = Be−kbx2 (ik)eik( x1 −ct) = iku2 , u2,2 = −kbBe−kbx2 eik( x1 −ct) = −kbu2 , u2,11 = Be−kbx2 (ik )2 eik( x1 −ct) = −k2 u2 , u2,12 = (−kb) Be−kbx2 (ik )eik( x1 −ct) = −k2 biu2 , u2,22 = (−kb)2 Be−kbx2 eik( x1 −ct) = k2 b2 u2 , u˙1 = Ae−kbx2 (−cki )eik( x1 −ct) = −ckiu1 , u¨1 = Ae−kbx2 (−cki )2 eik( x1 −ct) = −c2 k2 u1 , u˙2 = Be−kbx2 (−cki )eik( x1 −ct) = −ckiu2 , u¨2 = Be−kbx2 (−cki )2 eik( x1 −ct) = −c2 k2 u2 . Thay các kết quả trên vào (1.5) dẫn đến một hệ hai phương trình tuyến tính thuần nhất đối với hai ẩn số A, B:  [(c2 − c2 ) + c2 b2 ] A − i (c2 − c2 )bB = 0 L T L T −i (c2 − c2 )bA + [(c2 − c2 ) + c2 b2 ] B = 0 L T T 8 L (1.8) Do A, B không đồng thời bằng không nên định thức của (1.8) phải bằng không, tức là : (−c2L + c2T b2 + c2 )(c2L b2 − c2T + c2 ) + (c2L − c2T )2 b2 = 0 ⇔ − c2L c2L b2 + c2L c2T − c2L c2 + c2T b2 c2L b2 − c2T b2 c2T + c2T b2 c2 + c2 c2L b2 − c2 c2T + c4 + (c4T + c4L − 2c2L c2T )b2 = 0, hay: c2L c2T b4 − [c2L (c2T − c2 ) + c2T (c2L − c2 )]b2 + (c2L − c2 )(c2T − c2 ) = 0. (1.9) Phương trình (1.9) được gọi là phương trình đặc trưng của sóng. Đó là một phương trình trùng phương đối với b. Biệt thức ∆ của (1.9) là : ∆ = (c2L − c2 )2 c4 ≥ 0. (1.10) Ta chứng minh rằng: nếu sóng Rayleigh tồn tại thì vận tốc của chúng phải thỏa mãn: 0 < c2 < c2T . (1.11) Thật vậy, giả sử sóng Rayleigh tồn tại, suy ra b1 , b2 phải có phần thực dương để đảm bảo điều kiện tắt dần (1.6). Do ∆ ≥ 0 và các hệ số của phương trình (1.9) là thực nên hai nghiệm b12 , b22 của nó đều phải dương để đảm bảo các phần thực của b1 , b2 là dương. Do vậy, từ (1.9): (c2L − c2 )(c2T − c2 ) = b12 b22 > 0. 2 2 cT c L (1.12) Từ (1.12) suy ra hoặc: c2 > c2L > c2T hoặc: c2 < c2T < c2L . Nếu c2 > c2L > c2T , suy ra (c2L + c2T )c2 > 2c2L c2T , cho nên từ (1.9) ta có: b12 + b22 2c2L c2T − (c2L + c2T )c2 = < 0, c2L c2T (1.13) nhưng điều này mâu thuẫn với: b12 , b22 đều là các số dương. Bất đẳng thức (1.11) được chứng minh. Từ (1.11) và (1.10) hai nghiệm dương của (1.9) là : s b1 = 1− c2 c2L s = p 1 − γx, b2 = √ c2T c2 c2 1 − 2 = 1 − x, x = 2 , γ = 2 . cT cT cL (1.14) 9 Chú ý rằng: 0 < γ < 1. Thay b2 vào (1.8-1), b1 vào (1.8-2) ta có hệ thức sau : b B1 = − 1, A1 i 1.3 B2 i = . A2 b2 (1.15) Điều kiện biên trở kháng Giả sử mặt x2 = 0 của bán không gian chịu điều kiện biên trở kháng [7, 10] ta có: σ12 + ωZ1 u1 = 0, σ22 + ωZ2 u2 = 0, khi x2 = 0, (1.16) trong đó ω > 0 là vận tốc góc của sóng, Z là tham số trở kháng có đơn vị của ứng suất/vận tốc (xem [7, 10]). 1.4 Phương trình tán sắc Trường chuyển dịch của sóng Rayleigh thỏa mãn điều kiện tắt dần (1.6) là [2]: u1 = ( A1 e−kb1 x2 + A2 e−kb2 x2 )eik( x1 −ct) ,   b1 i −kb1 x2 −kb2 x2 u2 = − A1 e eik( x1 −ct) , + A2 e i b2 (1.17) trong đó A1 , A2 là các hằng số cần xác định. Thay (1.17) vào các thành phần ứng suất(1.2) và điều kiện biên trở kháng (1.16) dẫn đến một hệ hai phương trình tuyến tính thuần nhất đối với hai ẩn số A1 , A2 .    µk  − kb x  1 2 + A + ωZ1 e−kb2 x2 = 0  2 − µkb2 −  A1 (−2µkb1 + ωZ1 )e b2 !   2 kb1 −b1 −kb1 x2 i   e + A2 −2µik + ωZ2 e−kb2 x2 = 0   A1 λik + (λ + 2µ) i + ωZ2 i b2 Cho định thức của hệ này bằng không dẫn đến: i (−2µkb1 + ωZ1 )(−2µik + ωZ2 ) b2 !   kb12 µk −b1 − −µkb2 − + ωZ1 λik + (λ + 2µ) + ωZ2 =0 b2 i i 10 √ ωZi Z c Z c = ic = T i = δi∗ = δi x, i = 1, 2 µk µ µ cT    1 λ λ + 2µ 2 ∗ i ∗ ∗ − b1 ∗ ⇔ (−2b1 + δ1 )(−2i + δ2 ) − −b2 − + δ1 i+ b1 + δ2 =0 b2 b2 µ µi i    ∗ δ 1 λ λ + 2µ − + b12 − δ2∗ b1 = 0 ⇔ (−2b1 + δ1∗ )(2 − 2 ) − −b2 − + δ1∗ b2 b2 µ µ chia hai vế cho (µk ) với thay b1 , b2 , c L , c T từ (1.14) ta thu được:   p δ2∗ ∗ ⇔ (−2 1 − γx + δ1 ) 2 − √ 1−x !   2 2 2 √ 2c T − c L c L 2 1 + 2 b1 − b1 δ2∗ = 0 + δ1∗ − − 1−x− √ 2 c cT 1−x T   p δ2∗ ∗ ⇔ (−2 1 − γx + δ1 ) 2 − √ 1−x    p √ 1 1 1 − γx ∗ ∗ − − 1−x− √ 2− + + δ1 − δ2 1 − γx = 0 γ γ 1−x   p δ2∗ ∗ ⇔ (−2 1 − γx + δ1 ) 2 − √ 1−x    p √ 1 − − 1−x− √ + δ1∗ 2 − x − δ2∗ 1 − γx = 0 1−x √ quy đồng 1 − x p p √ √ ⇔ −4 1 − γx 1 − x + 2δ1∗ 1 − x + 2δ2∗ 1 − γx − δ1∗ δ2∗ √ √ − (−1 + x − 1 + δ1∗ 1 − x )(2 − x − δ2∗ 1 − δx ) = 0 p p √ √ ⇔ −4 1 − γx 1 − x + 2δ1∗ 1 − x + 2δ2∗ 1 − γx − δ1∗ δ2∗ √ √ + [(2 − x ) − δ1∗ 1 − x ][(2 − x ) − δ2∗ 1 − δx ] = 0 p p √ √ ⇔ −4 1 − γx 1 − x + 2δ1∗ 1 − x + 2δ2∗ 1 − γx − δ1∗ δ2∗ p p √ √ + (2 − x )2 − δ1∗ (2 − x ) 1 − x − δ2∗ 1 − γx (2 − x ) + δ1∗ δ2∗ 1 − x 1 − γx = 0 p p √ √ ⇔ (2 − x )2 − 4 1 − γx 1 − x − δ1∗ δ2∗ + δ1∗ x 1 − x + δ2∗ x 1 − γx p √ + δ1∗ δ2∗ 1 − x 1 − γx = 0 √ Với δi∗ = δi x, i = 1, 2 ta được: p p √ √ √ f ( x ) :=(2 − x )2 − 4 1 − x 1 − γx + x x (δ1 1 − x + δ2 1 − γx ) (1.17) p √ + δ1 δ2 x ( 1 − x 1 − γx − 1) = 0, 11 c T Zi , i = 1, 2 là một đại lượng không thứ nguyên, được gọi µ là tham số trở kháng. Phương trình (1.17) là phương trình tán sắc của sóng trong đó: δi = Rayleigh chịu điều kiện biên trở kháng (1.16). Do 0 < c < c T nên: 0 < x < 1. (1.18) Như vậy, vận tốc sóng không thứ nguyên x là nghiệm (thực) của phương trình (1.17) thỏa mãn điều kiện (1.18). 12 Chương 2 CÔNG THỨC VẬN TỐC SÓNG 2.1 Điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất tiếp Phương trình tán sắc tổng quát (1.17) chịu điều kiện biên trở kháng chỉ ảnh hưởng đến ứng suất tiếp (δ1 6= 0, δ2 = 0) là : p √ √ √ f a ( x ) = (2 − x )2 − 4 1 − x 1 − γx + δ1 x x 1 − x = 0. (2.1) Bằng phép đổi biến: x= w+1 1 ↔w= , |w| > 1, 2w 2x − 1 (2.2) phương trình (2.1) trở thành: Fa (w) = 0, |w| > 1, (2.3) trong đó: √ 2 q Fa (w) : = (3w − 1) − 8w w − 1 (2 − γ)w − γ √ √ + δ1 (w + 1) w + 1 w − 1. (2.4) Chú ý rằng, phép đổi biến (2.2) là ánh xạ 1-1 giữa hai miền 0 < x < 1 và |w| > 1. Phương trình (2.4) là một phương trình thực. Xét phương trình phức có dạng: q √ √ √ 2 Fa (z) := (3z − 1) − 8z z − 1 (2 − γ)z − γ + δ1 (z + 1) z + 1 z − 1 = 0, z ∈ C, (2.5) 13 trong đó các căn bậc hai là căn phức giá trị chính. Khi z ∈ R, |z| > 1 thì (2.5) trở thành phương trình (2.3). Do vậy phương trình (2.5) là dạng phức của phương trình tán sắc (2.3). Để tìm vận tốc sóng không thứ nguyên x ta sẽ tìm w là nghiệm thực của phương trình (2.3) thỏa mãn |w| > 1. Muốn vậy, ta đi tìm nghiệm của phương trình phức (2.5). Các tính chất của hàm Fa (z)    γ γ Ký hiệu L = L1 ∪ L2 , L1 = −1, , L2 = , 1 , S = {z ∈ C, z ∈ / L }. 2−γ 2−γ N (z0 ) = {z ∈ S : |z − z0 | < ε}, ε là một số dương đủ nhỏ, z0 là một điểm nào đó thuộc mặt phẳng phức C. Nếu ϕ(z) là một hàm chỉnh hình trong miền Ω ⊂ C chúng ta viết ϕ(z) ∈ H (Ω). Từ (2.5) hàm Fa (z) có những tính chất sau: Mệnh đề 1: ( f 1 ) Fa (−1) = 0. ( f 2 ) Fa (z) ∈ H (S). ( f 3 ) Fa (z) bị chặn trong N (−1) và N (1). ( f 4 ) Fa (z) = O(z2 ) khi |z| → ∞. ( f 5 ) Fa (z) liên tục từ bên trên và từ bên dưới của L (xem [13]) với các giá trị Fa+ (t) (giá trị biên trên của Fa (z)), Fa− (t) (giá trị biên dưới của Fa (z)) được xác định như sau: ( Fa± (t) = ± Fa1 (t), t ∈ L1 ± Fa2 (t), t ∈ L2 (2.6) với: √ √ √ = (3t − 1) + 8t 1 − t γ − (2 − γ)t + iδ1 (t + 1) t + 1 1 − t, q √ √ √ − 2 Fa1 (t) = (3t − 1) + 8t 1 − t γ − (2 − γ)t − iδ1 (t + 1) t + 1 1 − t. + Fa1 (t) 2 q (2.7) q √ √ + Fa2 (t) = (3t − 1)2 + i 1 − t(−8t t(2 − γ) − γ + δ1 (t + 1) t + 1), q (2.8) √ √ − Fa2 (t) = (3t − 1)2 − i 1 − t(−8t t(2 − γ) − γ + δ1 (t + 1) t + 1). Chứng minh mệnh đề 1: 14 ( f 1 ) Thay z=-1 vào phương trình (2.5) ta được: √ √ √ √ Fa (−1) = (3(−1) − 1)2 − 8(−1) −2 −2 + δ1 (−1 + 1) −1 + 1 −1 − 1 √ √ = (−4)2 + 8 −2 −2 = 16 − 16 = 0. ( f 2 ) Ta có: • (3z − 1)2 , 8z, (z + 1) là các hàm chỉnh hình trên toàn mặt phẳng C nên chỉnh hình trên S. √ • rz − 1 chỉnh hình trên C\(−∞,1],  γ γ z− chỉnh hình trên C\ −∞, , 2 −r γ 2−γ √ γ chỉnh hình trên C\(−∞, 1]. ⇒ z−1 z− 2r −γ √ γ Đặt: η1 = z − 1 z − ta có: 2 − γ  r  √ γ  +   η1 ( t ) = i 1 − t i −t   2−γ  r   √  γ   = i2 1 − t −t   2−γ     r  √  γ γ   = − 1−t − t, ∀t ∈ −∞, .  2− γr 2−γ  √ γ  −  1 − t ) − i η ( t ) = (− i −t  1   2−γ  r   √ γ  2 1−t  −t = ( i )    2−γ    r   √ γ γ    = − 1−t − t, ∀t ∈ −∞, .  2−γ 2−γ     γ γ + − ⇒ η1 (t) = η1 (t) với mọi t ∈ −∞, ⇒ η1 liên tục trên C\ ,1 = 2−γ 2−γ C\ L2 ⇒ η1 liênr tục trên S = C\ L. √ γ ⇒ η1 = z − 1 z − chỉnh hình trên miền S. 2−γ √ √ • Chứng minh tương tự: η2 = z + 1 z − 1 liên tục trên S = C\ L. Từ (2.5) và các kết quả trên suy ra: F (z) ∈ H (S). ( f 3 ) Ta có: lim Fa (z) = 4 = F (1), z →1 lim Fa (z) = 0 = Fa (−1), nên Fa (z) bị z→−1 chặn tại N(1), N(-1). 15 ( f 4 ) Do lim z→∞ Fa (z) = 9 nên Fa (z) = O(z2 ). 2 z ( f 5 ) Ta có: 2 • ξ 1 (z) = (3z − 1) ⇒ ξ 1± (t) = (3t − 1) 2 , ∀t ∈ L • ξ 2 (z) = z ⇒ ξ 2± (t) = t , ∀t ∈ L • ξ 3 (z) = √ ( z−1⇒ √ ξ 3+ (t) = i 1 − t , ∀t ∈ L √ ξ 3− (t) = −i 1 − t , ∀t ∈ L  r γ  +  ξ t = i − t, ∀t ∈ L1 ( )  4  2 − γ   r r  γ γ − ξ 4 ( t ) = −i − t, ∀t ∈ L1 • ξ 4 (z) = z − ⇒ 2 − γ  2−γ  r   γ  ±  , ∀ t ∈ L2  ξ 4 (t) = t − 2−γ • ξ 5 (z) = (z + 1) ⇒ ξ 5± (t) = (t + 1) , ∀t ∈ L • ξ 6 (z) = √ z + 1 ⇒ ξ 6± (t) = √ t + 1, ∀t ∈ L Theo (2.5): p Fa (z) = ξ 1 (z) − 8ξ 2 (z) ξ 3 (z) ξ 4 (z) 2 − γ + δξ 5 (z) ξ 6 (z) ξ 3 (z).   γ ∗ Xét t ∈ L1 = −1; , từ (2.9) và các kết quả bên trên ta có: 2−γ + Fa1 (t) p √ √ γ 1−ti − t 2 − γ + δ1 (t + 1) t + 1 i 1 − t 2−γ r p √ √ √ γ = (3t − 1)2 + 8t 1 − t − t 2 − γ + iδ1 (t + 1) t + 1 1 − t. 2−γ 2 = (3t − 1) − 8t i √ (2.9) r 16 − Fa1 (t) √ r p γ = (3t − 1) − 8t(−i ) 1 − t(−i ) −t 2−γ 2−γ √ √ + δ1 (t + 1) t + 1(−i ) 1 − t r p √ √ √ γ 2 − t 2 − γ − iδ1 (t + 1) t + 1 1 − t. = (3t − 1) + 8t 1 − t 2−γ 2 ⇒ (2.7).  γ ; 1 , từ (2.9) và các kết quả trên ta có: ∗ Xét t ∈ L2 = 2−γ  + Fa2 (t) − Fa2 (t) √ √ γ p = (3t − 1) − 8t i 1 − t t − 2 − γ + δ1 (t + 1) t + 1 i 1 − t 2−γ   r √ √ γ p 2 = (3t − 1) + i 1 − t −8t t − 2 − γ + δ1 (t + 1) t + 1 . 2−γ 2 √ r √ √ γ p 1−t t− 2 − γ + δ1 (t + 1) t + 1 (−i ) 1 − t 2−γ   r √ √ γ p 2 = (3t − 1) − i 1 − t −8t t − 2 − γ + δ1 (t + 1) t + 1 . 2−γ 2 = (3t − 1) − 8t (−i ) √ r ⇒ (2.8). Từ (2.7), (2.8) ⇒ Fk− (t) = Fk+ (t). Các tính chất của hàm Γ(z) Đưa vào hàm g(t) được xác định trên L như sau:  + Fa1 (t)     − , t ∈ L1 Fa1 (t) ga (t) = + Fa2 (t)     − , t ∈ L2 Fa2 (t) (2.10) Từ (2.6), (2.10) ta có : Fa+ (t) = ga (t) Fa− (t), t ∈ L. (2.11) Xét hàm Γ(z) (tích phân dạng Cauchy) được xác định như sau: 1 Γ(z) = 2πi Z L log g(t) dt, z ∈ C. t−z Mệnh đề 2: (γ1 ) Γ(z) ∈ H (S). 17 (2.12)
- Xem thêm -

Tài liệu liên quan