Đăng ký Đăng nhập
Trang chủ Sách - Truyện đọc Sách-Ebook Kinh tế Renewable energy - technology, eonomics and environment - m. kaltschmitt, et al....

Tài liệu Renewable energy - technology, eonomics and environment - m. kaltschmitt, et al., (springer, 2007) ww

.PDF
590
148
119

Mô tả:

Renewable Energy Martin Kaltschmitt . Wolfgang Streicher Andreas Wiese Renewable Energy Technology , Economics and Environment With 270 Figures and 66 Tables 123 E d itors Prof. Dr.-Ing. Martin Kaltschmitt Institute of Environmental Technology and Energy Economics Hamburg University of Technology Germany Institute for Energy and Environment (IE) gGmbH Leipzig, Germany Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Wolfgang Streicher Institute of Thermal Engineering Graz University of Technology Austria Dr.-Ing. Andreas Wiese Lahmeyer International GmbH Bad Vilbel, Germany Library of Congress Control Number: 2007923414 ISBN 978-3-540-70947-3 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: by the editors Production: Integra Software Services Pvt. Ltd., India Cover design: wmxDesign GmbH, Heidelberg Printed on acid-free paper SPIN: 10942611 42/3100/Integra 5 4 3 2 1 0 Preface The utilisation of renewable energies is not at all new; in the history of mankind renewable energies have for a long time been the primary possibility of generating energy. This only changed with industrial revolution when lignite and hard coal became increasingly more important. Later on, also crude oil gained importance. Offering the advantages of easy transportation and processing also as a raw material, crude oil has become one of the prime energy carriers applied today. Moreover, natural gas used for space heating and power provision as well as a transportation fuel has become increasingly important, as it is abundantly available and only requires low investments in terms of energy conversion facilities. As fossil energy carriers were increasingly used for energy generation, at least by the industrialised countries, the application of renewable energies decreased in absolute and relative terms; besides a few exceptions, renewable energies are of secondary importance with regard to overall energy generation. Yet, the utilisation of fossil energy carriers involves a series of undesirable side effects which are less and less tolerated by industrialised societies increasingly sensitised to possible environmental and climate effects at the beginning of the 21st century. This is why the search for environmental, climate-friendly and social acceptable, alternatives suitable to cover the energy demand has become increasingly important. Also with regard to the considerable price increase for fossil fuel energy on the global energy markets in the last few years, not only in Europe, high hopes and expectations are placed on the multiple possibilities of utilising renewable sources of energy. Against this background, this book aims at presenting the physical and technical principles of the main possibilities of utilising renewable energies. In this context, firstly the main characteristics of the available renewable energy streams are outlined. Subsequently, the technologies of heat provision from passive and active solar systems, ambient air, shallow geothermal energy as well as energy from deep geothermal sources are presented. Also the processes of electricity generation from solar radiation (photovoltaic and solar thermal power plant technologies), wind energy, hydropower and geothermal energy are addressed. Furthermore, the possibilities of harnessing ocean energies are briefly discussed. Only the possibilities of the energetic exploitation of biomass are not explained in detail; in this regard, please refer to /1-4/. For the main possibilities of renewable energies utilisation, in addition, parameters and data are provided which allow for an economic and environmental assessment of the discussed options. The assessment thus enables a better VI Preface judgment of the possibilities and limits of the various options of utilising renewable sources of energy. The present English version is a corrected and enlarged update of the 4th German edition published in early 2005. In contrast to the German edition, all comments and information have been adapted to include the framework conditions outside of Central Europe. Additionally the presentations on the possibilities of solar thermal power generation have been significantly enhanced. The elaboration of the present book would not have been possible without the assistance of a number of the most varied persons and institutions. First of all we would like to thank very much Lahmeyer International GmbH for sponsoring the translation services; without this support this English edition would not have been possible. We would like to extend our great gratitude to Dipl.-Ing. Ilka Sedlacek, Dr. Olaf Goebel, Dipl.-Öko. Rosa Mari Tarragó, MSc Richard Lawless and Dr.Ing. Eckhard Lüpfert for their valuable text contributions and their helpful support. We also would like to thank very much Zandia Viebahn for the English translation. Additionally we would like to express our sincerest thanks to Barbara Eckhardt, Petra Bezdiak and Alexandra Mohr who assisted in the layout of this book. However, there are many more persons, not forgetting the publisher, whom we need to thank for their cooperative and fruitful cooperation and assistance. Finally, and most importantly, we owe the most to the highly committed and collaborative authors. Hamburg/Leipzig, Graz, Frankfurt, January, 2007 Martin Kaltschmitt, Wolfgang Streicher and Andreas Wiese List of Authors Dipl.-Ing. Stephanie Frick Institute for Energy and Environment (IE) gGmbH, Leipzig, Germany Dr. Ernst Huenges GeoForschungsZentrum (GFZ), Potsdam, Germany Prof. Dr.-Ing. Klaus Jorde Center for Ecohydraulics Research, University of Idaho, Boise (ID), USA Dr. Reinhard Jung GGA-Institute, Hannover, Germany Dr.-Ing. Frank Kabus Geothermie Neubrandenburg GmbH, Neubrandenburg, Germany Prof. Dr.-Ing. Martin Kaltschmitt Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Germany Institute for Energy and Environment (IE) gGmbH, Leipzig, Germany Prof. Dr. Klaus Kehl University of Applied Science Oldenburg/Ostfriesland/Wilhelmshaven, Emden, Germany Dipl.-Ing. Dörte Laing German Aerospace Centre; Institute of Technical Thermodynamics, Stuttgart, Germany Dr. Iris Lewandowski Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society, Utrecht University, The Netherlands (presently working at: Shell Global Solutions International BV, Amsterdam, The Netherlands) Dipl.-Ing. Winfried Ortmanns SunTechnics GmbH, Hamburg, Germany Dr. habil. Uwe Rau Institute of Physical Electronics, University Stuttgart, Germany Dr. Burkhard Sanner UBeG GbR, Wetzlar, Germany Prof. Dr. Dirk Uwe Sauer Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives, RWTH Aachen University, Germany VIII List of Authors Dipl.-Ing. Sven Schneider Institute for Energy and Environment (IE) gGmbH, Leipzig, Germany Dipl.-Ing. Gerd Schröder Institute for Energy and Environment (IE) gGmbH, Leipzig, Germany Dr.-Ing. Peter Seibt Geothermie Neubrandenburg GmbH, Neubrandenburg, Germany Dr.-Ing. Martin Skiba REpower Systems AG, Hamburg, Germany Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Wolfgang Streicher Institute of Thermal Engineering, Graz University of Technology, Austria Dr.-Ing. Gerhard Weinrebe Schlaich Bergermann und Partner, Structural Consulting Engineers, Stuttgart, Germany Dr.-Ing. Andreas Wiese Lahmeyer International GmbH, Bad Vilbel, Germany Summary of Contents 1 Introduction and Structure ............................................................................ 1 1.1 Energy system........................................................................................... 1 1.2 Applications of renewable energies.......................................................... 7 1.3 Structure and procedure............................................................................ 9 1.4 Conventional energy provision systems ................................................. 14 2 Basics of Renewable Energy Supply............................................................ 23 2.1 Energy balance of the earth .................................................................... 23 2.2 Solar radiation......................................................................................... 32 2.3 Wind energy ........................................................................................... 49 2.4 Run-of-river and reservoir water supply................................................. 66 2.5 Photosynthetically fixed energy.............................................................. 80 2.6 Geothermal energy.................................................................................. 90 3 Utilisation of Passive Solar Energy............................................................ 103 3.1 Principles .............................................................................................. 103 3.2 Technical description ........................................................................... 104 4 Solar Thermal Heat Utilisation.................................................................. 123 4.1 Principles .............................................................................................. 123 4.2 Technical description............................................................................ 129 4.3 Economic and environmental analysis.................................................. 160 5 Solar Thermal Power Plants ...................................................................... 171 5.1 Principles .............................................................................................. 172 5.2 Solar tower power stations.................................................................... 181 5.3 Parabolic trough power plants .............................................................. 194 5.4 Dish/Stirling systems ............................................................................ 203 5.5 Solar updraft tower power plant ........................................................... 212 5.6 Solar pond power plants ....................................................................... 224 6 Photovoltaic Power Generation ................................................................. 229 6.1 Principles .............................................................................................. 229 6.2 Technical description............................................................................ 238 6.3 Economic and environmental analysis.................................................. 287 X Summary of Contents 7 Wind Power Generation ............................................................................. 295 7.1 Principles .............................................................................................. 295 7.2 Technical description............................................................................ 308 7.3 Economic and environmental analysis.................................................. 339 8 Hydroelectric Power Generation ............................................................... 349 8.1 Principles .............................................................................................. 349 8.2 Technical description............................................................................ 352 8.3 Economic and environmental analysis.................................................. 373 9 Utilisation of Ambient Air and Shallow Geothermal Energy ................. 385 9.1 Principles .............................................................................................. 387 9.2 Technical description............................................................................ 393 9.3 Economic and environmental analysis.................................................. 425 10 Utilisation of Geothermal Energy.............................................................. 437 10.1 Heat supply by hydro-geothermal systems ........................................... 437 10.2 Heat supply by deep wells .................................................................... 463 10.3 Geothermal power generation............................................................... 469 Annex A: Harnessing Ocean Energy .............................................................. 497 Annex B: Energetic Use of Biomass ................................................................ 511 Annex C: Energy Units .................................................................................... 517 References.......................................................................................................... 519 Index .................................................................................................................. 535 Table of Contents 1 Introduction and Structure ............................................................................ 1 1.1 Energy system........................................................................................... 1 MARTIN KALTSCHMITT 1.1.1 Energy terms.................................................................................. 2 1.1.2 Energy consumption...................................................................... 4 1.2 Applications of renewable energies......................................................... .7 MARTIN KALTSCHMITT 1.2.1 Renewable energies ....................................................................... 7 1.2.2 Investigated possibilities ............................................................... 9 1.3 Structure and procedure............................................................................ 9 MARTIN KALTSCHMITT 1.3.1 Principles ..................................................................................... 10 1.3.2 Technical description................................................................... 10 1.3.3 Economic and environmental analysis ........................................ 11 Definition of reference plants 11 (Heat provision 11, Electricity provision 12); Economic analysis 12; Environmental analysis 14 1.4 Conventional energy provision systems ................................................. 14 WOLFGANG STREICHER, MARTIN KALTSCHMITT 1.4.1 Boundary conditions.................................................................... 14 1.4.2 Power generation technologies.................................................... 15 Economic analysis 15 (Investments and operation costs 17, Electricity generation costs 17); Environmental analysis 18 1.4.3 Heat provision technologies ........................................................ 19 Economic analysis 19 (Investments and operation costs 21, Heat generation costs 22); Environmental analysis 22 2 Basics of Renewable Energy Supply............................................................ 23 2.1 Energy balance of the earth .................................................................... 23 MARTIN KALTSCHMITT, ANDREAS WIESE 2.1.1 Renewable energy sources .......................................................... 23 Solar energy 23; Geothermal energy 26; Energy from planetary gravitation and planetary motion 27 2.1.2 Atmosphere ................................................................................. 28 2.1.3 Balance of energy flows .............................................................. 29 XII Table of Contents 2.2 Solar radiation......................................................................................... 32 MARTIN KALTSCHMITT, WOLFGANG STREICHER 2.2.1 Principles ..................................................................................... 32 Optical windows 32; Weakening of radiation 32; Spectral range 33; Direct, diffuse and global radiation 34; Direct radiation on tilted, aligned surfaces 35; Diffuse radiation on tilted, aligned surfaces 37; Reflection radiation on tilted, aligned surfaces 38; Global radiation on tilted, aligned surfaces 38 2.2.2 Supply characteristics.................................................................. 38 Measuring radiation 38; Distribution of radiation 39; Time variations 40 2.3 Wind energy ........................................................................................... 49 MARTIN KALTSCHMITT, ANDREAS WIESE 2.3.1 Principles ..................................................................................... 49 Mechanisms 49; Global air circulation systems 51; Local air circulation systems 52; Influence of topography 55; Wind power 57 2.3.2 Supply characteristics.................................................................. 57 Measuring wind direction and wind speed 57; Wind distribution 58; Time variations 60; Frequency distribution 65 2.4 Run-of-river and reservoir water supply................................................. 66 MARTIN KALTSCHMITT, KLAUS JORDE 2.4.1 Principles ..................................................................................... 67 Water reserves of the earth 67; Water cycle 67; Precipitation 68; From precipitation to flow 69; Power and work capacity of water 71 2.4.2 Supply characteristics.................................................................. 72 Measuring water-technical parameters 72 (Measuring precipitation 72, Runoff measurement 72, Flow measurement 73); Distribution and variations of precipitation 74; River systems, runoff and runoff characteristic 77; Reservoirs 79 2.5 Photosynthetically fixed energy.............................................................. 80 IRIS LEWANDOWSKI 2.5.1 Principles ..................................................................................... 81 Structure and composition of plants 81; Photosynthesis 81; Influence of various growth factors 84 (Irradiation 84, Water 85, Temperature 85, Soil and nutrients 86, Plant cultivation measures 87) 2.5.2 Supply characteristics.................................................................. 88 Spatial supply characteristics 88; Temporal supply characteristics 89 2.6 Geothermal energy.................................................................................. 90 ERNST HUENGES, MARTIN KALTSCHMITT 2.6.1 Principles ..................................................................................... 90 Structure of the earth 90; Temperature gradient 91; Heat content and distribution of sources 92; Terrestrial heat flow density 93; Heat balance at the surface of the earth 94; Geothermal systems and resources 95 2.6.2 Supply characteristics.................................................................. 97 Shallow underground 97; Deep underground 99 Table of Contents XIII 3 Utilisation of Passive Solar Energy............................................................ 103 WOLFGANG STREICHER 3.1 Principles .............................................................................................. 103 3.2 Technical description............................................................................ 104 3.2.1 Definitions ................................................................................. 105 Terms 105; Key figures 105 (Transmission coefficient 105, Secondary heat flow 105, Energy transmittance factor (g-value) 105, Diffuse energy transmittance factor (diffuse g-value) 106, Thermal transmittance coefficient (U-value) 106, Equivalent thermal transmittance coefficient (equivalent U-value) 106, Transmission losses 106) 3.2.2 System components ................................................................... 107 Transparent covers 107; Shading devices 110; Absorber and heat storage 113 3.2.3 Functional systems .................................................................... 115 Direct gain systems 115; Indirect gain systems 116 (Transparent thermal insulation 117, Solar systems with convective heat flow 119); Decoupled systems 119; Sunspaces 120 4 Solar Thermal Heat Utilisation.................................................................. 123 4.1 Principles .............................................................................................. 123 WOLFGANG STREICHER 4.1.1 4.1.2 4.1.3 4.1.4 Absorption, emission and transmission ..................................... 123 Optical features of absorbers ..................................................... 124 Optical features of covers.......................................................... 125 Energy balance .......................................................................... 126 General energy balance 126; Energy balance of the collector 126 4.1.5 Efficiency and solar fractional savings...................................... 128 4.2 Technical description............................................................................ 129 WOLFGANG STREICHER 4.2.1 Collectors................................................................................... 130 Collector components 130 (Absorber 130, Cover 131, Collector box 131, Other components 132); Installation 132; Collector designs and practical applications 132 (Non-concentrating swimming pool liquid-type collectors 133, Non-concentrating glazed flat-plate liquid-type collectors 133, Non-concentrating air collectors 135, Concentrating liquid-type or air collectors 135); Data and characteristic curves 136; Collector circuit 138 4.2.2 Further system elements ............................................................ 139 Heat store 139 (Liquid storage (Water storage) 139, Solid storage 141, Latent heat store 142, Duration of storage 143); Sensors and control systems 143; Heat transfer medium 145; Pipes 146; Heat exchanger 146; Pumps 147 4.2.3 Energy conversion chain and losses ......................................... 148 Energy conversion chain 148; Losses 148 XIV Table of Contents 4.2.4 System design concepts............................................................. 149 Systems without circulation 150; Open natural circulation systems 150; Closed natural circulation systems 150; Open forced circulation systems 151; Closed forced circulation systems 151 4.2.5 Applications............................................................................... 152 Solar heating of open-air swimming pools 152; Small systems 153 (DHW system with closed forced circulation 154, DHW systems with closed natural circulation 155, Solar combined systems (combisystems) 155); Solar-supported district heating systems 157; Further applications 159 4.3 Economic and environmental analysis.................................................. 160 WOLFGANG STREICHER, MARTIN KALTSCHMITT 4.3.1 Economic analysis ..................................................................... 160 Investments 162 (Collector 163; Storage 163; Other system components 163, Installation and operation 164, Total investments 164); Operation costs 165; Heat generation costs 166 4.3.2 Environmental analysis ............................................................. 168 Construction 168; Normal operation 169; Malfunction 169; End of operation 170 5 Solar Thermal Power Plants ...................................................................... 171 5.1 Principles .............................................................................................. 172 GERHARD WEINREBE, WINFRIED ORTMANNS 5.1.1 Radiation concentration............................................................. 172 5.1.2 Radiation absorption.................................................................. 176 5.1.3 High-temperature heat storage .................................................. 177 5.1.4 Thermodynamic cycles.............................................................. 178 5.2 Solar tower power stations.................................................................... 181 GERHARD WEINREBE 5.2.1 Technical description................................................................. 181 5.2.1.1 System components ..................................................... 181 Heliostats 181 (Faceted heliostats 182, Membrane heliostats 183); Heliostat fields and tower 183; Receiver 184 (Water/steam receiver 184, Salt receiver 184, Open volumetric air receiver 185, Closed (pressurised) air receivers 186); Power plant cycles 187 5.2.1.2 System concepts .......................................................... 187 Solar One 187; Solar Two 188; Phoebus/TSA/Solair 189; PS10 189; Solar Tres 190; Solgate 190 5.2.2 Economic and environmental analysis ...................................... 190 Economic analysis 190 (Investments 191, Operation costs 191, Electricity generation costs 192); Environmental analysis 192 (Construction 192, Normal operation 193, Malfunction 194, End of operation 194) Table of Contents XV 5.3 Parabolic trough power plants .............................................................. 194 GERHARD WEINREBE 5.3.1 Technical description................................................................. 195 5.3.1.1 System components ..................................................... 195 Collectors 195 (Parabolic trough collectors 195, Fresnel collectors 196); Absorber/Heat Collecting Element (HCE) 197; Heat transfer medium 198; Collector fields 198 5.3.1.2 Plant concepts.............................................................. 199 SEGS plants 199; Integrated Solar Combined Cycle System (ISCCS) 201; Integration into conventional power plants 201 5.3.2 Economic and environmental analysis ...................................... 201 Economic analysis 202 (Investments 202, Operation costs 202, Electricity generation costs 202); Environmental analysis 203 5.4 Dish/Stirling systems ............................................................................ 203 DÖRTE LAING, GERHARD WEINREBE 5.4.1 Technical description................................................................. 204 5.4.1.1 System components ..................................................... 204 Parabolic concentrator (dish) 204; Mounting structure 205; Solar tracking system 205; Receiver 205 (Tube receiver 206, Heat pipe receiver 206); Stirling motor 206 5.4.1.2 Plant concepts.............................................................. 208 5.4.2 Economic and environmental analysis ...................................... 210 Economic analysis 210 (Investments 210, Operation costs 211, Electricity generation costs 211); Environmental analysis 212 5.5 Solar updraft tower power plant ........................................................... 212 GERHARD WEINREBE 5.5.1 Technical description................................................................. 216 5.5.1.1 System components ..................................................... 216 Collector 216; Storage 217; Tower 217; Turbines 218 5.5.1.2 Plant concepts.............................................................. 219 Prototype located in the vicinity of Manzanares, Spain 219; Large solar updraft tower power plants 221 5.5.2 Economic and environmental analysis ...................................... 222 Economic analysis 222 (Investments 223, Operation costs 223, Electricity generation costs 223); Environmental analysis 224 5.6 Solar pond power plants ....................................................................... 224 GERHARD WEINREBE, MARTIN KALTSCHMITT 5.6.1 Technical description................................................................. 224 5.6.1.1 System components ..................................................... 224 Pond collector 224; Heat exchangers 225; Thermal engine 226 5.6.1.2 Plant concepts.............................................................. 226 5.6.2 Economic and environmental analysis ...................................... 227 Economic analysis 227 (Investment costs 227, Operation costs 228, Electricity generation costs 228); Environmental analysis 228 XVI Table of Contents 6 Photovoltaic Power Generation ................................................................. 229 6.1 Principles............... ............................................................................... 229 MARTIN KALTSCHMITT, UWE RAU 6.1.1 Energy gap model...................................................................... 229 6.1.2 Conductors, semiconductors and insulators .............................. 230 Conductors 230; Insulators 231; Semiconductors 231 6.1.3 Conduction mechanisms of semiconductors ............................. 231 Intrinsic conductivity 231; Extrinsic conduction 232 6.1.4 Photo effect................................................................................ 234 External photo effect 234; Internal photo effect 235 6.1.5 P-n-junction ............................................................................... 235 6.1.6 Photovoltaic effect..................................................................... 237 6.2 Technical description............................................................................ 238 DIRK UWE SAUER, UWE RAU, MARTIN KALTSCHMITT 6.2.1 Photovoltaic cell and module .................................................... 238 Structure 238; Current-voltage characteristic and equivalent circuit 238; Efficiencies and losses 241; Cell types 244 (Solar cells from crystalline silicon 245, Thin-layer amorphous silicon (a-Si:H) solar cells 249, Thin film solar cells based on chalcogenides and chalcopyrits, particularly CdTe and CuInSe2 (“CIS”) 251, Thin film solar cells made of crystalline silicon 254, Thin film solar cells with integrated serial circuit 254, Solar cells for concentrating photovoltaic systems 256, Dye solar cells made of nano-porous titan oxide (TiO2) 256); Solar module 258 6.2.2 Further system components ....................................................... 260 Inverters 260 (Island inverters 261, Grid-connected inverters 265); Mounting systems 269; Batteries and charge controllers 271; Further system components 277 6.2.3 Grid-independent systems ......................................................... 277 System concepts 278; Examples 280 6.2.4 Grid-connected systems............................................................. 283 6.2.5 Energy conversion chain, losses and characteristic power curve ............................................................................ 284 Energy conversion chain 284; Losses 285; characteristic Power c urve 2 86 6.3 Economic and environmental analysis.................................................. 287 MARTIN KALTSCHMITT, GERD SCHRÖDER, SVEN SCHNEIDER 6.3.1 Economic analysis ..................................................................... 287 Investments 288; Operation costs 290; Electricity generation costs 290 6.3.2 Environmental analysis ............................................................. 292 Construction 292; Normal operation 293; Malfunction 293; End of operation 294 Table of Contents XVII 7 Wind Power Generation ............................................................................. 295 7.1 Principles .............................................................................................. 295 KLAUS KEHL, MARTIN KALTSCHMITT, WOLFGANG STREICHER 7.1.1 Idealised wind energy converter................................................ 296 7.1.2 Drag and lift principles ............................................................. 301 Lift principle 301; Drag principle 306 7.2 Technical description............................................................................ 308 MARTIN KALTSCHMITT, MARTIN SKIBA, ANDREAS WIESE 7.2.1 Wind turbine design .................................................................. 308 7.2.2 System elements ........................................................................ 309 Rotor 309 (Rotor blades 311, Rotor hub 312, Blade adjustment mechanism 312); Gearbox 313; Generator 314 (Synchronous generator 314, Asynchronous generator 315); Wind direction yaw mechanism 316; Tower 317; Foundations 318 (Gravity foundation 318, Monopile foundation 319, Tripod foundation 319); Grid connection 320; System aspects of offshore installation 321 7.2.3 Energy conversion chain, losses and characteristic power curve ............................................................................ 323 Energy conversion chain 323; Losses 323; characteristic Power curve 325 7.2.4 Power control ............................................................................ 328 Stall control 328; Pitch control 330 7.2.5 Wind parks ................................................................................ 331 Wind park design 331; Grid connection 334 7.2.6 Grid-independent applications................................................... 335 Wind-battery systems 335; Wind pumps 336; Wind-diesel systems 337; Wind-sea water desalination 338 7.3 Economic and environmental analysis.................................................. 339 MARTIN KALTSCHMITT, GERD SCHRÖDER, SVEN SCHNEIDER 7.3.1 Economic analysis ..................................................................... 339 Investments 340; Operation costs 342; Electricity generation costs 342 7.3.2 Environmental analysis ............................................................. 343 Construction 343; Normal operation 344 (Audible sound 344, Infrasonic sounds 344, Disco effect 345, Shadow impact 345, Ice throw 345, Natural scenery 346, Preservation of bird-life 346, Further effects on fauna 347, Space consumption 347, Offshore wind power utilisation 347, Acceptance 347); Malfunction 347; End of operation 348 8 Hydroelectric Power Generation ............................................................... 349 8.1 Principles .............................................................................................. 349 KLAUS JORDE, MARTIN KALTSCHMITT System setup 349; Intake 350; Penstock 351; Turbine 351; Outlet 352; Overall system 352 XVIII Table of Contents 8.2 Technical description............................................................................ 352 KLAUS JORDE, MARTIN KALTSCHMITT 8.2.1 Schematic layout ....................................................................... 353 8.2.2 Categorisation and construction types....................................... 353 Low-head plants 355 (Diversion-type plants 355, Run-of-river Plants 355); Medium-head plants 357; High-head Plants 355; Auxiliary plants 358 8.2.3 System components ................................................................... 359 Dam, weir or barrage 359; Reservoir 360; Intake 361; Headrace/ Penstock 361; Powerhouse 361; Turbines 361 (Kaplan, propeller, bulb, bevel gear, S and Straflo-turbines 363, Francis turbines 364, Pelton turbines 365, Cross-flow turbines 366, Water wheels 367); Outflow and tailrace 368; Shaft coupling and transmission 368; Generator 368; Transformer 369; Regulation 369 8.2.4 Isolated and grid operation ........................................................ 369 8.2.5 Energy conversion chain, losses, and power curve ................... 370 Energy conversion chain 370; Losses 371; Operation behaviour and power curve 372 8.3 Economic and environmental analysis.................................................. 373 MARTIN KALTSCHMITT, KLAUS JORDE 8.3.1 Economic analysis ..................................................................... 374 Investments 375; Operation costs 376; Electricity generation costs 376 8.3.2 Environmental analysis ............................................................. 378 Construction 378; Normal operation 379 (Impoundments 379, Barrier effect of dam and power house 380, Diverted reaches 381); Malfunction 382; End of operation 383 9 Utilisation of Ambient Air and Shallow Geothermal Energy ................. 385 9.1 Principles .............................................................................................. 387 WOLFGANG STREICHER, MARTIN KALTSCHMITT Heat pump principle 388 (Compression heat pumps 388, Sorption heat pumps 389); Parameters 391 (Coefficient of performance (COP) 392, Work rate 393, Heate rate 393) 9.2 Technical description............................................................................ 393 BURKHARD SANNER, WOLFGANG STREICHER, MARTIN KALTSCHMITT 9.2.1 Heat source systems for ambient air utilisation ......................... 394 9.2.2 Heat source systems for shallow geothermal energy utilisation 397 Closed systems 398 (Horizontally installed ground-coupled heat exchangers 398, Vertically installed ground-coupled heat exchangers 400, Components with earth contract (energy piles, slotdie walls) 404); Open systems 405; Other Systems 406 (Coaxial wells 406, Cavity and tunnel water 407, Preheating/precooling of air 407) Table of Contents XIX 9.2.3 Heat pump ................................................................................. 408 Heat exchangers 408, Compressors 410; Expansion valves 411; Lubricants 412; Working media (refrigerants) 413 9.2.4 Overall systems ......................................................................... 415 System configurations 415 (Heating systems with exhaust-air to inlet-air heat pump 415, Heating systems with ground-coupled heat pumps 416, Heat pump systems for heating and cooling purposes 417, Split system air conditioners for space heating and cooling 418); System aspects 420 (Types of operation 420, Areas of application 421, COP characteristics 423, Heat regime in nearsurface ground 424) 9.3 Economic and environmental analysis.................................................. 425 MARTIN KALTSCHMITT, GERD SCHRÖDER, WOLFGANG STREICHER 9.3.1 Economic analysis ..................................................................... 425 Investments 427; Operation costs 429; Heat generation costs 430 9.3.2 Environmental analysis ............................................................. 431 Construction 432; Normal operation 432 (Environmental effects of heat pump working media 432, Thermal effects on the soil, the groundwater and the atmosphere 433, Hydraulic changes in the subsoil caused by groundwater withdrawal 434, Noise effects 434, Effects caused by boreholes 434); Malfunction 434; End of operation 435 10 Utilisation of Geothermal Energy.............................................................. 437 10.1 Heat supply by hydro-geothermal systems ........................................... 437 PETER SEIBT, FRANK KABUS, MARTIN KALTSCHMITT, STEPHANIE FRICK 10.1.1 Technical description................................................................. 437 Geothermal well drilling 437 (Drilling technique 438, Well completion 440); Downhole part 442 (Well completion 442, Testing and modelling 443, Design of the downhole system 444); Uphole part 445 (Production of geothermal fluid 445, Quality assurance of reinjected water 447, Heat transfer 448, Corrosion prevention and suitable materials 449, Leakage monitoring 449, Slop system 450, Re-injection of geothermal fluid 450); District heating systems 450; Overall system layout 452 10.1.2 Economic and environmental analysis ...................................... 454 Economic analysis 454 (Investments 456, Operation costs 457, Heat generation costs 457); Environmental analysis 460 (Construction 460, Normal operation 460, Malfunction 462, End of operation 462) 10.2 Heat supply by deep wells............................................ ........................ 463 MARTIN KALTSCHMITT, STEPHANIE FRICK 10.2.1 Technical description................................................................. 463 XX Table of Contents 10.2.2 Economic and environmental analysis .......................................466 Economic analysis 466 (Investment costs 466, Operation costs 466, Heat production costs 467); Environmental analysis 468 (Construction 468, Operation 468, Malfunction 469, Demolition 469) 10.3 Geothermal power generation............................................................... 469 REINHARD JUNG, FRANK KABUS, MARTIN KALTSCHMITT , STEPHANIE FRICK 10.3.1 Technical description................................................................. 474 10.3.1.1 Subsurface system ....................................................... 474 Exploitation schemes 474 (Geothermal fields 474, Hot water aquifers 475, Fault zones 475, Crystalline bedrock 476); Enhancing the productivity 478 (Acid treatment 478, Hydraulic fracturing 478, Waterfrac technique 479); Reservoir evaluation 480 (Borehole measurements 480, Seismic Fracture Mapping 481) 10.3.1.2 Aboveground system................................................... 481 Open systems 482 (Direct steam utilisation 482, Single flash process without condensation 483, Single flash process with condensation 483, Double flash process with condensation 484); Closed systems 485 (Organic Rankine cycle 485, Kalina cycle 487); Combined systems 488 10.3.2 Economic and environmental analysis ...................................... 489 Economic analysis 489 (Investments 490, Operation costs 491, Energy generation costs 491); Environmental analysis 494 (Construction 494, Normal operation 494, Malfunction 495, End of operation 495) Annex A: Harnessing Ocean Energy .............................................................. 497 MARTIN KALTSCHMITT A.1 Energy from wave motion .................................................................... 497 A.1.1 TAPCHAN system .................................................................... 498 A.1.2 OWC system.............................................................................. 499 OWC buoy 500; OWC breaker-powered generator 500 A.1.3 Further approaches .................................................................... 502 A.2 Energy from tides ................................................................................. 503 A.2.1 Tidal power plants ..................................................................... 503 A.2.2 Harnessing high and low tide streams ....................................... 505 A.3 Further possibilities .............................................................................. 506 A.3.1 Thermal gradients...................................................................... 506 A.3.2 Ocean currents........................................................................... 508 A.3.3 Salinity gradients ....................................................................... 509 A.3.4 Water evaporation ..................................................................... 510
- Xem thêm -

Tài liệu liên quan