Tài liệu Skkn-nâng cao chất lượng bồi dưỡng học sinh giỏi kinh nghiệm phân tích, trình bày bài toán dãy số khi giải toán trên máy tính cầm tay.

  • Số trang: 35 |
  • Loại file: DOC |
  • Lượt xem: 485 |
  • Lượt tải: 0
dangvantuan

Tham gia: 02/08/2015

Mô tả:

Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. MỤC LỤC PHẦN I: MỞ ĐẦU Mục 1 Tên đề mục Lý do chọn đề tài Trang 2 2 Mục tiêu, nhiệm vụ của đề tài 2 3 Đối tượng nghiên cứu 3 4 Phạm vi nghiên cứu 3 5 Phương pháp nghiên cứu 3 PHẦN II: NỘI DUNG Mục 1 Tên đề mục 3 Trang Cơ sở lí luận để thực hiện đề tài 2 Thực trạng 3 3 Giải pháp, biện pháp 6 4 Kết quả 24 PHẦN III: KẾT LUẬN, KIẾN NGHỊ Mục 1 Tên đề mục Kết luận Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 24 Trang 1 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 2 Kiến nghị 24 PHẦN I MỞ ĐẦU 1. Lý do chọn đề tài: Trong trường THCS, môn toán là môn học cơ bản cung cấp những tri thức và kĩ năng toán học, những phương pháp, phương thức tư duy và hoạt động cần thiết để học tập các môn học khác. Vì vậy việc học tập môn toán là rất quan trọng, học phải liên tục không ngừng. Học sinh luôn giữ vai trò trung tâm, chủ động trong mọi hoạt động học tập. Để giúp các em học tốt môn toán, người giáo viên ngoài việc giúp các em nắm được những kiến thức cơ bản, còn phải bồi dưỡng cho các em về mặt phương pháp giải các dạng toán là rất quan trọng. Do vậy, mỗi giáo viên chúng ta cần phải tìm tòi, sáng tạo tìm ra phương pháp dạy học mới phù hợp với từng đối tượng học sinh. Trong chương trình Toán học ở trường trung học cơ sở hiện nay thì phần lớn hệ thống câu hỏi và bài tập đã được biên soạn phù hợp với trình độ kiến thức và năng lực của học sinh. Tuy nhiên có những dạng toán mà trong sách giáo khoa chỉ đưa ra một vài bài toán dạng sao (*), chưa có phương pháp giải cụ thể, đòi hỏi học sinh phải vận dụng kiến thức đã học để tư duy cách giải. Dạng toán “tính tổng của dãy số viết theo quy luật” là dạng toán tương đối khó đối với học sinh lớp 6, tổng hợp nhiều kiến thức, các bài toán này rất phổ biến trong các đề thi học sinh giỏi các cấp, đề thi toán qua mạng internet. Qua nhiều năm thực tế giảng dạy khối 6, tôi nhận thấy học sinh còn lúng túng khi đứng trước dạng toán này, học sinh chưa tìm ra quy luật của dãy số, không nhận dạng được từng bài toán và chưa định ra được phương pháp giải. Chính vì vậy, ngay từ lớp 6 giáo viên cần trang bị cho các em học sinh các dạng toán tính tổng của dãy số viết theo quy luật và cách giải cho từng dạng để các em có được kĩ năng tính toán và tư duy sáng tạo khi giải các bài toán dạng này. Với những lý do đó, tôi chọn đề tài nghiên cứu: “Kinh nghiệm giải các bài toán tính tổng của dãy số viết theo quy luật” với mong muốn góp phần nâng cao Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 2 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. chất lượng bộ môn toán ở trường THCS, giúp học sinh lớp 6 giải được các bài toán tính tổng của dãy số viết theo quy luật từ cơ bản đến nâng cao, đồng thời tôi cũng mong muốn được chia sẻ một vài kinh nghiệm giảng dạy của mình để đồng nghiệp tham khảo, rất mong được sự đóng góp chân thành để đề tài được phát huy hiệu quả. 2. Mục tiêu, nhiệm vụ của đề tài: Mục tiêu: Thực hiện đề tài này nhằm mục đích: - Góp phần nâng cao chất lượng bộ môn toán ở trường THCS, giúp học sinh lớp 6 giải được các các dạng toán tính tổng của dãy số viết theo quy luật từ cơ bản đến nâng cao. -Rèn cho học sinh kĩ năng giải toán, khả năng dự đoán, tư duy sáng tạo, tính tự giác tích cực. - Chia sẻ với đồng nghiệp kinh nghiệm về phương pháp tính tổng của dãy số viết theo quy luật - Bản thân rèn luyện chuyên môn nhằm nâng cao nghiệp vụ sư phạm Nhiệm vụ: Những nhiệm vụ cụ thể của đề tài là: - Liệt kê một số dạng toán tính tổng của dãy số viết theo quy luật và phương pháp giải cho từng dạng, đề xuất bài toán tổng quát thông qua các ví dụ cụ thể đồng thời rèn cho học sinh tìm tòi lời giải, xem xét bài toán dưới dạng đặc thù riêng lẻ và lựa chọn phương pháp giải hợp lý. 3. Đối tượng nghiên cứu: Phụ đạo và nâng cao kiến thức cho học sinh lớp 6A3, 6A4 trường THCS Lê Đình Chinh, xã Quảng Điền, huyện Krông Ana, tỉnh ĐăkLăk. 4. Phạm vi nghiên cứu: - Nghiên cứu về phương pháp giải một số dạng bài tập tính tổng của dãy số viết theo quy luật . - Nghiên cứu sách giáo khoa, tài liệu tham khảo, sách nâng cao toán 6. Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 3 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 5. Phương pháp nghiên cứu: - Nghiên cứu lí thuyết. - Điều tra, thực nghiệm, khảo sát kết quả học tập của học sinh. - Đưa ra tập thể tổ chuyên môn thảo luận - Thực nghiệm giảng dạy chuyên đề cho học sinh lớp 6A3, 6A4 trường THCS Lê Đình Chinh, xã Quảng Điền, huyện Krông Ana - Điều tra, đánh giá kết quả học tập của học sinh sau khi thực nghiệm giảng dạy chuyên đề. PHẦN II NỘI DUNG 1. Cơ sở lí luận để thực hiện đề tài: Nhằm đáp ứng được mục tiêu giáo dục toàn diện cho học sinh, con đường duy nhất là nâng cao chất lượng học tập của học sinh ngay từ nhà trường phổ thông. Là giáo viên ai cũng mong muốn học sinh của mình tiến bộ, lĩnh hội kiến thức dễ dàng, phát huy tư duy sáng tạo, rèn tính tự học, thì môn toán là môn học đáp ứng đầy đủ những yêu cầu đó. Việc học toán không phải chỉ là học trong sách giáo khoa, không chỉ làm những bài tập do thầy, cô ra mà phải nghiên cứu đào sâu suy nghĩ, tìm tòi vấn đề, tổng quát hoá vấn đề và rút ra được những điều gì bổ ích. Dạng toán tính tổng của dãy số viết theo quy luật là dạng toán rất quan trọng trong chương trình toán 6 và làm cơ sở để học sinh làm tốt các bài toán có liên quan trong chương trình toán trung học cơ sở sau này. Vấn đề đặt ra là làm thế nào để học sinh giải bài toán tính tổng của dãy số viết theo quy luật một cách chính xác, nhanh chóng và đạt hiệu quả cao. Để thực hiện tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh những kĩ năng như quan sát, nhận xét, đánh giá bài toán, đặc biệt là kĩ năng giải toán, kĩ năng vận dụng bài toán, tuỳ theo từng đối tượng học sinh, mà ta xây dựng cách giải cho phù hợp trên cơ sở các phương pháp đã học và các cách giải khác, để giúp học sinh học tập tốt hơn. 2. Thực trạng: a. Thuận lợi, khó khăn: Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 4 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. Thuận lợi: - Xã Quảng Điền là một xã giàu truyền thống cách mạng, dân cư chủ yếu là người Quảng nam đi kinh tế mới từ năm 1977, nhân dân có truyền thống hiếu học. Đặc biệt có sự quan tâm của Đảng uỷ, UBND xã, sự quan tâm của các tổ chức, đoàn thể trong xã đối với công tác giáo dục, đảm bảo cơ sở vật chất tối thiểu cho dạy học hai ca. Xã Quảng Điền là xã văn hoá năm 2010 và hiện nay đang phấn đấu xây dựng xã nông thôn mới vào năm 2015 - Hội cha mẹ học sinh hoạt động tích cực , phối hợp tốt với nhà trường trong các hoạt động, duy trì tương đối hiệu quả việc học tập của con em trong cộng đồng địa phương. - Hội khuyến học hết sức nhiệt tình, quan tâm đến phong trào giáo dục xã nhà nói chung và trường THCS Lê Đình Chinh nói riêng . - Phòng giáo dục và lãnh đạo nhà trường thường xuyên quan tâm tới tất cả các hoạt động chuyên môn của trường. - Bên cạnh đội ngũ giáo viên nhiều kinh nghiệm nhà trường còn có một đội ngũ thầy cô trẻ, khoẻ, nhiệt tình và hăng say công việc. - Đa số các học sinh khá giỏi đều ham thích học bộ môn toán. Khó khăn: - Nhân dân xã Quảng Điền sống chủ yếu bằng nghề nông đời sống kinh tế còn nhiều khó khăn, tỉ lệ hộ nghèo còn khá cao, trình độ dân trí không đồng đều, thuộc lưu vực sông KrôngAna nên hằng năm xã Quảng Điền cũng chịu ảnh hưởng của lũ lụt. Do đó một số bộ phận dân cư, hoàn cảnh gia đình còn khó khăn, chưa thực sự quan tâm đến việc học của con em mình dẫn đến ảnh hưởng không nhỏ đến việc đầu tư thời gian, vật chất, tinh thần cho con em học tập, nên ảnh hưởng phần nào đến kết quả học tập và rèn luyện của một số học sinh và kết quả phấn đấu của nhà trường. - Cơ sở vật chất còn chưa đảm bảo tốt cho việc dạy và học, nguồn đầu tư của địa phương cho giáo dục hàng năm còn thấp. b. Thành công, hạn chế: Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 5 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. Thành công: Với nội dung của đề tài nghiên cứu: “Kinh nghiệm giải các bài toán tính tổng của dãy số viết theo quy luật” sau khi đưa ra tập thể tổ chuyên môn thảo luận và áp dụng vào thực tiễn tôi nhận thấy rèn luyện được cho học sinh kĩ năng giải toán có khoa học, lập luận logic và chặt chẽ. Học sinh hứng thú, chủ động hơn trong học tập. Hạn chế: Để đề tài trên được áp dụng vào thực tiễn giảng dạy và đem lại hiệu quả cần phải có lượng thời gian nhất định. Tuy nhiên trong phân phối chương trình môn toán 6 không có thời lượng dành riêng cho vấn đề này. Hơn nữa, sách giáo khoa chưa đề cập về cách giải bài toán tính tổng của dãy số viết theo quy luật. Với những lý do trên đề tài khó có thể áp dụng và đem lại hiệu quả mong muốn. c. Mặt mạnh, mặt yếu: Mặt mạnh: Khi vận dụng đề tài này vào giảng dạy tôi nhận thấy phần lớn học sinh không còn lúng trong khi gặp dạng toán này, đa số các em đã nhận dạng được bài tập và đã biết lựa chọn cách giải nhanh, gọn, hợp lí và trình bày lời giải tương đối chặt chẽ. Mặt yếu: Dạng toán tính tổng của dãy số viết theo quy luật là dạng toán tương đối trừu tượng đối với học sinh lớp 6. Khi gặp dạng toán này, không ít học sinh lúng túng không biết xử lý thế nào. Điều đó cũng dễ hiểu vì tuy đã được học phần lý thuyết cơ bản song số bài tập để củng cố để khắc sâu, để bao quát hết các dạng thì lại không nhiều, không có sức thuyết phục để lôi kéo sự hăng say học tập của học sinh. Mức độ kiến thức của dạng toán này tương đối trừu tượng và phức tạp. d. Nguyên nhân: Thực tế học sinh ở trường THCS Lê Đình Chinh tiếp thu bài còn chậm và vận dụng kiến thức từ lý thuyết vào làm bài tập còn hạn chế. Các em còn nhầm lẫn và chưa thành Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 6 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. thạo trong việc giải bài toán tính tổng của dãy số viết theo quy luật. Nguyên nhân chủ yếu của khó khăn trên là: - Mức độ nắm kiến thức và kĩ năng vận dụng làm bài của một số học sinh hạn chế. - Học sinh không nhận ra được quy luật của dãy số. - Học sinh chưa phân loại được các dạng bài tập và chưa xác định được phương pháp giải cho từng dạng. - Do thời lượng luyện tập giờ chính khóa còn ít, vì vậy học sinh chưa có thời gian để ôn tập, làm bài tập, giải bài tập nhiều. - Học sinh chưa thật sự yêu thích và không hứng thú đối với việc học môn Toán nên còn lười học ở nhà, trên lớp không chú ý nghe thầy cô giảng bài. e. Phân tích, đánh giá các vấn đề về thực trạng mà đề tài đã đặt ra: Đề tài : “Kinh nghiệm giải các bài toán tính tổng của dãy số viết theo quy luật” góp phần nâng cao kiến thức, tư duy toán học, khả năng phân tích, tính toán cho học sinh, đồng thời giúp cho giáo viên trau dồi kiến thức, nâng cao chất lượng và hiệu quả giảng dạy. - Để giải được bài toán tính tổng của dãy số viết theo quy luật đòi hỏi các em phải tìm ra được quy luật của dãy số, nhận ra những dạng bài tâp cơ bản thường gặp và phương pháp giải cụ thể cho từng dạng. Các bài tập đưa ra trong đề tài này theo mức độ từ thấp đến cao để các em nhận thức chậm có thể làm tốt những bài toán ở mức độ trung bình, đồng thời kích thích sự tìm tòi và sáng tạo của những học sinh khá. - Như đã nói ở trên, trong phân phối chương trình của môn toán 6 không có thời lượng dành riêng cho vấn đề nghiên cứu này. Do đó để thực hiện đề tài này, giáo viên cần phải lồng ghép vào các tiết luyện tập, các tiết ôn tập chương, các tiết ôn tập học kì 2, các tiết phụ đạo học sinh yếu kém và bồi dưỡng học sinh giỏi. - Trong quá trình giảng dạy môn Toán, vai trò của người thầy trong việc tạo hứng thú cho học sính đặc biệt quan trọng, do đó mỗi giáo viên phải thường xuyên đưa học sinh vào các tình huống có vấn đề các em tư duy, tự tìm tòi kiến thức mới qua mỗi dạng Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 7 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. toán. Đồng thời phải biết động viên, khích lệ, biểu dương sự cố gắng của các em, trân trọng thành quả đạt được của các em dù là rất nhỏ. - Ngày nay, phương pháp dạy học ở bậc THCS nói chung đã có nhiều biến đổi tích cực, điều kiện về vật chất ngày càng được nâng lên rõ rệt. Nhưng để đạt được kết quả tốt yêu cầu mỗi giáo viên phải đầu tư nhiều thời gian cho việc soạn bài và đặc biệt là phải tận tụy với công việc, tránh tư tưởng chủ quan chỉ cho học sinh tìm hiểu ở mức độ sơ sài, thiên về cung cấp lời giải. Sự đầu tư thoả đáng của giáo viên sẽ được đền bù bằng khả năng giải bài tập chắc chắn, linh hoạt cuả học sinh. 3. Giải pháp, biện pháp: a. Mục tiêu của giải pháp, biện pháp: Những giải pháp, biện pháp được nêu trong đề tài này nhằm mục đích trang bị cho học sinh lớp 6 một cách có hệ thống về phương pháp giải các dạng bài tập tính tổng của dãy số viết theo quy luật từ cơ bản đến nâng cao, nhằm giúp cho học sinh có khả năng vận dụng tốt dạng toán này, định hướng được các thao tác: quan sát, nhận dạng, lựa chọn phương pháp giải phù hợp cho từng dạng. b. Nội dung và cách thức thực hiện giải pháp, biện pháp: Việc tính tổng của các biểu thức thông thường (hữu hạn số hạng) ta chỉ áp dụng đúng thứ tự và quy tắc phép toán là có thể giải được bài toán. Vấn đề đặt ra là cách khai thác để giải bài toán tính tổng có dạng: Sn= a1+a2+a3+...+an (n=1,2,3…) thì chúng ta phải làm như thế nào ? Sau đây là một số dạng bài cơ bản và phương pháp khai thác để giải các dạng bài toán đó. Dạng 1: Tính tổng của các số tự nhiên cách đều. Phương pháp giải: Muốn tính tổng của các số tự nhiên cách đều, ta làm như sau: - Tính số các số hạng của tổng theo công thức: (Số lớn nhất – Số nhỏ nhất) : Khoảng cách + 1 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 8 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. - Tính tổng theo công thức: (Số đầu + Số cuối) . Số số hạng : 2 Các ví dụ: Ví dụ 1: Tính tổng A = 1 + 2 + 3 + ...+ 100 Giải: Tổng A có: 100  1  1  100 (số hạng) A  1  100  .100  101.100  5050 2 2 Bài toán tổng quát: Tính tổng 1 + 2 + 3 + ...+ n (Với n �N* ) Giải: Với cách làm như ví dụ 1, ta có: 1  2  3  ...  n  n  n  1 2 Ta có công thức tính tổng các số tự nhiên liên tiếp từ 1 đến n (Với n �N* ) như sau: n  n  1 2 Ví dụ 2: Tính tổng B = 2 + 4 + 6 + ...+ 100 1  2  3  ...  n  (Với n �N* ) Giải: Tổng B có:  100  2  : 2  1  50 (số hạng) B  2  100  .50  102.25  2550 2 Bài toán tổng quát: Tính tổng 2 + 4 + 6 + ...+2n (Với n �N* ) Giải: Với cách làm như ví dụ 2, ta có: 2  4  6  ...  2n   2  2n  .n  n 2  n  1 Ta có công thức tính tổng các số tự nhiên chẵn liên tiếp từ 2 đến 2n (Với n �N* ) như sau: 2  4  6  ...  2n  n  n  1 (Với n �N* ) Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 9 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. Ví dụ 3: Tính tổng C = 1 + 3 + 5 + ...+ 49 Giải: Tổng C có:  49  1 : 2  1  25 (số hạng) C  1  49  .25  50.25  252  625 2 2 Bài toán tổng quát: Tính tổng 1 + 3 + 5 + ...+(2n – 1) (Với n �N* ) Giải: Với cách làm như ví dụ 3, ta có: 1  3  5  ...   2n  1   1  2n  1 .n  n.n  n 2 2 Ta có công thức tính tổng các số tự nhiên lẻ liên tiếp từ 1 đến 2n - 1 (Với n �N* ) như sau: 1  3  5  ...   2n  1  n 2 (Với n �N* ) Ví dụ 4: Tính tổng D = 4 + 7 + 10 + 13 + ...+ 301 Giải: Tổng D có:  301  4  : 3  1  100 (số hạng) D  4  301 .100  305.50  15250 2 Ví dụ 5: Tính tổng E = 98 + 93 + 88 + 83 + … + 13 + 8 +3 Giải: Tổng E có: ( 98 – 3 ) : 5 + 1 = 95 : 5 + 1= 19 +1 = 20 (số hạng) E = ( 98 + 3 ) . 20 : 2 = 101 . 20 : 2 = 1 010 Dạng 2: Tính tổng của các tích số tự nhiên viết theo quy luật. Ví dụ 1: Chứng tỏ rằng: k( k+1) = k(k  1)(k  2) (k  1)k(k  1)  (Với 3 3 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh k �N* ) Trang 10 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. Từ đó tính tổng: A = 1.2 + 2.3 + 3.4 + … + 99.100 Giải: Với k �N* , ta có k(k+1)(k+2) – k(k+1) (k-1) = k( k+1)  (k  2)  (k  1) = k (k+1) .3 � k( k+1) = k(k  1)(k  2)  (k  1)k(k  1) k(k  1)(k  2) (k  1)k(k  1)  = 3 3 3 Vậy: k( k+1) = k(k  1)(k  2) (k  1)k(k  1)  (Với 3 3 k �N* ) Áp dụng: Tính tổng: A = 1.2 + 2.3 + 3.4 + … + 99.100 Ta có: 1.2  1.2.3 0.1.2  3 3 2.3  2.3.4 1.2.3  3 3 3.4  3.4.5 2.3.4  3 3 ……………….. 99.100  99.100.101 98.99.100  3 3 Cộng vế với vế các đẳng thức trên, ta được: A=  0.1.2 99.100.101 99.100.101   33.100.101  333300 + 3 3 3 Ví dụ 2: Tính tổng B = 10.11 + 11.12 + 12.13 + … + 98.99 Giải: Ta có: 10.11  10.11.12 9.10.11  3 3 11.12  11.12.13 10.11.12  3 3 12.13  12.13.14 11.12.13  3 3 …………………………. Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 11 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 98.99  98.99.100 97.98.99  3 3 Cộng vế với vế các đẳng thức trên, ta được: B=  9.10.11 98.99.100 98.99.100 9.10.11 + = – = 98.33.100 – 3.10.11 = 323 070 3 3 3 3 Bài toán tổng quát: Tính tổng S = 1.2 + 2.3 + 3.4 + …+ n(n+1) (Với n �N* ) Giải: Ta có: 1.2  1.2.3 0.1.2  3 3 2.3  2.3.4 1.2.3  3 3 3.4  3.4.5 2.3.4  3 3 ……………….. n(n  1)  n(n  1)(n  2) (n  1)n(n  1)  3 3 Cộng vế với vế các đẳng thức trên, ta được: S =  0.1.2 n(n  1)(n  2) + 3 3 Ta có công thức: 1.2  2.3  3.4...  n  n  1  n(n  1)(n  2) (Với n �N* ) 3 Ví dụ 3: Tính tổng C = 2.4 + 4.6 + 6.8 + 8.10 + … + 196.198 + 198.200 Phương pháp giải: Ta thấy mỗi số hạng của tổng là tích của 2 số tự nhiên chẵn liên tiếp. Do đó, để tách mỗi số hạng thành hiệu của 2 số nhằm triệt tiêu từng cặp số hạng với nhau ta nhân cả hai vế với 6. Thừa số 6 này được viết dưới dạng: (6 - 0) ở số hạng thứ nhất, (8 - 2) ở số hạng thứ hai, (10 - 4) ở số hạng thứ ba, ..........,(202 - 196) ở số hạng cuối cùng. Giải: 6.C = 2.4.6 + 4.6.6 + 6.8.6 + … + 196.198.6 + 198.200.6 6.C = 2.4.6+4.6.(8–2)+6.8.(10 – 4)+ … +196.198.(200 – 194)+198.200.(202 – 196) Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 12 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 6.C = 2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+…+196.198.200-194.196.198+198.200.20296.198.200 6.C = 198.200.202 � C = 198.200.202 : 6 = 1 333 200 Bài toán tổng quát: Tính tổng S = 2.4 + 4.6 + 6.8 + … + (2n – 2).2n (Với n �N, n  1 ) Giải:  Với cách làm như ví dụ 3, ta có: 6.S = (2n – 2).2n.(2n + 2) � S  2n  2  2n  2n  2  6 Ta có công thức: 2.4 + 4.6 + 6.8 + ... + (2n - 2).2n   2n  2  2n  2n  2  6 Ví dụ 4: Tính tổng D = 1.3 + 3.5 + 5.7 + … + 95.97 + 97.99 (Với n �N,n  1 ) Phương pháp giải: Ở tổng D, mỗi số hạng là tích của 2 số tự nhiên lẻ liên tiếp. Ta thực hiện phương pháp như ví dụ 3 tức là ta nhân cả hai vế với 6. Thừa số 6 này được viết dưới dạng: (5 + 1) ở số hạng thứ nhất, (7 - 1) ở số hạng thứ hai, (9 - 3) ở số hạng thứ ba, ...., (101 - 95) ở số hạng cuối cùng. Giải: 6.D =1.3.6 + 3.5.6 + 5.7.6 + … + 95.97.6 + 97.99.6 6.D =1.3.(5 + 1) + 3.5.(7 – 1) + 5.7.(9 – 3) + … + 95.97.(99 – 93) + 97.99.(101 – 95) 6.D =1.3.5+1.3.1+3.5.7–1.3.5+5.7.9–3.5.7+ … +95.97.99–93.95.97+ 97.99.101– 95.97.99 6.D = 3 + 97.99.101 D = (3 + 97.99.101) : 6 = 161 651 Bài toán tổng quát: Tính tổng S = 1.3 + 3.5 + 5.7 + … + (2n – 1).(2n + 1) (Với n �N* ) Giải: Với cách làm như ví dụ 4, ta có: Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 13 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 6.S = 3   2n  1  2n  1  2n  3 � S  3   2n  1  2n  1  2n  3  6 Ta có công thức: 3   2n  1  2n  1  2n  3  (Với n �N* ) 6 Ví dụ 5: Tính tổng E = 1.3 + 2.4 + 3.5 + ... + 99.101 1.3 + 3.5 + 5.7 + ... + (2n - 1).(2n + 1)  Phương pháp giải: Để tính tổng E ta không nhân nhân cả 2 vế với cùng một số thích hợp mà tách ngay một thừa số trong mỗi số hạng làm xuất hiện các tổng khác mà ta đã biết cách tính hoặc dễ dàng tính được. Giải: E = 1.3 + 2.4 + 3.5 + ... + 99.101 = 1(2 + 1) + 2(3 + 1) + 3(4 + 1) + ... + 99(100 + 1) = 1.2 + 1 + 2.3 + 2 + 3.4 + 3 + ... + 99.100 + 99 = (1.2 + 2.3 +3.4 +...+ 99.100) + (1 + 2 + 3 + ... + 99) = 99.100.101 99.100 + = 333300 + 4950 = 338250 3 2 Bài toán tổng quát: Tính tổng 1.3 + 2.4 + 3.5 + ... + n(n + 2) (Với n �N* ) Giải: Với cách làm như ví dụ 5, ta có: 1.3 + 2.4 + 3.5 + ... + n(n + 2) = n(n  1)(n  2) n(n  1) n(n  1)(2n  7)   3 2 6 Ta có công thức: 1.3  2.4  3.5...  n  n  2   n(n  1)(2n  7) (Với n �N* ) 6 Ví dụ 6: Tính tổng F = 1.4 + 2.5 + 3.6 + ... + 99.102 Phương pháp giải: Sử dụng phương pháp giải như ví dụ 5. Giải: F = 1.4 + 2.5 + 3.6 + ... + 99.102 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 14 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. = 1(2 + 2) + 2(3 + 2) + 3(4 + 2) + ... + 99(100 + 2) = 1.2 + 1.2 + 2.3 + 2.2 + 3.4 + 3.2 + ... + 99.100 + 99.2 = (1.2 + 2.3 + 3.4 + ... + 99.100) + 2(1 + 2 + 3 + ... + 99) = 99.100.101 99.100 + 2. = 333300 + 9900 = 343200 3 2 Bài toán tổng quát: Tính tổng 1.4 + 2.5 + 3.6 +…+ n(n+3) (Với n �N* ) Giải: Với cách làm như ví dụ 6, ta có: 1.4 + 2.5 + 3.6 +…+ n(n+3) = n(n  1)(n  2) n(n  1) n(n  1)(n  5)  2.  3 2 3 Ta có công thức: 1.4  2.5  3.6...  n  n  5   n(n  1)(n  5) 3 (Với n �N* ) Ví dụ 7: Chứng tỏ rằng: k( k+1)(k+2) = k(k  1)(k  2)(k  3) (k  1)k(k  1)(k  2)  (Với 4 4 k �N* ) Từ đó tính tổng: G = 1.2.3 + 2.3.4 + … + 98.99.100 Giải: Với k �N* , ta có k(k+1)(k+2)(k+3) – (k-1)k(k+1) (k+2) = k( k+1)(k+2)  (k  3)  (k  1) = k (k+1)(k+2) .4 � k( k+1)(k+2) = k(k  1)(k  2)(k  3)  (k  1)k(k  1)(k  2) = 4 k(k  1)(k  2)(k  3) (k  1)k(k  1)(k  2)  4 4 Vậy: k( k+1)(k+2) = k(k  1)(k  2)(k  3) (k  1)k(k  1)(k  2)  (Với 4 4 k �N* ) Áp dụng: Tính tổng: G = 1.2.3 + 2.3.4 + … + 98.99.100 Ta có: 1.2.3  1.2.3.4 0.1.2.3  4 4 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 15 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. 2.3.4  2.3.4.5 1.2.3.4  4 4 3.4.5  3.4.5.6 2.3.4.5  4 4 ……………….. 98.99.100  98.99.100.101 97.98.99.100  4 4 Cộng vế với vế các đẳng thức trên, ta được: G=  0.1.2.3 98.99.100.101 98.99.100.101  = 24 497 550 + 4 4 4 Bài toán tổng quát: Tính tổng 1.2.3 + 2.3.4 + … + n (n+1)(n+2) (Với n �N* ) Giải: Ta có: 1.2.3  1.2.3.4 0.1.2.3  4 4 2.3.4  2.3.4.5 1.2.3.4  4 4 3.4.5  3.4.5.6 2.3.4.5  4 4 ……………….. n(n  1)(n  2)  n(n  1)(n  2)  n  3 4  (n  1)n(n  1)(n  2) 4 Cộng vế với vế các đẳng thức trên, ta được: 1.2.3 + 2.3.4 + … + n (n+1)(n+2) = n (n  1)(n  2)( n  3) 4 Ta có công thức: 1.2.3  2.3.4  3.4.5  ...  n  n  1  n  2   n(n  1)(n  2)  n  3  4 (Với n �N* ) Dạng 3: Tính tổng các lũy thừa của số tự nhiên viết theo quy luật. Ví dụ 1: Tính các tổng sau: a) A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 16 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. b) B = 1 + 3 + 32 + 33 + 34 + ... + 3100 c) C  1  7  7 2  73  ...  7 2007 Phương pháp giải: Tổng trên là tổng của các lũy thừa có cùng cơ số, số mũ của các lũy thừa là các số tự nhiên được sắp xếp theo thứ tự tăng dần. Để giải bài toán này, ta nhân cả hai vế của biểu thức với cơ số của các lũy thừa, sau đó trừ từng vế của biểu thức mới cho biểu thức ban đầu rồi suy ra kết quả bài toán. Giải: a) A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211 2A = 2A – A = 211 – 1 A = 211 – 1 b) B = 1 + 3 + 32 + 33 + 34 + ... + 3100 3 + 32 + 33 + 34 +... + 3100 + 3101 3B = 3B – B = 3101 – 1 2B = 3101 – 1 B= c) C  1  7  7 2  73  ...  7 2007 7C  7  7 2  73  ...  7 2007  7 2008 7 C  C  7 2008  1 6C  7 2008  1 7 2008  1 C 6 Bài toán tổng quát: Tính tổng S = 1 + a + a2 + a3 + … + an (Với a �N,a  1, n �N ) Giải: Với cách làm như ví dụ 1, ta có: a.S – S = an+1 – 1 (a – 1)S = an+1 – 1 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 17 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. a n 1  1 S a 1 Ta có công thức: an 1  1 (Với a �N,a  1, n �N ) 1  a  a  a  ...  a  a 1 2 2 2 2 Ví dụ 2: Tính tổng 1 + 2 + 3 + 4 + … + 1002 2 3 n Phương pháp giải: Tổng trên là tổng của các lũy thừa có cùng số mũ, cơ số của các lũy thừa là các số tự nhiên liên tiếp. Để tính tổng này, tách ngay một thừa số trong mỗi số hạng làm xuất hiện các tổng khác mà ta đã biết cách tính hoặc dễ dàng tính được. Giải: 12 + 22 + 32 + 42 + … + 1002 = 1 + 2(1 + 1) + 3(2 + 1) + 4(3 + 1) + … + 100(99 + 1) = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + … + 99.100 + 100 = (1.2 + 2.3 + 3.4 + … + 99.100) + ( 1 + 2 + 3 + … + 100) = 333300 + 5050 = 338350 Bài toán tổng quát: Tính tổng 12 + 22 + 32 + 42 + … + n2 (Với n �N* ) Giải: Với cách làm như ví dụ 2, ta có: 12 + 22 + 32 + 42 + … + n2 = (1 + 2 +3 +4 + … + n) +[1.2 + 2.3 + 3.4+ … + (n–1)n]  n(n  1) (n  1)n(n  1) 3n(n  1)  2(n  1)n(n  1) n(n  1)[3  2(n  1)] n(n  1)(2n  1)     2 3 6 6 6 Ta có công thức tính tổng các bình phương của các số tự nhiên từ 1 đến n như sau: 12  22  32  42  ...  n 2  n(n  1)(2n  1) 6 (Với n �N* ) Ví dụ 3: Tính tổng 13 + 23 + 33 + … + 1003 Giải: 13 + 23 + 33 + … + 1003 = 13 – 1 + 23 – 2 + 33 – 3 +…+ 1003 – 100 + ( 1 + 2 + 3 + …+ 100 ) = 0 + 2( 22 – 1 ) + 3( 32 – 1 ) + …+ 100( 1002 – 1 ) + ( 1 + 2 + 3 + …+ 100 ) = (1.2.3 + 2.3.4 + …+ 99.100.101) + ( 1 + 2 + 3 + … + 100 ) Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 18 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. = 101989800 + 5050 = 101994850 Bài toán tổng quát: Tính tổng 13 + 23 + 33 + … + n3 (Với n �N* ) Giải: Với cách làm như ví dụ 2, ta có: 13 + 23 + 33 + … + n3 = 13 – 1 + 23 – 2 + 33 – 3 + 43 – 4 + 53 – 5 +…+ n3 – n + ( 1 + 2 + 3 + …+ n ) = 0 + 2( 22 – 1 ) + 3( 32 – 1 ) + 4( 42 – 1 ) + …+ n( n2 – 1 ) + ( 1 + 2 + 3 + 4 + …+ n ) = 0 + 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + …+ (n – 1 )n( n + 1 ) + ( 1 + 2 + 3 + 4 + … + n )   n  1 n  n  1  n  2   n  n  1  n  n  1 4 2 �  n  1  n  2   1 �  n  n  1 � � 4 2� � n  n  1 � n2  n  2  2 n(n  1) �  n  n  1 � 4 4 � 2 � � 2 Ta có công thức tính tổng các lập phương của các số tự nhiên từ 1 đến n như sau: 2 n(n  1) � � 1  2  3  4  ...  n  � (Với n �N* ) � � 2 � 3 3 3 3 Ví dụ 4: Tính tổng 1 + 3 + 5 + … + 99 3 3 3 3 3 Phương pháp giải: Đây là tổng lập phương của các số lẻ liên tiếp. Muốn tính tổng trên ta lập một tổng là tổng các lập phương của các số tự nhiên liên tiếp rồi trừ đi phần cộng thêm. Giải: 13 + 33 + 53 + … + 993 = (13 + 23 + 33+…+ 993) - (23 + 43 + 63+…+983) = (13 + 23 + 33+…+ 993) - 23(13 + 23 + 33 +…+493) 2 2 �99.100 � 3 �49.50 � 2 2 =� � 2 � � 4950  8.1225  24502500  12005000  12497500 2 2 � � � � 3 Bài toán tổng quát: Tính tổng 13  33  53  ...   2n  1 (Với n �N ) Giải: Với cách làm như ví dụ 4, ta có: 3 3 3 3 13  33  53  ...   2n  1  � 13  23  33  ...   2n    2n  1 � � 23  43  63  ...   2n  � � �� � 3 3 � 13  23  33  ...   2n    2n  1 � 23 � 13  23  33  ...  n 3 � � � � � Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 19 Kinh nghieäm giaûi caùc baøi toaùn tính toång cuûa daõy soá vieát theo quy luaät. �  2n  1  2n  1  1 � 23 �n  n  1 � �2  2n  1  n  1 � 23 �n  n  1 � � � � � � � � � 2 2 � � � 2 � � � � 2 � 2 2 2 2 n 2  n  1 2 2   2n  1  n  1  8.   n  1 �  2n  1  2n 2 � � � 4 2 2   n  1 2   n  1 2 2  4n 2  4n  1  2n 2   2n 2  4n  1 Ta có công thức tính tổng các lập phương của các số tự nhiên lẻ liên tiếp từ 1 đến 2n + 1 như sau: 13  33  53  ...   2n  1   n  1 3 2  2n 2  4n  1 (Với n �N ) Dạng 4: Tính tổng của các phân số có mẫu là tích của hai số tự nhiên Ví dụ 1: Tính tổng 1 1 1 1    ...  1.2 2.3 3.4 2014.2015 Giải: Với k �N* , ta có:  k  1  k  k  1  k  1  1 1  k(k  1) k(k  1) k(k  1) k(k  1) k k  1 Thay k lần lượt bằng 1; 2; 3; …; 2004 ta có: 1 1.2 = 1 1 2 1 1 1   2.3 .2 3 1 1 1   3.4 3 4 …………. 1 1 1  = 2014.2015 2014 2015 Cộng vế với vế các đẳng thức trên, ta được: 1 1 1 1 1 1 1 1 1 1 1 1 2014    ...    1  = 1       ...  2 2 3 3 4 2014 2015 2015 2015 1.2 2.3 3.4 2014.2015 Nguyễn Vaên Duõng – TröôøngTHCS Leâ Ñình Chinh Trang 20
- Xem thêm -