Đăng ký Đăng nhập
Trang chủ Skkn một số phương pháp tính khoảng cách trong hình học không gian...

Tài liệu Skkn một số phương pháp tính khoảng cách trong hình học không gian

.PDF
23
142
149

Mô tả:

SỞ GIÁO DỤC VÀ ĐÀO TẠO LÀO CAI TRƢỜNG THPT SỐ I THÀNH PHỐ LÀO CAI SÁNG KIẾN KINH NGHIỆM MỘT SỐ PHƢƠNG PHÁP TÍNH KHOẢNG CÁCH TRONG HÌNH HỌC KHÔNG GIAN Giáo viên: Hà Thị Tố Nga Chức vụ: Tổ trưởng chuyên môn TỔ: TOÁN – TIN Đơn vị: Trường THPT số 1 TP Lào Cai NĂM HỌC: 2013-2014 PHẦN MỞ ĐẦU. 1. Lí do chọn đề tài. Trong chương trình dạy học bộ môn Toán nói chung và ôn thi Đại học- Cao đẳng, HSG cho học sinh khối THPT nói riêng chúng ta thường hay gặp các bài toán tính khoảng cách. Loại toán tính khoảng cách trong hình học không gian là một trong những loại toán hay, đòi hỏi tư duy đối với học sinh THPT và thường gặp trong các đề thi đại học. Khi gặp loại toán này, đặc biệt đối với bài toán tính khoảng cách giữa hai đường thẳng chéo nhau, học sinh thường lúng túng không biết hướng giải quyết. Có nhiều nguyên nhân để dẫn đến tình trạng này như: học sinh giải toán chưa tốt, chưa phát huy được tính tư duy sáng tạo của mình, học tập còn thụ động, đối phó...Điều này liên quan đến người dạy, người học và nhiều vấn đề khác nữa. Nhằm giúp các em có thêm kiến thức, phát triển năng lực tư duy sáng tạo và gợi cho các em hướng giải quyết tốt khi gặp loại toán này. Tôi xin trình bày suy nghĩ của mình trong việc giải các bài toán tính khoảng cách trong hình học không gian dưới dạng một bài viết nhỏ, với hy vọng phần nào giúp các em học sinh bớt lúng túng khi gặp dạng toán này. 2. Mục đích nghiên cứu. Với mục đích giúp cho học sinh học có hiệu quả hơn và có cái nhìn tổng quan, hiểu được bản chất của vấn đề đặt ra, từ đó đưa ra phương pháp giải mạch lạc phù hợp với những đòi hỏi của mỗi bài thi, giúp học sinh tự tin và có phương pháp phù hợp khi gặp phải các bài toán liên quan đến khoảng cách. Yêu cầu đặt ra phải trang bị cho học sinh, đặc biệt là đối với học sinh khối 12 chuẩn bị thi Đại học phương pháp giải các dạng bài toán về khoảng cách trong hình học. 3. Đối tƣợng nghiên cứu. Nghiên cứu Phương pháp giải các bài toán về khoảng cách trong hình học không gian. 4. Đối tƣợng khảo sát thực nghiệm. Đề tài trên được thực nghiệm qua các đối tượng học sinh lớp 11 đang học Hình học không gian và học sinh lớp 12 ôn thi Đại học – Cao đẳng. 5. Phƣơng pháp nghiên cứu. 1. Lập kế hoạch chi tiết về thời gian sưu tầm và tìm hiểu kiến thức. 2. Viết đề cương chi tiết 3. Thực hiện lên lớp, tổ chức hướng dẫn học sinh xây dựng, củng cố nắm bắt kiến thức một cách khái quát thông qua hệ thống câu hỏi, bài tập áp dụng phù hợp. 4. Tổ chức kiểm tra nắm bắt kiến thức của học sinh và từ đó rút ra kinh nghiệm , đồng thời trao đổi học hỏi đồng nghiệp để bổ sung kiến thức và phương pháp cho hoàn thiện đề tài. Phạm vi nghiên cứu. Các kiến thức trong khuôn khổ chương trình toán THPT. Thời gian nghiên cứu: Từ tháng 11 năm 2013 đến tháng 3 năm 2014. Dưới đây tôi xin được trao đổi với quý đồng nghiệp một số bài toán và phương pháp giải cho những bài toán về: ‘‘ Phƣơng pháp tính khoảng cách trong hình học không gian”. PHẦN NỘI DUNG I. LÝ THUYẾT: 1. Một số khái niệm về khoảng cách trong không gian. 1.1. Khoảng cách từ 1 điểm tới 1 đƣờng thẳng , đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)) d(O; a) = OH; d(O; (P)) = OH O O P 1.2. Khoảng cách giữa đƣờng thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). Ta có: d(a,(P)) = OH 1.3. Khoảng cách giữa hai mặt phẳng song song: Là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. Ta có d((P),(Q)) = OH a H O H P O P Q 1.4. Khoảng cách giữa hai đƣờng thẳng chéo nhau:  Đƣờng vuông góc chung : Đường thẳng  cắt 2 đường thẳng chéo nhau a, b và vuông góc với mỗi H a H đường thẳng ấy được gọi là đường vuông góc chung của 2 đường thẳng a và b. M a  Khoảng cách giữa 2 đƣờng thẳng chéo nhau: b N  Nếu đường vuông góc chung  cắt 2 đường thẳng chéo nhau a và b lần lượt tại M và N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa 2 đường thẳng chéo nhau a và b.  Khoảng cách giữa 2 đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó chứa đường thẳng còn lại. M a b a'  Ta có: d  a, b   d  a,     Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. N a M  b N Ta có: d  a, b   d    ,     2. Khoảng cách từ một điểm đến một mặt phẳng. 2.1.Kỹ thuật 1:Để xác định khoảng cách từ điểm A đến mp  Q  ta làm như sau   Tìm mp  P  chứa A và  Q    P  ; P  Tìm    Q    P  ;  Dựng AH   ;Suy ra AH   Q  ; A a Q  Khi đó d  A,  Q    AH . 2.2.Kỹ thuật 2: Cho mặt phẳng   và một điểm A không nằm trong mặt phẳng đó, M là điểm bất kì nằm trên mp   . Xét các điểm E nằm trên EM k. đường thẳng đi qua AM sao cho AM d  E ,    EM   k (*)  Khi đó: d  A,    AM E A M H  P P A M H  E 2.3.Kỹ thuật 3: Ứng dụng thể tích để tính khoảng cách từ một điểm đến mặt phẳng - Khi tính khoảng cách từ một điểm đến mặt phẳng mà ta có thể đưa về bài toán tìm chiều cao của một hình chóp hoặc của một hình lăng trụ nào đó, trong đó chiều cao này thường là không tính được trực tiếp bằng cách sử dụng các phương pháp thông thường. Tuy nhiên các khối đa diện này lại dễ dàng tính được thể tích và diện tích 3V đáy. Khi đó, chiều cao của khối chóp đó sẽ được tính bởi công thức h  đối với S V khối chóp hoặc h  đối với khối lăng trụ. S - Giả sử ta đưa được về bài toán tìm chiều cao kẻ từ một đỉnh S của một hình chóp hoặc của một hình lăng trụ nào đó. Ta sẽ đi tìm thể tích của khối chóp hoặc của một khối lăng trụ theo một cách khác mà không dựa vào đỉnh S này. Tính diện tích đáy đối diện với đỉnh S, từ đó ta có chiều cao kẻ từ đỉnh S cần tìm. 2.4.Kỹ thuật 4: Sử dụng phƣơng pháp tọa độ để tính khoảng cách từ một điểm đến mặt phẳng 3. Khoảng cách giữa hai đƣờng thẳng chéo nhau. Khoảng cách giữa hai đường thẳng chéo nhau chính là độ dài đường vuông góc chung của hai đường thẳng đó. Vì thế nếu xác định được đường vuông góc chung ấy thì việc tính độ dài ấy coi như được giải quyết. Tuy nhiên, việc xác định đường vuông góc chung của hai đường thẳng chéo nhau không phải là một việc dễ làm. Hơn thế nữa trong rất nhiều bài toán người ta chỉ đòi hỏi tìm khoảng cách giữa hai đường thẳng chéo nhau mà không yêu cầu xác định cụ thể đường vuông góc chung của chúng. Vì vậy, trong thực tế người ta thường chuyển bài toán xác định khoảng cách giữa hai đường thẳng chéo nhau về các bài toán dễ giải hơn. 3.1. Kĩ thuật 1 : Xác định đoạn vuông góc chung a) Khi a  b + Dựng  P   b ,  P   a tại H + Trong (P) dựng HK  b tại K. Đoạn HK là đoạn vuông góc chung của a và b b) Khi a và b không vuông góc ( Sử dụng mp song song): + Dựng  P   b ,  P  / / a . + Dựng a '  hch P  a , bằng cách lấy M  a + Dựng đoạn MN    tại N, lúc đó a’ là đường thẳng đi qua N và song song a . Gọi H  a ' b , dựng HK / / MN Đoạn HK là đoạn vuông góc chung của a và b c, Khi a và b không vuông góc(Sử dụng mặt phẳng vuông góc).  Dựng mặt phẳng (P)  a tại O. (chứa hình chiếu của b)  Dựng hình chiếu b của b trên (P).  Dựng OH  b tại H.  Từ H, dựng đường thẳng song song với a, cắt b tại B.  Từ B, dựng đường thẳng song song với OH, cắt a tại A.  AB là đoạn vuông góc chung của a và b. Chú ý: d(a,b) = AB = OH. 3.2. Kỹ thuật 2: Nếu như a // (P) và b chứa trong mp(P) thì khoảng cách giữa a , b bằng khoảng cách giữa a và mp(P). 3.3. Kỹ thuật 3: Nếu như a chứa trong mp(P), b chứa trong mp(Q) mà (P) // (Q) thì khoảng cách giữa a và b bằng khoảng cách giữa (P) và (Q) Lưu ý rằng nếu a // (P) thì khoảng cách giữa a và (P) bằng khoảng cách từ một điểm bất kỳ của a đến (P). Tương tự khoảng cách giữa hai mặt phẳng song song (P) và (Q) bằng khoảng cách từ một điểm bất kỳ của mặt phẳng này đến mặt phẳng kia. 3.4 Kỹ thuật 4: Sử dụng phƣơng pháp tọa độ để tính khoảng cách giữa hai đƣờng thẳng chéo nhau II. BÀI TẬP: 1. Khoảng cách từ điểm đến mặt phẳng: Bài tập 1: Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, AB = 3, AC=AD=4. Tính khoảng cách từ A tới mặt phẳng (BCD) z Lời giải D Cách 1: Dùng tọa độ + Chọn hệ trục tọa độ Oxyz sao cho A  O. D Ox; C  Oy và B  Oz  A(0;0;0); B(3;0;0); C(0;4;0); D(0;0;4) H  Phương trình mặt phẳng (BCD) là: x y z    1  4x + 3y + 3z - 12 = 0. 3 4 4 A 12 42  32  32  C K Suy ra khoảng cách từ A tới mặt phẳng (BCD). d ( A, ( BCD))  y B 12 34 x Cách 2: Tính trực tiếp Từ A hạ AH  (BCD), H là trực tâm của tam giác BCD Dễ thấy BC  AK. Ta có: Vậy: AH  1 1 1 1 1 1 1 1 1 34       2 2 2  2 2 2 2 2 2 2 2 AH AD AK AD AB AC 4 3 4 3 .4 12 34 Cách 3: Dùng thể tích 1 1 3 3 Dễ thấy: BC=BD=5; CD= 4 2 . Suy ra diện tích của tam giác BCD là S=3 34 Thể tích tứ diện ABCD: V= AB. AC. AD  .4.3.3  12 Suy ra khoảng cách từ A tới mặt phẳng (BCD). d ( A, ( BCD))  3V 12  S 34 Bài tập 2: Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Tính khoảng cách từ điểm O đến mp(SBC). Giải: Cách 1: Tính trực tiếp S.ABCD là hình chóp đều nên SO  (ABCD). Qua O kẻ OI vuông góc với BC Dễ thấy (SOI)  (SAB). Kẻ OH  SI  OH  (SBC)  d(O;(SBC)) = OH a Ta có: AC = BD = a 2, OI = . 2 a2 Xét SAO ta có: SO2 = SA2 - AO2 = 2 1 1 1 6 a 6 Xét SOI: 2= 2+ 2 = 2  OH = OH SO OI a 6 Vậy: d(O; (SBC)) = z S H A D B O I C x a 6 . 6 Cách 2: Dùng thể tích 1 1 a 2 a3 2  4 3 2 24 2 3V a 3 a 6 Diện tích của tam giác SBC là S= . Vậy: d(O; (SBC)) = .  SSBC 4 6 Thể tích của khối chóp SOBC là V= . a 2 . Cách 3: Dùng phƣơng pháp tọa độ Lập hệ tọa độ như hình vẽ a 2 a 2 a 2 ; 0; 0); B(0; ; 0); S(0; 0; ) 2 2 2 a 2 Phương trình của mp(SBC): x+y+z =0 2 a 2  2 a 6 Vậy: d(O; (SBC)) = .  6 3 C( Bình luận: 1. Nếu thay giả thiết bài toán thành tính khoảng cách từ điểm O đến (SBC) ta sẽ làm như thế nào: - Ta vẫn tính khoảng cách từ điểm O đến mp(SBC) rồi sử dụng bổ đề (*) để suy ra d(C;(SAB)) a 6 d (C , ( SBC )) CA Ta có: = = 2  d(C;(SBC)) = 2 d (O, ( SBC )) OA 6 2. Nếu thay giả thiết bài toán thành tính khoảng cách từ điểm trung điểm K của SA đến (SBC) ta sẽ làm như thế nào: - Ta vẫn tính khoảng cách từ điểm O đến mp(SBC) rồi sử dụng bổ đề (*) để suy ra d(K;(SBC)) Ta có OK // SC  OK // (SBC)  d(K;(SBC)) = d(O;(SBC)) = a 6 6 Nhận xét: Qua bài tập trên ta có thể rút ra cách tính khoảng cách từ 1 điểm bất kì đến mặt bên của khối chóp như sau: - Tính khoảng cách từ hình chiếu của đỉnh lên mặt đáy đến mp đó rồi sử dụng bổ đề (*) để suy ra khoảng cách cần tính. y Bài tập 3( ĐH khối D - 2011). Cho hình chóp S.ABC có đáy ABC là tam giác vuông · =300. tại B, AB=3a, BC=4a; mp(SBC) vuông góc với mp(ABC). Biết SB=2a 3, SBC Tính khoảng cách từ điểm B đến mp(SAC) theo a. Giải: Cách 1: Tính trực tiếp Kẻ SH  BC  SH  (ABC). Xét SHB ta có: z SH = SB.sin300 = a 3; BH = SB.cos300 = 3a Qua H kẻ HI  AC tại I S  (SHI)  (SAC). Kẻ HK  SI tại K  HK  (SAC)  d(H;(SAC)) = HK Ta có CHI ∽CAB(g-g) K AB.CH 3a y  HI = = AC 5 x 1 1 1 28 3a 2= 2+ 2 = 2  HK = I HK HI SH 9a 2 7 A C 3a H  d(H;(SAC)) = 2 7 d(B;(SAC)) BC 6a 7 B Mà = = 4  d(B;(SAC)) = d(H;(SAC)) HC 7 Cách 2: Dùng thể tích Kẻ SH  BC  SH  (ABC). Xét SHB ta có: SH = SB.sin300 = a 3; BH = SB.cos300 = 3a Qua H kẻ HI  AC tại I  AC  SI (Định lí 3 đường vuông góc) AB.CH 3a 2a 21 Ta có CHI∽CAB(g-g)  HI = = . Suy ra SI = SH 2  SI 2  AC 5 5 1 3  a 2 21 Thể tích của khối chóp S.ABC là: V= SH .SABC  2a3 3 Diện tích của tam giác SAC là SSAC 6a 7 3V  Vậy: d(B;(SAC))= 7 SSAC Cách 3: Dùng phƣơng pháp tọa độ Kẻ SH  BC  SH  (ABC). Lập hệ tọa độ như hình vẽ Ta có: B(-3a;0;0), C(a;0;0), A(-3a;3a;0), S(0;0;a 3) 6a 7 Tính được d(B;(SAC))= 7 · D= ABC  BA Bài tập 4(ĐH_D_2007). Cho hình chóp S.ABCD có đáy là hình thang, · 900, BA=CB=a, AD=2a. Cạnh SA vuông góc với mặt đáy, SA=a 2. Gọi H là hình chiếu của A lên SB. Tính khoảng cách từ điểm H đến mp(SCD) theo a. Giải: S 1 Gọi I là trung điểm của AD ta có CI = AD 2  ACD vuông tại C hay AC  CD  (SAC)  (SCD). Kẻ AE vuông góc SC tại E  AE  (SCD)  d(A;(SCD)) = AE Ta có: AC2 = AB2 + BC2 = 2a2 H E I A D C B K 1 1 1 1 = 2+ 2 = 2  AE = a  d(A;(SCD)) = a 2 AC SA a AE Nối AB cắt CD tại K  B là trung điểm của AK d(B;(SCD)) BK 1 a  = =  d(B;(SCD)) = d(A;(SCD)) AK 2 2 2 2 d(H;(SCD)) SH SA 2a 2 2 a = = 2 = 2 2 =  d(H;(SCD)) = d(B;(SCD)) = d(B;(SCD)) SB SB 2a +a 3 3 3 Bài tập 5: ( ĐH khối A -2013) Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ·  300 , SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính ABC theo a thể tích của khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB). Giải: Gọi H là trung điểm BC, ta có tam giác SBC đều cạnh a nên SH  BC , vì  SBC   ABC nên SH   ABC   SH  S a 3 laø ñöôøng cao cuûa khoái choùp S.ABC . 2 Ta có : AC  AH  BC a  (ACH ñeàu) ; 2 2 AB  a.cos 300   a 3 1 a2 3  SABC  AB.AC  2 2 8 C H 300 1 a3 VSABC  SH.SABC  3 16 Cách 1: Ta có: K I A B ABC vuoâng taïi A vaø H laø trung ñieåm cuûa BC neân HA  HB. Maø SH  ( ABC )  SHA  SHB  SA  SB  a. Goïi I laø trung ñieåm cuûa AB , suy ra SI  AB  SI  SB 2  AB 2 a 13  4 4 1 1 a 13 a 3 a 2 39 SI .AB  . .  2 2 4 2 16 3 3a 3V a 39 Suy ra : d (C ,(SAB ))  S . ABC  16  2 SSAB 13 a 39 16 1 a Cách 2: Ta có: HI  AC  2 4 1 1 1 1 1 a 3 Vẽ HK  SI thì HK  (SAB), ta có      HK  2 2 2 2 2 HK HI SH 52 a a 3     4  2  2a 3 a 3 Vậy d(C, SAB)= 2HK =  52 13  SSAB  Bài tập 6: (ĐH khối B – 2013) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính theo a thể tính của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SCD). Giải: Cách 1: SH  AB  Goïi H laø trung ñieåm cuûa AB , khi ñoù :  a 3 ; (Do SAB ñeàu caïnh a) SH   2  Maët khaùc (SAB )  ( ABCD )  SH  ( ABCD )  SH laø ñöôøng cao cuûa hình choùp S.ABCD 1 3 Vậy VS . ABCD  .a2 . a 3 a3 3  2 6 Do AB//CD nên d(A,(SCD)) = d(AB,(SCD)) = d(H,(SCD)). Khi đó: Gọi I là trung điểm của CD và K là hình chiếu của H lên SI, ta có: HK  SI  HK  (SCD )  d (H ,(SCD ))  HK  HK  CD (do CD  (SHI )) Xét tam giác vuông SHI, ta có: 1 2  1 2  1 2  1 2 a 3     2  a 3 Vậy d(A, SCD) = HK  7 HK SH HI  1 a  2  HK  a 3 S 7 K A' B C Lƣu ý: Có thể tính khoảng cách bằng cách sau: Sx  (SAB )  (SCD )  AA'/ / SH ( A'  Sx ) - Dựng   AK '  A' D (K '  A' D )  AK '  d ( A ,(SCD )) tính töông töï nhö HK . I H A D Cách 2: (Dùng phƣơng pháp toạ độ)  H  O; SH  Oz; AB  Ox; HI  Oy , khi ñoù : -Gọi  a 3 a a a a ), A( ; 0; 0), B( ; 0; 0),C (  ; a; 0), D( ; a; 0)  H (0; 0; 0), S (0; 0; 2 2 2 2 2  uur  a uu r uur  a  a a 3 a 3 a 3  uur  a a 3 Ta có: SA   ; 0;   , SB    ; 0;   , SC    ; a;   , SD   ; a;   2  2  2 2 2  2  2  2      VS . ABCD  VSABC  VSACD 1   uur uur  uur  uur uur  uur  1  a3 3 a3 3  a3 3   SA, SC SB  SA, SC SD         6  2  6  6  2 ur uur uur  Maët khaùc : mp(SCD) coùVTPT n SCD  SC , SD   (0; a2 3; 2a2 )    pt (SCD) coù daïng : a2 3y  2a2 z  a3 3  0  a x   2    ptñt  ñi qua A vaø vuoâng goùc (SCD) coù daïng :  y  a2 3t , t  ¡  z  2a2 t    t  3 a 3a 2 a 3    (SCD)  M ( ; ; ) 7a 2 7 7 9a2 12 a2   49 49 21a2 a 3  d ( A,(SCD))  AM   49 7 ( Löu YÙ : Söû duïng coâng thöùc tính khoaûng caùch nhanh hôn. a2 3. d ( A,(SCD))  a  a3 3 2 a 3 ) 7 3a 4  4 a 4 Bài tập 7 (ĐH khối D – 2013): Cho hình chóp S.ABCD có đáy ABCD là hình thoi ·  1200 , M là trung điểm cạnh BC và cạnh a, cạnh bên SA vuông góc với đáy, BAD ·  450 . Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ D đến mặt SMA phẳng (SBC). Giải: * Tính VS.ABCD Do BAD  1200  ABC  600  ABC đều  AC = a và  BD2  AB2  AD2  2AB. AD.cos BAD  a 2  a 2  2a.a.cos1200  2a 2  a 2  3a 2  BD  a 3  AM  BC  ABC đều, cạnh = a   a 3  AM   2 S a 3 SAM vuông cận tại A vì có SMA  45  SA  AM  2 1 1 1 1 a 3 1 a3 . .a.a 3  VS.ABCD = SA.S ABCD  SA. . AC.BD  . 3 3 2 3 2 2 4 0 * Tính d (D, (SBC)) Do AD //BC  AD // (SBC)  d (D, (SBC)) = d (A, (SBC)). H A B 0 120 450 Gọi H là trung điểm của SM. Ta có: AH  SM (1),  AM  BC  BC  ( SAM )  BC  AH (2)  SA  BC Mặt khác:  Từ (1) và (2)  AH  (SBC)  d (A, (SBC)) = AH SAM vuông cân tại A 3a 2 3a 2 3a 2  SM SA2  AM 2 4  2 a 6   4  AH  2 2 2 2 4 SM a 6 = .  d (D, (SBC)) = d (A, (SBC)) = AH  2 4 (Có thể dùng phƣơng pháp tọa độ, tuy nhiên bài toán trở nên phức tạp). Bài tập 8: Cho hình chóp đều S.ABC, đáy ABC có cạnh bằng a, mặt bên tạo với đáy một góc bằng  (0o    90o ) . Tính thể tích khối hình chóp S.ABC và khoảng cách từ đỉnh A đến mặt phẳng (SBC). Giải: Gọi H là trung điểm của BC. Do S.ABC đều và  ABC đều nên chân đường cao đỉnh S trùng với giao điểm ba đường cao là trực tâm O của  ABC và có  SBC cân tại S. suy ra: BC  SH, BC  AH, nên SHA   . 1 a 3 . Ta có: OH  AH  3 6 SHO vuông góc: SO  HO.tg  S a 3 tg 6 HO a 3  cos  6.cos  Thể tích hình chóp S.ABC: và SH  A 1 1 a 3 a2 3 a3tg V  .SO.SABC  . tg.  3 3 6 4 24 C j O H B 1 a2 3 Diện tích  SBC: SSBC  .SH.BC  2 12.cos  Gọi h là khoảng cách từ A đến (SBC), ta có: 1 3.V a3tg a2 3 a 3 V  .h.SSBC  h   3. :  sin  3 SSBC 24 12 cos  2 Bài tập 9: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh A, AB=a 2. Gọi I là trung điểm của BC, hình chiếu vuông góc H của S lên (ABC) thỏa   mãn IA = -2IH , góc giữa SC và mp(ABC) bằng 600. Tính khoảng cách từ trung điểm E của SB đến mp(SAH). Giải: BC = AB + AC = 4a  BC = 2a  BI = a Kẻ BK vuông góc với AH tại K  BK  (SAH) 2 2 2 2  d(B;(SAH)) = BK 1 1 1 3 2= 2+ 2= BK BA BI 2a2 a 2  d(B;(SAH)) = BK = 3 d(E;(SAH)) ES 1 = = d(B;(SAH)) BS 2 a 2  d(E;(SAH)) = 2 3 Mà S I B H C K A Bài tập 10 (ĐH_B_2011). Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chử nhật. AB=a, AD=a 3. Hình chiếu vuông góc của A’ lên mp(ABCD) trùng với giao điểm của AC và BD. Góc giữa mp(ADD’A’) và (ABCD) bằng 600. Tính khoảng cách từ điểm B’ đến mp(A’BD). Giải: B’ C’ A’ D’ B A C O H D Gọi O là giao điểm của AC và BD  A’O  (ABCD) Gọi E là trung điểm của AD  OE  AD, A’E  AD    A’EO là góc giữa mp(ADD’A’) và mp(ABCD)  A’EO = 600  AB a 3  A’O = OE.tan A’EO = .tan600 = 2 2 Ta có B’C ∥(A’BD)  d(B’;(A’BD)) = d(C;(A’BD)) Kẻ CH  BD tại H  CH  (A’BD)  d(C;(A’BD)) = CH 1 1 1 4 a 3 Mà 2= 2+ 2= 2  CH = CH CB CD 3a 2 a 3 2 Bình luận: Qua bài tập ta có thể rút ra cách tính khoảng cách từ điểm I nào đó đến mp() chứa đường cao của khối chóp như sau: Bước 1: Xác định giao tuyến d của mp() và mặt đáy Bước 2: Chọn 1 điểm M nằm trên mặt đáy thuận lợi nhất, rồi tính khoảng cách từ điểm M đến mp(), bằng cách kẻ MH  d tại M  MH  ()  d(M;()) = MH d(I;()) Bước 3: Sử dụng bổ đề (*) để suy ra d(M;()) Vậy d(B’;(A’BD)) = Bài tập 11: Cho hình lập phương ABCD . A'B'C'D' cạnh a. M, N lần lượt là trung điểm của AB và C'D'. Tính khoảng cách từ B' đến (A'MCN). Giải: Bốn tam giác vuông: AA'M, BCM, CC'N, A'D'N bằng nhau (c.g.c) D/ C/ N  A'M  MC  CN  NA' A/  A'MCN là hình thoi. Hai hình chóp B’.A’MCN và B’.A’NC có chung đường cao vẽ từ đỉnh B/ và SA/ MCN  2.SA/ NC B/ D nên: VB/ .A/ MCN  2.VB/ .A/ NC. A M C B 1 1 1 a3 a3 / Mà: VB/ .ANC  VC.A/ B/ N  .CC .SA/ B/ N  .a. .a.a   VB/ .A/ MCN  . 3 3 2 6 3 Ta có: SA/ MCN 1 / a2 6 / / .  .A C.MN, với A C  a 3; MN  BC  a 2  SA/ MCN  2 2 1 3 Gọi H là hình chiếu của B/ trên (A/MCN), ta có: VB'.A'MCN  .B'H.SA'MCN / BH 3.VB/ .A/ MCN SA/ MCN a3 a2 6 a 6  3. :  . 3 2 3 2. Khoảng cách giữa hai đường thẳng chéo nhau. Bài 12: Cho hình chóp S.ABCD với ABCD là hình thoi cạnh a có BAD  60o . Gọi O là giao điểm của AC và BD , biết SO  (ABCD) và SO = 3 a. 4 a. Xác định và tính khoảng cách giữa SB, AD. b. Tính góc giữa (SBC) và (SAD). Giải : a. Qua O dựng đường thẳng d  AD và cắt AD, BC lần lượt tại I,J. + Dựng IH  SJ ( H  SJ )  SO  (ABCD)    BC  (SIJ)  IH  BC  IH  (SBC)  IH  SB IJ  BC   AD // BC  IH  AD Vậy IH = d(AD,SB) Dễ thấy OI = OJ = 3 3 a . Dựng F là hình chiếu của O trên SJ, suy ra được: OF = a 8 4 Suy ra : IH = 2.OF = 3 a 4 b. Qua S dựng đường thẳng d // AD // BC, d = SAD   SBC SI  AD  SI  d (do d / /AD / /BC)  SJ  AD  SJ  d  ISJ  ((SAD), (SBC)) SIJ   AD  Ta có được:  IJ = 2.OI = 3 a 2  SI  SJ  SO2  OI2  VSIJ đều 9 2 3 2 3 a  a  a 16 16 2 ¶  60o  ISJ ¶  60o Vậy góc giữa (SAD) và (SBC) là ISJ Nhận xét : Ở bài toán này, để tính độ dài khoảng cách giữa hai đoạn AD và SB ta còn có thể làm như sau : 3 2 a 4 13 3 2 3 3  a a  a 34 4 16 + BAD  60o  ABD đều cạnh a  SSBD  SO  (ABCD) Suy ra : VS.ABD = 1 SO.S 3 ABD (1) 1 SB.AD.d(AD,SB).sin (AD,SB) 6 9 2 1 2 13 a  a  a Trong đó:  SB = OB2  SO2  16 4 4 9 2 3 2 21 a  a  a  SC = OC2  SO2  16 4 4  AD // BC  (AD,SB)  (BC,SB)  SBC 13 2 21 a  a2  a2 SB2  BC2  SC2 16 16  13  sin SBC  2 39 cosSBC   2.SB.BC 13 13 13 2.a. a 4 3 2 Suy ra: VS.ABD = (2) a .d(SB, AD) 12 3 + Từ (1) và (2) ta suy ra được : d(AD,SB) = a 4 Cách 2: Chọn hệ tọa độ Oxyz như sau: Tâm O  O, B  Ox, C  Oy; S  Oz + Mặt khác : VS.ABD = và giải bằng phương pháp tọa độ Bài 13 : Cho hình chóp S.ABCD có đáy ABCD là nửa hình lục giác đều cạnh a, đường cao SA = a. Dựng đường vuông góc chung của BD, SC ; xác định chân đường vuông góc trên các cạnh SC và BD. Tính độ dài đoạn vuông góc chung đó. Giải :Cách 1 Qua C kẻ đường thẳng song song với BD và cắt AB và AD lần lượt tại K và E. Kẻ BH  SK  H  SK  . Từ H kẻ đường thẳng song song với BD cắt SC tại J, từ J kẻ đường thẳng song song với BH và cắt BD tại I. + Do ABCD là nửa hình lục giác đều cạnh a nên BD  AB  KE  AB   KE  (SAK)  KE  BH KE  SA   BH  SK    BH  (SKE)  + BH  KE    IJ  (SKE)  IJ  KE  IJ  BD (do BD / /KE)  IJ / / BH  + IJ  (SKE)  IJ  SC Vậy IJ là đường vuông góc chung của SC và BD. a 2 Dễ thấy : KB  , KC  a 3 3a a 13 , KA  , KS  SA 2  AK 2  2 2 2 Lại có tứ giác SABH nội tiếp. Do đó KH.KS = KB.KA 3a 13 KH 3 KB.KA 3a 13 . Vậy  26   KH   KS KS 26 a 13 13 2 CJ 3 Suy ra : (do HJ // KC). Điểm J được xác định trên CS  CS 13 SH HJ 10 10 5a 3 Ta lại có:    HJ  KC  SK KC 13 13 13 5a 3 BI 5 Vì BI = HJ nên  13  . Điểm I được xác định trên BD BD a 3 13 BH BK 1 a 13    BH  IJ  SA SK 13 13 ( BH // IJ , HJ // BI  HJIB là hình bình hành ) Cách 2: Chọn hệ tọa độ Oxyz như sau: A  O, B  Ox, D  Oy; S Oz và giải bằng +Ta có: phương pháp tọa độ Bài tập 14 (Đề thi đai học khối A năm 2011) Cho hình chóp SABC có đáy là tam giác vuông cân tại B, AB = BC = 2a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm AB, mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 600. Tính thể tích khối chóp S.BCNM và khoảng cách giữa hai đường thẳng AB và SN theo a. Giải: S Từ (SAB)  ( ABC) và (SAC)  (ABC) nên SA  ( ABC) mà AB  BC Suy ra : SB  BC hay SBA là góc tạo bởi mặt phẳng (SBC) và (ABC)  SA  tgSBA  AB  3  2a  2 3  a H Mặt khác: MN là dường trung bình của ABC BC a 2 1 1 MN  BC Vậy VSMNBC   SA  SMNBC   SA   MB 3 3 2  a  2a   a  3a3 1 =  2 3a  3 2 nên MN  N A M 60°  Qua N, vẽ a // AB.Suy ra : d(AB; SN) = d(AB; (SND)) Hạ AD  a ( D  a) . Vì (SAC)   ABC  và ( SAB)  (ABC) nên SA   ABC  . Mà AD  a  SD  a hay a   SAD  B C * Hạ AH  SD  AH  (SND) Vậy AH là khoảng cách giữa A và (SND) hay AH là khoảng cách giữa AB và SN. Xét SAD : SAD  900 ; AD  MN  a; SA  tgSBA.AB = tg 600  2a  2 3a AH = SA2  AD 2 12a 2  a 2 2 39a   2 2 2 2 SA  AD 12a  a 13 Bài 15: ( Đề thi đại học khối A năm 2010 câu IV) Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi M; N lần lượt là trung điểm của các cạnh AB và AD.; H là giao điểm của CN với DM. Biết SH vuông góc với (ABCD) và SH  a 3 . Tính thể tích khối chóp S.CDNM và khoảng cách giữa hai đường thẳng DM và SC theo a. S Giải: a) Ta có : AMD  DNC(c  g  c) ·  ADM  DCN nên · ADM  DNC  900 hay MD  NC + Áp dụng định lí Pitago. Ta có : 2 MD  AD  AM  2 2 1 3 Vậy VS CDNM   SCDNM 1 1       3 2   5a a . a    2 2 1 1   SH     MD  NC   SH 3 2  2 5a   5 3a3  a 3   2   24  2 K B C M A  Từ chứng minh trên. N Ta có : MD  NC , mà SH   ABCD   SH  MD. Vậy MD   SHC  Hạ HK  SC mà MD   SHC  nên HK  MD hay HK là khoảng cách giữa hai đường thẳng MD và SC. + Mặt khác : cos DCN   HC  cos DCN  CD  1  1  tg 2 DCN 1 1 1   2 2  H D 2 5 5 2 5a 5 Áp dụng hệ thức lượng. Ta có : HK  SH  HC SH 2  HC 2 a 3  a 3 2 2 5a 5  2 5a     5  2 = 2 57 a 19 Bài tập 16(ĐH_A_2012). Cho hình chóp S.ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) là H nằm trên AB sao cho AH=2HB. Góc giữa SC và (ABC) bằng 600. Tính khoảng cách giữa hai đường thẳng SA và BC theo a. Giải: S K · · Ta có SCH là góc giữa SC và mp(ABC)  SCH = 600. Xét ACH ta có: CH2 = AH2 + AC2 - 2AH.AC.cos600 = 7a2 a 7  CH = 9 3 a 21 3 Qua A kẻ đường thẳng  song song với BC, gọi () là mp chứa SA và  3  BC ∥ ()  d(SA,BC) = d(B,()) = d(H,()) 2 Kẻ HI   tại I  (SHI)  (), kẻ HK  SI tại K  HK  ()  d(H,()) = HK a 3 1 1 1 24 a 7 Ta có HI = AH.sin600 =  2= 2+ 2= 2  HK = 3 HK SH HI 7a 2 6 a 7 3a 7  d(H,()) =  d(B,()) = 2 6 4 6 3a 7 Vậy: d(SA,BC) = 4 6  SH = CH.tan600 = Bài tập 17: Cho tứ diện OABC có đáy là  OBC vuông tại O, OB = a, OC = a 3, (a  0) và đường cao OA  a 3 . Gọi M là trung điểm cạnh BC. Tính khoảng cách giữa hai đường thẳng AB và OM. Giải: Gọi N là điểm đối xứng của C qua O. Ta có: OM // BN(tính chất đường trung bình)  OM // (ABN) d(OM; AB) = d(OM; (ABN)) = d(O; (ABN)). Dựng OK  BN, OH  AK (K  BN; H  AK) Ta có: AO  (OBC); OK  BN  AK  BN A BN  OK; BN  AK  BN  (AOK)  BN  OH OH  AK; OH  BN  OH  (ABN)  d(O; (ABN)  OH Từ các tam giác vuông OAK; ONB có: 1 1 1 1 1 1      OH2 OA2 OK 2 OA2 OB2 ON2 1 1 1 5 a 15  2  2  2  2  OH  5 3a a 3a 3a a 15 . Vậy, d(OM; AB)  OH  5 H N O C M K B Bài tập 18: Cho hình chóp SABC có đáy ABC là tam giác đều có cạnh bằng 2a 2 , SA vuông góc với (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của cạnh AB, BC. Tính góc và khoảng cách giữa hai đường thẳng SE và AF. Giải: Gọi M là trung điểm của BF  EM // AF S  (SA; AF)  (EM; AF)  SEM  SAE vuông tại A có: SE2  SA2  AE  a2  2a2  3a2  SE  a 3 AF  2a 2. 3 a 6 2 a 6 ; BF  a 2 2 SB2  SA2  AB2  a2  8a2  9a2  SB  3a  EM  BM  MF  SF2  SA2  AF2  a2  6a2  7a2  SF  a 7 1 Áp dụng định lý đường trung tuyến SM trong  SBF có: SB2  SF 2  2.SM2  BF 2 2 2 1 15a  9a2  7a2  2SM2  .2a2  SM2  2 2 Gọi a là góc nhọn tạo bởi SE và AF. Áp dụng định lý hàm Côsin vào  SEM có: 3a2 15a2 3a   ES2  EM2  SM2 2 2   2  2. cos   cosSEM   2.ES.EM 2 2 a 6 2. .a 3 2 o    45 . 2 a 2 và AH  (SME) 2 Vì AF // ME  d(SE; AF)  d(AF; (SME))  AH. Dựng AK  ME; AH  SK. Ta có: AK  MF   SAK vuông có: Vậy, d(SE; AF)  1 1 1 1 2 3 a 3       AH  3 AH2 SA2 AK2 a2 a2 a2 a 3 . 3 Bài tập 19. Cho hình chóp S.ABCD có SC  ( ABCD), đáy ABCD là hình thoi có cạnh bằng a 3 và ABC  1200. Biết rằng góc giữa hai mặt phẳng (SAB) và ( ABCD) bằng 450. Tính theo a thể tích của khối chóp S. ABCD và khoảng cách giữa hai đường thẳng SA, BD. Giải Kẻ SK  AB (K  AB)  CK  AB (định lí 3 đường vuông góc) Khi đó góc giữa hai mặt phẳng (SAB) và ( ABCD) là góc giữa SK và CK . Do SKC nhọn nên SKC  450 ; ABC  1200  CBK  600 Trong tam giác vuông CBK : CK  CB sin 600  Tam giác SCK vuông cân tại C nên SC  3 3a 2 2 1 3 3a3  S ABCD .SC  (đvtt) 3 4 Ta có S ABCD  AB.BC sin1200  Do đó VS . ABCD S 3a 2 I D C 3a 2 O A a 3 B K Gọi O  AC  BD  BD  AC  BD  ( SAC ) tại O .  BD  SC Ta có  Kẻ OI  SA (I  SA)  OI là đoạn vuông góc chung của SA và BD. Dùng hai tam giác đồng dạng AOI và ASC suy ra OI  3 5a 3 5a . Vậy d ( SA, BD)  10 10 Bài tập 20. Cho lăng trụ ABC.A'B'C' các các mặt bên đều là hình vuông cạnh a. Gọi D, F lần lượt là trung điểm của các cạnh BC, C'B'. Tính khoảng cách giữa hai đường thẳng A'B và B'C'. Giải Cách 1: Vì các các mặt bên của lăng trụ đều là hình vuông nên AB  BC  CA  A ' B '  B ' C '  C ' A '  a  các tam giác ABC, A’B’C’ là các tam giác đều. z C’ A’ Chọn hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0;0;0), a a 3   a a 3  B ; ; 0 , C   ; ; 0  , A '(0; 0; a), 2 2   2 2  B’ a a a 3   a a 3  B ' ; ; a, C ' ; ; a 2 2   2 2  Ta có: B ' C ' //BC, B ' C ' // ( A ' BC) C  d  B ' C '; A ' B   d  B ' C ';  A ' BC    d  B ';  A ' BC   A D y x B uuuur  a a 3  uuuur  a a 3  A' B   ; ;  a  ; A' C    ; ; a 2 2   2 2  2 uuuur uuuur r        A ' B, A ' C    0; a 2 ; a 3   a 2  0; 1; 3   a 2 .nr , với n   0; 1; 3     2  2  2    r ’ ’ Phương trình mặt phẳng (A BC) qua A với vectơ pháp tuyến n : 3 3 a 3 0( x  0)  1( y  0)  ( z  a)  0   A ' BC  : y  z 0 2 2 2 a 3 3 a 3 a 3  .a  a 21 a 21 2 2 2 d  B '  A ' BC     2  . Vậy, d  A ' B; B ' C '  . 7 3 7 7 1 4 2 Cách 2: Vì các các mặt bên của lăng trụ đều là hình vuông nên AB  BC  CA  A ' B’ '  B ' C '  C ' A '  a A  các tam giác ABC, A’B’C’ là các tam giác đều. Ta có: B ' C ' //BC  B ' C ' //( A ' BC) . B’ F  d  A ' B; B ' C '  d  B ' C ';  A ' BC    d  F ;  A ' BC   .  BC  FD  BC  ( A ' BC ) Ta có:   BC  A ' D (A'BC caân taïi A') Dựng FH  A ' D Vì BC  ( A ' BC)  BC  FH  H  ( A ' BC) ’ A FD vuông có: 1 FH 2  1 A' F2  1 FD 2  4 3a 2  1 a2  7 3a 2  FH  C’ H C A a 21 . 7 D B
- Xem thêm -

Tài liệu liên quan