Tài liệu Số học của chùm ma trận và ứng dụng (lv01100)

  • Số trang: 67 |
  • Loại file: PDF |
  • Lượt xem: 159 |
  • Lượt tải: 0
nguyetha

Đã đăng 8490 tài liệu

Mô tả:

1 Sau một thời gian nghiên cứu Số học của chùm ma trận và ứng dụng, với sự cố gắng của bản thân, cùng với sự hướng dẫn và giúp đỡ tận tình của các thầy cô giáo, các anh chị học viên, tôi đã hoàn thành luận văn với đề tài trên. Xin chân thành cảm ơn sự giúp đỡ của các thầy cô giáo trong tổ Giải tích– khoa Toán – trường Đại học Sư phạm Hà Nội 2, các bạn học viên lớp K15 Toán Giải tích đợt 2 đã động viên giúp đỡ tôi trong quá trình học tập và làm luận văn. Đặc biệt, em xin bày tỏ lòng biết ơn chân thành sâu sắc tới Phó Giáo sư – Tiến sĩ Tạ Duy Phượng, người đã giúp đỡ em tận tình trong quá trình tập dượt nghiên cứu, chuẩn bị và hoàn thành luận văn này. Hà Nội, tháng 12 năm 2013 Tác giả Nguyễn Thị Hằng 2 Tôi xin cam đoan luận văn Số học của chùm ma trận và ứng dụng học tập và riêng tôi. Đó là kết quả của sự tìm tòi, tổng hợp từ các tài liệu tham khảo dưới sự hướng dẫn của Phó Giáo sư –Tiến sĩ Tạ Duy Phượng. Những thông tin trích dẫn, những tài liệu tham khảo trong luận văn đã được chỉ rõ nguồn gốc. Luận văn chưa được công bố trên bất kì phương tiện thông tin nào. Hà Nội, tháng 12 năm 2013 Tác giả Nguyễn Thị Hằng 3 MỤC LỤC Trang MỞ ĐẦU 5 Chƣơng 1 MA TRẬN VÀ CHÙM MA TRẬN 8 1.1 Các khái niệm cơ bản của ma trận 8 1.2 Chùm ma trận 11 Chƣơng 2 SỐ HỌC CỦA CHÙM MA TRẬN 14 2.1 Quan hệ ma trận 14 2.2 Các phép toán số học trên quan hệ ma trận 20 Chƣơng 3 ỨNG DỤNG CỦA SỐ HỌC CHÙM MA TRẬN TRONG 44 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH 3.1 Phương trình sai phân ẩn tuyến tính 44 3.2 Phương trình vi phân đại số tuyến tính 45 3.3 Hệ động lực ẩn trên thang thời gian 51 KẾT LUẬN 66 TÀI LIỆU THAM KHẢO 67 4 BẢNG KÍ HIỆU £ Tập hợp các số phức £n Tập hợp các số phức trong không gian n chiều A B : M mij x, y x A, y B trong đó i 1,..., m , j 1,..., n là m n ma trận, và mij là kí hiệu phần tử ở dòng thứ i và cột thứ j MT Ma trận chuyển vị của ma trận M det M Định thức của ma trận M diag A, B Ma trận khối đường chéo 5 MỞ ĐẦU 1 Lí do chọn đề tài Phương trình vi phân đại số là một mô hình toán học được sử dụng để khảo sát nhiều bài toán thực tế. Hiện nay phương trình vi phân đại số đang được nghiên cứu mạnh mẽ trên thế giới và ở Việt Nam. Trong phương trình vi phân đại số, do cấu trúc đặc thù, lớp phương trình vi phân tuyến tính được đặc biệt nghiên cứu kĩ. Tương tự như phương trình vi phân thường tuyến tính, lí thuyết ma trận đóng vai trò quan trọng trong nghiên cứu phương trình vi phân đại số tuyến tính. Tuy nhiên, để ứng dụng trong nghiên cứu phương trình vi phân đại số, cần có những nghiên cứu sâu hơn về lí thuyết ma trận, thí dụ, phải nghiên cứu cấu trúc của cặp hai ma trận hay chùm ma trận, phải mở rộng các nghiên cứu về ma trận nghịch đảo suy rộng cho các ma trận vuông không khả nghịch hoặc các ma trận chữ nhật. Số học của chùm ma trận đã được Peter Benner và Ralph Beyers nghiên cứu và trình bày trong các bài báo [1], [2], [3], [5]. Có thể coi số học của chùm ma trận là sự mở rộng của số học ma trận và biến đổi tuyến tính. Số học của chùm ma trận đã được sử dụng trong nghiên cứu nhiều bài toán của toán học cũng như của thực tế. Thí dụ, trong nghiên cứu phương trình vi phân đại số tuyến tính và phương trình sai phân ẩn tuyến tính (xem [2], [5]), trong nghiên cứu hàm dấu của ma trận và áp dụng giải số phương trình ma trận (xem [3], [5], [6], [8]), trong xây dựng các thuật toán trong lí thuyết hệ thống và điều khiển (xem [4], [8], [10], [11]),... 6 Với mục đích tìm hiểu một hướng phát triển mới của lí thuyết ma trận và ứng dụng của số học chùm ma trận, tôi chọn đề tài cho luận văn thạc sĩ của mình là Số học của chùm ma trận và ứng dụng. 2 Mục đích nghiên cứu Trình bày lý thuyết về quan hệ tuyến tính (quan hệ ma trận) và các phép toán số học, phép toán tựa số học trên tập hợp các ma trận. 3 Nhiệm vụ nghiên cứu Nghiên cứu số học của chùm ma trận và ứng dụng. 4 Đối tƣợng và phạm vi nghiên cứu Số học của chùm ma trận và ứng dụng trong hệ phương trình vi phân đại số và phương trình sai phân ẩn. 5 Phƣơng pháp nghiên cứu Nghiên cứu lý thuyết: Thu thập, đọc và phân tích, tổng hợp tài liệu. Sử dụng công cụ của Giải tích, Đại số tuyến tính, Giải tích hàm và lí thuyết phương trình. Trên cơ sở đó viết một luận văn tổng quan về vấn đề nghiên cứu. 6 Những đóng góp mới của đề tài Hy vọng luận văn là một tài liệu tổng quan tốt về số học của chùm ma trận và ứng dụng trong nghiên cứu phương trình vi phân đại số tuyến tính. Hy vọng luận văn sẽ được các sinh viên đại học và học viên cao học tham khảo khi bước đầu nghiên cứu cấu trúc ma trận và phương trình vi phân đại số. 7 Nội dung Luận văn gồm 3 chương: 7 Chương 1: Ma trận và chùm ma trận Chương 2: Số học của chùm ma trận Chương 3 : Ứng dụng của số học chùm ma trận trong phương trình vi phân đại số tuyến tính. 8 CHƢƠNG 1 MA TRẬN VÀ CHÙM MA TRẬN 1.1 Các khái niệm cơ bản Ta đã biết rằng, có thể coi một ma trận M mij £ m n cấp m n với các phần tử mij , i 1,..., m; j 1,..., n là các số phức, là một ánh xạ tuyến tính từ không gian £ n vào không gian £ m . Ngược lại, mọi ánh xạ tuyến tính M : £ n £m cũng có một ma trận biểu diễn mà ta đồng nhất kí hiệu là M . 1.1.1 Hạt nhân (hạch, kernel) hay không gian không (null space) của ma trận M £ m n (của ánh xạ tuyến tính M : £ n null M £ m ) được kí hiệu là null M : z £ n Mz 0 . Với cặp ma trận A £ m n , B £ m k , ta định nghĩa null A, B £ n £ k Ax By 0m . x, y 1.1.2 Miền giá trị (miền ảnh, range) của ma trận M tính M : £ n £ m n (của ánh xạ tuyến £ m ) được kí hiệu là range M : range M U Mx. x £n 1.1.3 Ma trận chuyển vị liên hợp phức hay ma trận chuyển vị Hermit của ma trận M £ m n là ma trận M H của ma trận M m jk m n M T , trong đó ma trận M , tức là mkj akj ibkj , m jk mkj a jk n m ibjk . là liên hợp phức 9 1.1.4 Chuẩn Euclid của ma trận M m jk trên £ m n là M m 2jk . 2 1 j m 1 k n Chuẩn Frobenius n trace A : £mn trên M là F trace M H M , trong đó aii hay trace A là tổng các phần tử trên đường chéo chính của i 1 ma trận An n . Có thể chứng minh rằng M F trace M H M thực sự là một chuẩn. 1.1.5 Hạng của ma trận Cho ma trận M £ m n . Ta nói M có hạng đầy đủ theo cột (full column rank) nếu n cột của M là độc lập tuyến tính. Ta nói M có hạng đầy đủ theo hàng (full row rank) nếu m hàng của M là độc lập tuyến tính. Định lí 1.1.1 Cho ma trận M £ m n . Ma trận M 1. Có hạng đầy đủ theo cột khi và chỉ khi M T M khả nghịch. 2. Có hạng đầy đủ khi theo hàng và chỉ khi MM T khả nghịch. Chứng minh Giả sử ma trận M có hạng đầy đủ theo cột, tức là n cột của nó độc lập tuyến tính. Điều này xảy ra khi và chỉ khi không gian không của nó chỉ chứa duy nhất một vectơ 0, nghĩa là Mx 0 Nếu Mx 0 thì M T M x M T Mx x 0. 0. Do đó nếu M T M khả nghịch thì từ Mx 0 suy ra x 0. Ngược lại, giả sử ma trận có hạng đầy đủ theo cột. Lấy x sao cho M T Mx 0. Khi đó ta có xT M T Mx Mx 2 2 0, nghĩa là Mx 0. Do M có hạng đầy đủ theo cột, tức là các cột là các vec tơ độc lập tuyến tính, nên ta được x 0. Vì M T M là ma trận vuông và M T Mx 0 x 0 nên M T M khả nghịch. 10 Chứng minh tương tự với ma trận có hạng đầy đủ theo hàng. 1.1.6 Ma trận nghịch đảo trái của ma trận M £ m n là ma trận M † thỏa mãn các tính chất: M †M M , M † MM † I n , MM † M M †. Ma trận M m n có thể có nghịch đảo trái L theo nghĩa LM (1.1.1) I n (ma trận đơn vị cấp n ) chỉ khi m n. Hơn nữa, M có nghịch đảo trái khi và chỉ khi nó có hạng theo cột đầy đủ. Ma trận M có thể có nhiều ma trận nghịch đảo trái L, một trong số chúng là ma trận nghịch đảo Moore – Penrose M † : Thí dụ, với M 2 3 4 1 ta có 2 2 T M M 1 24 6 6 14 MTM 1 1 M T của M . 6 1 14 300 6 24 và M† MTM 1 M 6 1 14 300 6 24 Dễ dàng chứng minh được ma trận M † 2 4 2 3 1 2 1 1 5 4 . 30 6 0 6 1 1 5 4 là ma trận nghich đảo 50 6 0 6 Moore – Penrose của ma trận M , tức là thỏa mãn (1.1.1). Thật vậy, ta có M †M 1 1 5 4 30 6 0 6 2 3 4 1 2 2 Nếu E £ m n có hạng theo cột đầy đủ thì E † EH E 1 0 , 0 1 1 EH. 11 Thật vậy E H E† EH E EHI 1 1 E†E EHE EE † E EHE E † EE † 1 EH EHE 1 E H EE † hay EH. 1 Mặt khác ta có thể kiểm tra E H E EE † E EHE E H EE † suy ra EHE 1 E EH E E†E 1 EH 1 EE EI E † EE † 1 EH E H thỏa mãn các tính chất trên, đó là EHE 1 EH E 1IE I; I; E; E†I E† . 1.2 Chùm ma trận 1.2.1. Cho E và A là hai ma trận có số chiều m n . Tập hợp các ma trận E A với £ được gọi là chùm ma trận của hai ma trận E và A . 1.2.2 Vectơ x £ n , x 0 được gọi là vectơ riêng của cặp ma trận E, A nếu với một cặp , £ nào đó ta có Ex £ \ 0,0 Nếu 0 thì x tương ứng với giá trị riêng vô hạn. Nếu 0 thì x tương ứng với giá trị riêng hữu hạn 1.2.3 Chùm ma trận E E . £ được gọi là chính qui (regular) nếu E và A A với là các ma trận vuông và det Ax . A 0 với ít nhất một số phức £. Chùm ma trận không chính qui được gọi là kì dị (suy biến, singular). Định lí 1.1.2 Nếu E A chính qui thì tồn tại một dạng chính tắc Weierstrass 12 X trong đó X ,Y N £ n k n k £n n E I 0 0 N AY không suy biến, J £k J 0 , 0 I k là dạng ma trận Jordan và là một ma trận có dạng ma trận Jordan. Chứng minh Xem [9], Vol. II, §2. Định lí 1.1.2 có thể mở rộng cho chùm ma trận suy biến như sau. Định lí 1.1.3 Chùm ma trận E X E AY diag A có dạng chính tắc Kronecker E0 A0 , L1, L2 ,..., Lp , LTp 1, LTp 2 ,..., LTp Trong đó E và A là các ma trận không suy biến, và L j là các ma trận cấp j j 1 Lj Trong đó I j là mt đơn vị cấp (1.1.2) A0 là ma trận chính qui dạng I j ,0 j E0 q j 0 j,I j ,1 và 0 j ,1 j ,1 là ma trận cấp j 1 có tất cả các phần tử bằng không. Chứng minh Xem Định lí A.1 trong Appendix A [5] hoặc [7]. 1.3 Không gian con giảm bên phải Ta đưa vào khái niệm không gian con giảm bên phải (right deflating subspace) như sau. Ta nói, các cột của ma trận X của chùm ma trận chính qui E £ n k căng một không gian con giảm bên phải A nếu dim(range( X )) dim(range( EX ) range( AX )). Các không gian con giảm được căng bởi tập hợp các vectơ riêng và các vectơ chính. Không gian con giảm liên hợp với các giá trị riêng tương ứng. Nếu các giá 13 trị riêng này là phân biệt từ các giá trị riêng còn lại của E A, thì không gian con giảm được xác định duy nhất bởi chúng. Không gian con giảm bên phải E A của chùm ma trận chính qui E A tương ứng với các giá trị riêng hữu hạn có phần thực âm thường được gọi là không gian con giảm bên phải ổn định (stable right deflating subspace). Không gian con giảm bên phải E A tương ứng với các giá trị riêng hữu hạn có phần thực dương được gọi là không gian con giảm bên phải không ổn định (unstable right deflating subspace). Nếu E I I , ta có thể viết A thay vì A . Các không gian con giảm được sử dụng trong các thuật toán tính nghiệm của các phương trình Riccati đại số suy rộng và các phương trình Lyapunov suy rộng (xem [8], [10]) hoặc tổng quát hơn, trong giải quyết các bài toán tính toán khác nhau trong lí thuyết hệ thống và điều khiển (xem [6], [11]). 14 CHƢƠNG 2 SỐ HỌC CỦA CHÙM MA TRẬN 2.1 Quan hệ ma trận 2.1.1 Định nghĩa quan hệ ma trận Với mỗi chùm ma trận E £ (hay cặp ma trận E £ m n , A £ m n ), ta A, định nghĩa quan hệ ma trận hay quan hệ tuyến tính trên không gian vectơ £ n , là tập hợp của các cặp sắp thứ tự x, y có dạng sau: E\A : £ n £ n Ey x, y Ax . (2.1.1) Cặp ma trận E và A được gọi là ma trận biểu diễn (matrix representation) của quan hệ tuyến tính (2.1.1). Nhận xét 2.1.1 Quan hệ ma trận có thể viết dưới dạng phương trình ma trận: E\A : x, y £ n £ n Ey Ax x, y £n £n A E x y 0m . (2.1.1’) Vậy, có thể coi quan hệ ma trận là tập nghiệm của phương trình ma trận hay hệ phương trình tuyến tính (2.1.1’). Vì tập nghiệm của hệ phương trình tuyến tính là một không gian vectơ nên quan hệ ma trận E \ A là một không gian vectơ con của không gian vectơ phức £ n £ n . Nhận xét 2.1.2 Ma trận biểu diễn của quan hệ tuyến tính (2.1.1) là không duy nhất: Nếu M £ m m là một ma trận không suy biến thì E \ A Thật vậy, theo định nghĩa, ta có ME \ MA : x, y £ n £ n MEy MAx . ME \ MA . 15 Do M M 1 £ m m không suy biến nên nhân hai vế của đẳng thức MEy MAx với ta được M 1MEy M 1MAx MEy MAx Ey Ax. Vậy ME \ MA : x, y £ n £ n MEy MAx x, y £ n £ n Ey Câu hỏi đặt ra là: Khi nào ta có đẳng thức E \ A Định lí 2.1.1 (Theorem 2.1, [5]) Cho M E\A Ax : E\A . ME \ MA ? -Ta có £ p m và E , A £ m n . Đẳng thức ME \ MA xảy ra khi và chỉ khi null M I range A, E 0 . Chứng minh Trƣờng hợp 1 Nếu null M I range A, MA ME A x y Chứng tỏ x, y E x y M A E 0. Suy ra Ax Ey z x y Mz 0 ME \ MA nhưng x, y Vậy từ null M I range A Nghĩa là từ E \ A 0 thì tồn tại z 0 sao cho E , tức là tồn tại z 0 và các vectơ x, y £ n sao z null M I range A, cho Mz 0 và E E z 0 Ax MAx MEy 0 MAx MEy. E\A . 0 suy ra E \ A ME \ MA . ME \ MA suy ra null M I range A, E Trƣờng hợp 2 Giả sử null M I range A Ey và E 0 . Giả sử 0 . 16 x, y Suy ra A E ME \ MA x y MEy MAx M A E x y 0. null M . Mặt khác, hiển nhiên A E x y range A, E x y null M I range A, E U A, E w. w £ 2n Vậy A Do đó A E x y Suy ra ME \ MA E 0, nghĩa là Ax Ey 0 Ax x, y E\A . E\A . Ngược lại, giả sử x, y x, y Ey 0 . E \ A , nghĩa là Ey ME \ MA hay E \ A Ax. Suy ra MEx MAy hay ME \ MA . Chứng tỏ từ null M I range A, E 0 suy ra E \ A ME \ MA . Vậy E\A ME \ MA null M I range A, E 0 . Định lí được chứng minh. Hệ quả 2.1.1 Cho các ma trận E , A £ m n , và Eˆ , Aˆ £ E\A nullM Eˆ \ Aˆ . Khi ấy tồn tại ma trận M range A, E 0 . p n thỏa mãn đẳng thức £ p m sao cho Eˆ ME, Â MA và 17 Định lí 2.1.1 và Hệ quả 2.1.1 chỉ ra rằng, quan hệ ma trận là bất biến đối với phép biến đổi tuyến tính trái. 2.1.2 Một số ví dụ quan hệ ma trận Thí dụ 2.1.1 Nếu E £ n n là một ma trận không suy biến thì phương trình Ey Ax có duy nhất nghiệm y E 1 Ax. Như vậy, trong trường hợp E là một ma trận không suy biến thì quan hệ tuyến tính E \ A chính là phép biến đổi tuyến tính y E 1 Ax, với ma trận biểu diễn là E 1 A. Do đó, có thể coi quan hệ tuyến tính như là một mở rộng của phép biến đổi tuyến tính. Nếu Em n là ma trận có n cột độc lập tuyến tính (có hạng đầy đủ theo cột - full column rank) thì E T E là ma trận vuông khả nghịch (Định lí 1.1.1). Nhân hai vế của phương trình Ey ET E Ey 1 Ax Ax với ma trận E T , sau đó với ma trận , ta được E T Ey E T Ax ET E 1 E T Ey ET E 1 E T Ax y ET E 1 E T Ax. Như vậy, quan hệ tuyến tính E \ A trong trường hợp này là một phép biến đổi tuyến tính được biểu diễn bởi công thức y ET E 1 E T Ax. Nếu E không có n cột độc lập tuyến tính, thì phương trình Ey Ax nói chung cho vô số nghiệm (với mỗi x cho trước tìm được vô số y thỏa mãn phương trình Ey Ax ). Khi ấy ta có thể coi quan hệ tuyến tính E \ A là một phép biến đổi tuyến tính đa trị, tức là, với mỗi x cho trước, ma trận E kết hợp với ma trận A tạo ra một tập hợp các phần tử y thỏa mãn phương trình Ey Thí dụ 2.1.2 Phương trình sai phân tuyến tính ẩn với hệ số biến thiên Ax. 18 Ek xk 1 Ak xk , xk £ m n , Ak ¡ n , Ek £ m n , k 1,2,..., (2.1.2) trong đó det Ek có thể bằng 0, tương đương với quan hệ tuyến tính xk , xk Ek \ Ak , k 1,2,... 1 Thí dụ 2.1.3 Xét phương trình vi phân đại số tuyến tính dạng E (t ) x (t ) A(t ) x(t ), t J a, b ¡ , x ¡ n. (2.1.3) Ở đây x (t ) là giá trị đạo hàm của hàm khả vi x (t ) tại thời điểm t. Trong phương trình vi phân đại số, ta thường giả thiết rằng det E (t ) 0 t J, tức là phương trình (2.1.3) suy biến với mọi t , do đó nó không thể đưa về phương trình vi phân thường tuyến tính. Ta định nghĩa nghiệm của phương trình vi phân đại số (2.1.3) là một hàm khả vi liên tục trên J và thỏa mãn (2.1.3) tại mọi điểm của J . Khi ấy x (t ) ¡ Với mọi t n với mọi t J. J , phương trình vi phân đại số tuyến tính (2.1.3) tương đương với quan hệ ma trận x(t ), x (t ) E(t ) \ A(t ) . Thí dụ 2.1.4 Xét phương trình vi phân đại số tuyến tính tổng quát dạng E (t ) D(t ) x(t ) Với mỗi t A(t ) x(t ), t J a, b ¡ , x ¡ n. (2.1.4) J thì E (t ) £ m k , D(t ) £ k n . Nghiệm của phương trình vi phân đại số (2.1.4) là một hàm liên tục (không nhất thiết khả vi) trên J sao cho đạo hàm D(t ) x(t ) là tồn tại, liên tục và (2.1.4) được thỏa mãn tại mọi điểm t Với mọi t J. J , phương trình vi phân đại số tuyến tính (2.1.4) tương đương với quan hệ ma trận x(t ), D(t ) x(t ) E (t ) \ A(t ) . 19 Chú ý rằng, trong phương trình (2.1.3) ta đòi hỏi tất cả các tọa độ của x(.) phải khả vi trên J . Trong phương trình (2.1.4), ma trận D (t ) có thể suy biến, nghĩa là sau phép biến đổi D(t ), một số tọa độ của D(t ) x(t ) có thể bằng 0, do đó D(t ) x(t ) có đạo hàm, mặc dù tọa độ tương ứng của x (t ) có thể không có đạo hàm. Thí dụ, nếu D 1 0 thì Dx(t ) 0 0 1 0 0 0 x1 (t ) x2 (t ) x1 (t ) . Vì vậy ta chỉ 0 cần đòi hỏi tọa độ x1 (t ) có đạo hàm, còn x2 (t ) chỉ cần liên tục. Đây là điểm khác giữa phương trình (2.1.3) và phương trình (2.1.4). Phương trình (2.1.4) là mô hình của nhiều bài toán thực tế (các bài toán mạng điện, các phản ứng hóa học, hệ rôbốt,…) và đang được quan tâm nghiên cứu. 2.1.3 Một số khái niệm và tính chất cơ bản 1. Với x £ n , x lát cắt của quan hệ ma trận E \ A là tập hợp E\A x y £ n | x, y E\A . Tùy theo x, E và A, tập E \ A x có thể là tập khác rỗng hoặc rỗng. 2. Miền xác định của quan hệ ma trận là tập các hoành độ của nó, nghĩa là dom E \ A x £n| E\A x . 3. Miền giá trị của quan hệ ma trận E \ A là tập ảnh của dom E \ A , nghĩa là range E \ A U E \ A x. x £n Nhận xét 2.1.3 dom E \ A và range E \ A là các không gian vectơ con của không gian vectơ phức £ n . Để chứng minh tập dom E \ A là không gian con, ta chỉ cần chứng minh x 1 1 x 2 2 dom E \ A với mọi x1, x2 dom E \ A và 1 , 2 £. 20 Giả sử x1, x2 dom E \ A , khi ấy tồn tại các vectơ y1, y2 £ n Ey1 Ax1 và Ey2 Ax2 . Do E £ m n , A £ m n là các ma trận nên với mọi E y y Chứng tỏ Vậy y 1 1 1 1 x 1 y E\A 2 2 2 Ey2 x 1 Ax1 x 1 1 2 Ax1 và Ey2 Vậy y y 1 1 2 2 y 1 1 1 y 2 2 , 2 Ax2 £ ta có A hay E \ A 2 2 x x . 1 1 x 2 2 x 1 1 2 2 . range E \ A , khi ấy tồn tại các vectơ x1, x2 £ n sao Ax2 . Do E £ m n , A £ m n là các ma trận nên với mọi E 1 dom E \ A hay dom E \ A là không gian con trong £ n . 2 2 Tương tự, giả sử y1, y2 cho Ey1 Ey1 2 2 x 1 1 sao cho Ey1 2 Ey2 range E \ A x 1 Ax1 2 Ax2 1 A range E \ A , 2 x 1 1 £ ta có x . 2 2 hay range E \ A là không gian con của £ n . 2.2 Các phép toán số học trên quan hệ ma trận 2.2.1 Tích của hai quan hệ ma trận Cho E1 £ m n , A1 £ m n và E2 £ p n , A2 £ p n . Định nghĩa 2.2.1 Phép hợp của hai quan hệ tuyến tính hay tích E2 \ A2 E1 \ A1 của hai quan hệ ma trận được xác định như sau:
- Xem thêm -