Tài liệu Rèn luyện kỹ năng giải phương trình vô tỷ cho học sinh khá giỏi lớp 12 trung học phổ thông

  • Số trang: 101 |
  • Loại file: PDF |
  • Lượt xem: 178 |
  • Lượt tải: 0
tailieuonline

Đã đăng 39894 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC NGUYỄN VĂN THI RÈN LUYỆN KỸ NĂNG GIẢI PHƯƠNG TRÌNH VÔ TỶ CHO HỌC SINH KHÁ GIỎI LỚP 12 TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SỸ SƯ PHẠM TOÁN HÀ NỘI - 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC NGUYỄN VĂN THI RÈN LUYỆN KỸ NĂNG GIẢI PHƯƠNG TRÌNH VÔ TỶ CHO HỌC SINH KHÁ GIỎI LỚP 12 TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SỸ SƯ PHẠM TOÁN CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP DẠY HỌC (BỘ MÔN TOÁN) Mã số: 60 14 01 11 Người hướng dẫn khoa học: PGS.TS. Lê Anh Vinh HÀ NỘI – 2014 Lời cảm ơn Trong thời gian qua, ngoài sự nỗ lực của bản thân, đề tài luận văn của em được hoàn thành với sự hướng dẫn tận tình, chu đáo của PGS.TS. Lê Anh Vinh. Trân trọng cảm ơn các thầy cô giáo thuộc chuyên ngành Lý luận và Phương pháp giảng dạy bộ môn Toán, trường Đại học Giáo Dục, Đại học Quốc Gia Hà Nội đã nhiệt tình giảng dạy và tạo mọi điều kiện cho em trong suốt thời gian của khóa học. Trân trọng cảm ơn Ban giám hiệu, đồng nghiệp trường THPT Bất Bạt đã tạo điều kiện, giúp đỡ để em có thể hoàn thành khóa học với luận văn này. Em xin trân trọng gửi tới các thầy cô giáo lời biết ơn chân thành và sâu sắc nhất. Gia đình, bạn bè, đồng nghiệp luôn là nguồn cổ vũ động viên em thêm nghị lực hoàn thành Luận văn này. Tuy đã có nhiều cố gắng, tuy nhiên Luận văn này chắc chắn không tránh khỏi những thiếu sót. Em rất mong nhận được những ý kiến đóng góp của các thầy cô giáo và bạn đọc. Hà Nội, tháng 11 năm 2014 Tác giả luận văn Nguyễn Văn Thi i MỤC LỤC Trang Lời cảm ơn ................................................................................................ Mục lục ........................................................................................................ Danh mục các bảng ...................................................................................... MỞ ĐẦU ................................................................................................ Chương1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN .......................................5 1.1. Kỹ năng ................................................................................................5 1.1.1. Khái niệm kỹ năng..............................................................................5 1.1.2. Đặc điểm của kỹ năng ........................................................................6 1.1.3. Sự hình thành kỹ năng ........................................................................6 1.2. Rèn luyện kỹ năng giải toán ................................................................ 7 1.2.1. Khái niệm ...........................................................................................7 1.2.2. Rèn luyện kỹ năng giải toán cho học sinh ...........................................7 1.2.3. Các yêu cầu rèn luyện kỹ năng giải toán cho học sinh ........................8 1.2.4. Một số kỹ năng cần thiết khi giải toán ................................................9 1.3. Rèn luyện kỹ năng giải phương trình vô tỷ ............................................9 1.3.1. Rèn luyện khả năng tìm lời giải các bài toán phương trình vô tỷ ........9 1.3.2. Phương pháp tìm lời giải các bài toán phương trình vô tỷ ...................10 1.3.3. Cách thức dạy học phương pháp tìm lời giải bài toán .........................14 1.3.4.Yêu cầu đối với lời giải bài toán phương trình vô tỷ ............................14 1.3.5. Các kỹ năng cần rèn luyện cho học sinh khi giải toán phương trình vô tỷ..........................................................................................................................16 1.3.6. Các yếu tố ảnh hưởng đến sự hình thành kỹ năng giải phương trình vô tỷ ........... 20 1.4. Kết luận Chương 1 ................................................................................21 Chương 2: BIỆN PHÁP RÈN LUYỆN KỸ NĂNG GIẢI TOÁN CHO HỌC SINH KHÁ GIỎI THÔNG QUA DẠY HỌC CHUYÊN ĐỀ 22 PHƯƠNG TRÌNH VÔ TỶ ....................................................................................... 2.1. Biện pháp 1: Trang bị cho học sinh một số phương pháp giải phương trình vô tỷ .................................................................................................................22 2.1.1. Rèn luyện kỹ năng biến đổi tương đương ...........................................22 ii 2.1.2. Rèn luyện kỹ năng giải phương trình thông qua đặt ẩn phụ ................24 2.1.3. Rèn luyện kỹ năng giải phương trình thông qua lượng giác ................26 2.1.4. Rèn luyện kỹ năng giải phương trình thông qua tính chất của vectơ ............................................................................................................29 2.1.5. Rèn luyện kỹ năng giải phương trình thông qua đánh giá giá trị các biểu thức thành phần ..............................................................................30 2.1.6. Rèn luyện kỹ năng giải phương trình thông qua xét sự biến thiên của hàm số ...........................................................................................33 2.2. Biện pháp 2: Hình thành khả năng phát hiện sự tương ứng để từ đó rèn luyện kĩ năng chuyển đổi ngôn ngữ, cách phát biểu bài toán .............35 2.2.1. Chỉ rõ cho học sinh thấy tầm quan trọng của việc tìm điều kiện cho ẩn phụ ................................................................................................ 38 2.2.2. Khắc sâu mối tương quan giữa ẩn ban đầu và ẩn phụ .........................42 2.2.3. Rèn luyện cho học sinh khả năng chuyển đổi ngôn ngữ, cách phát biểu bài toán .........................................................................................47 2.3. Biện pháp 3: Trang bị kiến thức về các phép biến đổi phương trình cho học sinh, giúp học sinh ý thức được diễn biến của tập nghiệm trong quá trình biến đổi................................................................ 50 2.3.1. Giúp học sinh hiểu và sử dụng đúng các phép biến đổi cơ bản thường dùng trong dạy học phương trình......................................................50 2.3.2. Hình thành kĩ năng biến đổi phương trình ..........................................54 2.3.3. Giúp học sinh ý thức được diễn biến của tập hợp nghiệm khi biến đổi phương trình .................................................................................................................. 57 2.4. Biện pháp 4: Khắc phục những sai lầm của học sinh trong quá trình giải phương trình vô tỷ.........................................................................60 2.4.1. Biện pháp 1: Trang bị đầy đủ chính xác các kiến thức về bộ môn Toán .......... 61 2.4.2. Học sinh được thử thách thường xuyên với những bài toán dễ dẫn đến sai lầm trong lời giải .......................................................................62 2.4.3. Theo dõi một sai lầm của học sinh khi giải toán qua các giai đoạn ................. 63 2.5. Biện pháp 5: Hình thành khả năng phân tích, định hướng phương pháp giải.......................................................................................................71 iii 2.6. Kết luận chương 2 .................................................................................79 Chương 3: THỰC NGHIỆM SƯ PHẠM ..................................................80 3.1. Mục đích, nhiệm vụ thực nghiệm ..........................................................80 3.2. Tổ chức và nội dung thực nghiệm..........................................................80 3.2.1. Lớp thực nghiệm ................................................................................80 3.2.2. Tiến trình thực nghiệm .......................................................................80 3.2.2. Giáo án thực nghiệm...........................................................................80 3.2.3. Đề kiểm tra ........................................................................................90 3.3. Đánh giá kết quả thực nghiệm ...............................................................90 3.4. Kết luận chung về thực nghiệm .............................................................92 KẾT LUẬN ................................................................................................93 TÀI LIỆU THAM KHẢO..........................................................................94 iv MỞ ĐẦU 1. Lí do chọn đề tài Nâng cao chất lượng dạy học nói chung, chất lượng dạy học môn Toán nói riêng đang là một yêu cầu cấp bách đối với ngành Giáo dục nước ta hiện nay. Một trong những khâu then chốt để thực hiện yêu cầu này là đổi mới nội dung và phương pháp dạy học. Định hướng đổi mới phương pháp dạy học đã được chỉ rõ trong các văn bản có tính chất pháp quy của Nhà nước và ngành Giáo dục nước ta. Có thể dẫn ra một vài văn bản đã được ban hành trong những năm qua như sau: - Luật Giáo dục (1998) quy định: “…Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo cho học sinh; phù hợp với đặc điểm từng lớp học, môn học; bồi dưỡng phương pháp tự học, rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn…”. - Dự thảo chương trình (1989) môn Toán nêu rõ: “...Góp phần phát triển năng lực trí tuệ, tư duy trừu tượng và trí tưởng tượng không gian, tư duy biện chứng, tư duy hàm…; đồng thời rèn luyện các phẩm chất của tư duy linh hoạt, độc lập, sáng tạo…”. - Còn theo chương II điều 28 Luật Giáo dục 2006 thì: " Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh; phù hợp với đặc điểm của từng lớp học, môn học; bồi dưỡng phương pháp tự học, khả năng làm việc theo nhóm, rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh". Trong quá trình dạy học ở trường Trung học phổ thông tôi nhận thấy việc rèn luyện kỹ năng giải toán, mục tiêu giáo dục học sinh của những người làm công tác giáo dục là hết sức quan trọng. Điều đó được nêu cụ thể trong Luật giáo dục, chương I, điều 2: "Mục tiêu của giáo dục phổ thông là đào tạo con người Việt Nam phát triển toàn diện, có đạo đức, tri thức, sức khỏe, thẩm mỹ và nghề nghiệp, trung thành với lý tưởng độc lập dân tộc và chủ nghĩa xã hội; hình thành và bồi dưỡng nhân cách, phẩm chất và năng lực của công dân, đáp ứng nhu cầu xây dựng và bảo vệ Tổ quốc". Cụ thể hóa điều này, mục tiêu dạy học của môn Toán là: 1 - Trang bị kiến thức cơ bản, cần thiết nhất cho học sinh; - Rèn luyện kỹ năng giải toán để phát triển tư duy cho học sinh; - Rèn luyện kỹ năng ứng dụng khoa học nói chung và toán học nói riêng vào thực tiễn cuộc sống; - Phát triển và bồi dưỡng học sinh có năng khiếu toán học. Trong chương trình toán Trung học phổ thông, các em học sinh đã được tiếp cận với phương trình chứa ẩn dưới dấu căn và được tiếp cận với một vài cách giải thông thường đối với những bài toán cơ bản đơn giản. Tuy nhiên trong thực tế các bài toán giải phương trình chứa ẩn dưới dấu căn rất phong phú và đa dạng và đặc biệt là trong các đề thi Đại học - Cao đẳng, các em sẽ gặp một lớp các bài toán về phương trình vô tỷ mà chỉ có số ít các em biết phương pháp giải nhưng trình bày còn lủng củng chưa được gọn gàng, sáng sủa thậm chí còn mắc một số sai lầm không đáng có trong khi trình bày và cũng có khi không biết bắt đầu từ đâu,hướng giải quyết như thế nào? Tại sao lại như vậy? Kiến thức và kỹ năng là hai mặt gắn bó hữu cơ trong mỗi nội dung dạy học. Không thể nói đến vấn đề rèn luyện kỹ năng thực hiện một loại hoạt động nào đó nếu không chú ý trang bị kiến thức về lĩnh vực đó một cách vững chắc. Ngược lại, việc rèn luyện kỹ năng thực hiện các hoạt động trong mỗi lĩnh vực có tác dụng củng cố và mở rộng kiến thức, giúp cho người học tìm thấy những tác dụng to lớn của kiến thức học được trong việc giải quyết các tình huống trong thực tiễn và trong khoa học. Vì vậy bên cạnh việc giảng dạy các kiến thức lý thuyết về chủ đề phương trình vô tỷ một cách đầy đủ theo quy định của chương trình, việc rèn luyện kỹ năng giải phương trình vô tỷ cho học sinh có ý nghĩa quan trọng trong việc nâng cao chất lượng dạy học nhiều nội dung môn Toán ở trường THPT. Dạy Toán là dạy kiến thức, kỹ năng, tư duy và tính cách; trong đó dạy kỹ năng có một vị trí đặc biệt quan trọng, bởi vì nếu không có kỹ năng thì sẽ không phát triển được tư duy và cũng không đáp ứng được nhu cầu giải quyết vấn đề. Trong quá trình dạy học, việc rèn luyện cho học sinh có nhiều cách 2 khác nhau như rèn cách trình bày, rèn luyện tính cẩn thận, rèn luyện kỹ năng phân tích, rèn luyện kỹ năng tổng hợp, kỹ năng đánh giá một bài toán hoặc một vấn đề khoa học là rất quan trọng. Có một số công trình nghiên cứu các biện pháp nâng cao chất lượng dạy học nội dung Phương trình vô tỷ. Nhiều công trình nghiên cứu về phát triển tư duy sáng tạo cho học sinh thông qua dạy học các chủ đề kiến thức cụ thể. Dựa trên những kết quả nghiên cứu đó, tôi tập trung xét vấn đề rèn luyện kỹ năng giải toán phương trình vô tỷ cho học sinh. Vì vậy, tôi chọn đề tài của luận văn là: “Rèn luyện kỹ năng giải phương trình vô tỷ cho học sinh khá giỏi lớp 12 trung học phổ thông ". 2. Mục đích nghiên cứu Đề ra một số biện pháp rèn luyện kỹ năng giải toán cho học sinh khá giỏi trong dạy học chuyên đề phương trình vô tỷ nhằm góp phần nâng cao chất lượng dạy học môn Toán ở trường Trung học phổ thông. 3. Nhiệm vụ nghiên cứu Hệ thống hoá các vấn đề lý luận về kỹ năng và quan điểm rèn luyện kỹ năng toán học cho học sinh. Hệ thống hoá các kỹ năng giải toán phương trình vô tỷ cần rèn luyện cho học sinh khá giỏi. Đề xuất một số biện pháp tổ chức thực hiện giảng dạy chuyên đề phương trình vô tỷ. Thiết kế các hoạt động, các ví dụ về nội dung phương trình vô tỷ. Thực nghiệm sư phạm, kiểm tra tính khả thi và hiệu quả áp dụng. 4. Phạm vi nghiên cứu Qua quá trình dạy học chuyên đề phương trình vô tỷ ở trường phổ thông. 5. Mẫu khảo sát Lớp 12A3 và 12A5 trường THPT Bất Bạt - Ba Vì - Hà Nội. 6. Vấn đề nghiên cứu Ở trường phổ thông dạy học chuyên đề phương trình vô tỷ như thế nào để rèn luyện kỹ năng giải toán cho học sinh khá giỏi. 3 7. Giả thuyết khoa học Nếu giảng dạy chuyên đề phương trình vô tỷ cho học sinh khá giỏi theo định hướng rèn luyện kỹ năng giải toán thì có thể nâng cao chất lượng dạy học chuyên đề này ở trường phổ thông. 8. Phương pháp nghiên cứu Nghiên cứu lý luận: Nghiên cứu các vấn đề về Tâm lý học, Giáo dục học, Lý luận dạy học, Toán học, Triết học, Thống kê trong giáo dục ... có liên quan đến đề tài. Nghiên cứu thực tiễn: Quan sát, Điều tra ... Thực nghiệm sư phạm. 9. Dự kiến luận cứ 9.1. Luận cứ lý thuyết Đưa ra những cơ sở lý luận về rèn luyện kỹ năng giải toán cho học sinh. 9.2. Luận cứ thực tế Thực trạng việc dạy của giáo viên và việc học của học sinh về chuyên đề phương trình vô tỷ. Kết quả phân tích một số tiêu chí sau thực nghiệm sư phạm. 10. Cấu trúc của luận văn Ngoài phần mở đầu, kết luận và khuyến nghị, danh mục tài liệu tham khảo, nội dung chính của luận văn gồm có 3 chương: Chương 1: Cơ sở lý luận và thực tiễn Chương 2: Biện pháp rèn luyện kỹ năng giải phương trình vô tỷ cho học sinh khá giỏi thông qua dạy học chuyên đề phương trình vô tỷ. Chương 3: Thực nghiệm sư phạm 4 CHƯƠNG 1 CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1. Kỹ năng 1.1.1. Khái niệm kỹ năng Trong thực tiễn cuộc sống luôn đặt ra những nhiệm vụ nhận thức hay thực hành nhất định cho con người. Để giải quyết được công việc con người vận dụng vốn hiểu biết, kinh nghiệm của mình nhằm tách ra những mặt của hiện thực là bản chất đối với nhiệm vụ và thực hiện những biến đổi có thể dẫn tới chỗ giải quyết được nhiệm vụ. Với quá trình đó con người dần hình thành cho mình cách thức (kỹ năng) để giải quyết các vấn đề đặt ra. Theo Tâm lý học lứa tuổi và Tâm lý học sư phạm thì: “Kỹ năng là khả năng vận dụng kiến thức (khái niệm, cách thức, phương pháp…) để giải quyết một nhiệm vụ mới” [23, tr.131]. Còn Tâm lý học đại cương cho rằng: “Kỹ năng là năng lực sử dụng các dữ liệu, các tri thức hay khái niệm đã có, năng lực vận dụng chúng để phát hiện những thuộc tính bản chất của sự vật và giải quyết thành công những nhiệm vụ lý luận hay thực hành xác định”[17, tr.149]. Theo từ điển Tiếng Việt khẳng định: "Kỹ năng là khả năng vận dụng những kiến thức thu nhận được trong một lĩnh vực nào đó vào thực tế"[27, tr. 426]. Tóm lại, kỹ năng là khả năng vận dụng kiến thức vào giải quyết nhiệm vụ mới. Trong thực tế dạy học, học sinh thường gặp khó khăn khi vận dụng kiến thức (khái niệm, cách thức, phương pháp...) vào giải quyết các bài tập cụ thể. Học sinh thường khó tách ra những chi tiết thứ yếu, không bản chất ra khỏi đối tượng nhận thức, không phát hiện những thuộc tính, mối quan hệ vốn có giữa kiến thức và đối tượng. Sở dĩ như vậy là do kiến thức không chắc chắn, khái niệm trở nên chết cứng, không gắn liền cơ sở của kỹ năng. Một sự vật có thể có nhiều thuộc tính bản chất khác nhau, những thuộc tính bản chất về các mặt phù hợp với những hoạt động, mục đích nhất định. Do đó cần lựa chọn những thuộc tính phù hợp với mục tiêu đặt ra trước hành 5 động, để hành động biến đổi đối tượng đạt mục tiêu (tất nhiên mục tiêu đặt ra thu được thông tin mới). Sự dễ dàng hay khó khăn khi vận dụng kiến thức (hình thành kỹ năng) tùy thuộc vào khả năng nhận dạng kiểu bài toán, phát hiện, nhìn thấy trong các dữ liệu đã cho của bài toán, có những thuộc tính và những quan hệ là bản chất để thực hiện giải bài toán đã cho. 1.1.2. Đặc điểm của kỹ năng Bất kỳ kỹ năng nào cũng phải dựa trên cơ sở lý thuyết, đó là kiến thức, bởi vì cấu trúc của kỹ năng gồm: hiểu mục đích - biết cách thức đi đến kết quả - hiểu những điều kiện để triển khai các cách thức đó. Kiến thức là cơ sở của các kỹ năng khi kiến thức đó phản ánh đầy đủ các thuộc tính bản chất của đối tượng, được thử nghiệm trong thực tiễn và tồn tại trong ý thức với tư cách của hành động. Cùng với vai trò cơ sở của tri thức, cần thấy rõ tầm quan trọng của kỹ năng. Vì vậy, cần hướng mạnh vào việc vận dụng những tri thức và rèn luyện kỹ năng, vì kỹ năng chỉ có thể được hình thành và phát triển trong lao động. 1.1.3. Sự hình thành kỹ năng Để hình thành được kỹ năng trước hết cần có kiến thức làm cơ sở cho việc hiểu biết, luyện tập từng thao tác riêng rẽ cho đến khi thực hiện được hành động theo đúng mục đích yêu cầu…Kỹ năng chỉ được hình thành thông qua quá trình tư duy để giải quyết những nhiệm vụ đặt ra. Sự hình thành kỹ năng là làm cho học sinh nắm vững một hệ thống phức tạp các thao tác nhằm biến đổi và làm sáng tỏ những thông tin chứa đụng trong các bài tập. Muốn vậy, khi hình thành kỹ năng (chủ yếu là kỹ năng học tập) cho học sinh cần: - Giúp học sinh biết cách tìm tòi để tìm ra yếu tố đã cho, yếu tố phải tìm và mối quan hệ giữa chúng; - Giúp học sinh hình thành một mô hình khái quát để giải quyết các bài tập, các đối tượng cùng loại; - Xác lập được mối liên quan giữa bài tập mô hình khái quát và các kiến thức tương ứng. 6 1.2. Rèn luyện kỹ năng giải toán 1.2.1. Khái niệm Giải một bài toán tiến hành một hệ thống hành động có mục đích, do đó chủ thể giải toán còn phải nắm vững tri thức về hành động, thực hiện hành động theo các yêu cầu cụ thể của tri thức đó, biết hành động có kết quả trong những điều kiện khác nhau. Trong giải toán, theo tôi quan niệm về kỹ năng giải toán của học sinh như sau: "Đó là khả năng vận dụng có mục đích những tri thức và kinh nghiệm đã có vào giải những bài toán cụ thể, thực hiện có kết quả một hệ thống hành động giải toán để đi đến lời giải bài toán một cách khoa học". 1.2.2. Rèn luyện kỹ năng giải toán cho học sinh Trong các mục đích riêng của môn Toán ở trường phổ thông thì việc truyền thụ kiến thức, rèn luyện kỹ năng là cơ sở vì các mục đích khác muốn thực hiện được phải dựa trên mục đích này. Và kiến thức về một mặt nào đó sẽ không được củng cố, mở rộng, vận dụng vào thực tiễn cũng như vào các ngành khoa học khác, nếu không chú trọng việc rèn luyện kỹ năng thực hiện các hoạt động tương ứng. Việc rèn luyện kỹ năng hoạt động nói chung, kỹ năng toán học nói riêng là một yêu cầu quan trọng, đảm bảo mối liên hệ giữa học với hành, điều này đã được nhiều tác giả đề cập như: “ Suy nghĩ tức là hành động” ( J. Piaget); “ Cách tốt nhất để tìm hiểu là làm” ( Kant); “ Học để hành, học và hành phải đi đôi” ( Hồ Chí Minh). Dạy học sẽ không đạt kết quả nếu học sinh chỉ biết học thuộc lòng khái niệm, định nghĩa, định lý mà không biết vận dụng hay vận dụng không thành thạo vào việc giải bài tập. Dạy toán là dạy kiến thức, kỹ năng tư duy và tính cách cho học sinh. Việc hình thành và rèn luyện kỹ năng giải toán cho học sinh là một trong những yêu cầu cơ bản và cần thiết của hoạt động dạy toán, giúp học sinh hiểu sâu sắc kiến thức toán trong trường phổ thông, đồng thời rèn luyện cho học sinh các 7 thao tác tư duy, các hoạt động trí tuệ. Từ đó, bồi dưỡng các phẩm chất trí tuệ, phát triển năng lực giải toán cho học sinh. Sự hình thành kỹ năng đó là sự nắm vững một hệ thống phức tạp các thao tác nhằm làm biến đổi và sáng tỏ những thông tin chứa đựng trong bài tập, trong nhiệm vụ và đối chiếu chúng với những hành động cụ thể. Có thể dạy cho học sinh kỹ năng bằng những con đường khác nhau như: Con đường thứ nhất: Sau khi cung cấp, truyền thụ cho học sinh vốn tri thức cần thiết thì yêu cầu học sinh vận dụng tri thức đó để giải các bài toán liên quan theo mức độ tăng dần; Con đường thứ hai: Dạy những dấu hiệu đặc trưng, từ đó có thể định hướng một số dạng bài toán và các thao tác cần thiết để giải dạng toán đó; Con đường thứ ba: Dạy học sinh các hoạt động tâm lý cần thiết đối với việc vận dụng tri thức; Việc hình thành và rèn luyện cho học sinh cần được tiến hành trên các bình diện khác nhau. - Kỹ năng vận dụng tri thức trong nội bộ toán, thể hiện rõ dưới dạng giải bài tập toán. - Kỹ năng vận dụng tri thức toán học vào những môn học khác như vật lý, hoá học. - Kỹ năng vận dụng vào đời sống. Có thể nói, bài tập toán chính là ''mảnh đất'' để rèn luyện kỹ năng toán. Do đó, để rèn luyện kỹ năng toán cho học sinh, giáo viên cần tăng cường hoạt động giải toán (đây cũng chính là hoạt động chủ yếu khi dạy toán). Cụ thể hơn thông qua hoạt động giải toán, rèn luyện kỹ năng toán cho học sinh cần quan tâm chú trọng những vấn đề sau: Cần hướng cho học sinh biết cách tìm tòi để nhận xét ra yếu tố đã cho, yếu tố phải tìm và mối quan hệ giữa chúng. Nói cách khác, hướng cho học sinh biết cách phân tích đặc điểm bài toán. 1.2.3. Các yêu cầu rèn luyện kỹ năng giải toán cho học sinh Truyền thụ tri thức, rèn luyện kỹ năng là nhiệm vụ quan trọng hàng đầu của môn Toán. Rèn luyện kỹ năng toán học và kỹ năng vận dụng toán học vào thực tiễn mà trước tiên là kỹ năng giải toán nhằm đạt được những yêu cầu cần thiết sau: 8 - Giúp học sinh hình thành và nắm vững những mạch kiến thức cơ bản xuyên suốt chương trình. - Giúp học sinh phát triển trí tuệ, cụ thể là: + Tư duy logic và ngôn ngữ chính xác, trong đó có tư duy thuật toán; + Khả năng suy đoán, tư duy trừu tượng và trí tưởng tượng không gian; + Những thao tác tư duy như phân tích, tổng hợp, khái quát hóa…; + Các phẩm chất trí tuệ như tư duy độc lập, tư duy linh hoạt và sáng tạo. - Coi trọng việc rèn luyện khả năng tính toán trong giờ học, đó là sự phát triển trí tuệ cho học sinh qua môn Toán gắn bó với việc rèn luyện các kỹ năng thực hành - Giúp học sinh rèn luyện các phẩm chất đạo đức và thẩm mỹ: tính kiên trì, cẩn thận chính xác, các thói quen tự kiểm tra, đánh giá để tránh sai lầm có thể gặp. 1.2.4. Một số kỹ năng cần thiết khi giải toán Hệ thống kỹ năng giải toán cho học sinh có thể chia làm ba cấp độ: Biết làm, thành thạo và sáng tạo trong việc giải các bài toán cụ thể. Trong giải toán học sinh cần có nhóm kỹ năng sau: + Nhóm kỹ năng vận dụng chung; + Nhóm kỹ năng thực hành; + Nhóm kỹ năng về tư duy. - Kỹ năng tổ chức các hoạt động nhận thức trong giải toán: + Kỹ năng tổng hợp: Liên hệ các dữ kiện trong bài toán, tóm tắt nội dung bài toán, kết cấu lại đề toán đã định hướng giải; + Kỹ năng phân tích; + Kỹ năng mô hình hóa; + Kỹ năng sử dụng thông tin. 1.3. Rèn luyện kỹ năng giải phương trình vô tỷ 1.3.1. Rèn luyện khả năng tìm lời giải các bài toán phương trình vô tỷ Đây là khâu rất quan trọng có tính chất quyết định trong việc rèn luyện kỹ năng giải toán cho học sinh. Vì vậy, trong quá trình dạy học giải bài tập phương 9 trình vô tỷ, giáo viên cần tổ chức cho học sinh tập luyện khâu này thật kỹ lưỡng, làm cho họ ý thức được vai trò đặc biệt quan trọng của khâu này, thể hiện ở chỗ: - Khi giải bài tập toán, dù có kỹ thuật cao, có thành thạo trong thực hiện các thao tác, các phép tính hay các phép biến đổi nhưng khi chưa có phương hướng giải hoặc chưa có phương hướng giải tốt thì chưa thể có lời giải hoặc lời giải tốt. - Khi đã có phương hướng giải thì việc thực hiện các thao tác khi trình bày lời giải có tính chất kỹ thuật, không thể có những sáng tạo, những phân tích quan trọng lớn như khi tìm phương hướng giải. - Mặt khác, ý thức được tầm quan trọng của khâu rèn luỵên phương pháp tìm lời giải của bài toán chính là cơ sở quan trọng cho việc rèn luyện khả năng làm việc độc lập sáng tạo, một khả năng không thể thiếu được đối với người giải toán. Như vậy, từ hai vấn đề đã nêu trên, ta có thể khẳng định: Trong quá trình rèn luyện kỹ năng giải toán cho học sinh thì khâu giải bài toán tuy rất quan trọng nhưng quyết định vẫn là khâu tìm lời giải của các bài toán. 1.3.2. Phương pháp tìm lời giải các bài toán phương trình vô tỷ Chúng ta không thể có một thuật giải tổng quát để giải mọi bài toán phương trình vô tỷ. Ngay cả đối với những lớp bài toán riêng biệt cũng có trường hợp có, có trường hợp không có thuật giải. Tuy nhiên, trang bị những hướng dẫn chung, gợi ý cách suy nghĩ tìm tòi, phát hiện cách giải bài toán lại là có thể và cần thiết. Sau đây ta có thể nêu phương pháp chung để tìm lời giải các bài toán phương trình vô tỷ: Bước 1: Tìm hiểu nội dung đề bài, phân tích và nghiên cứu đề bài. Với một bài toán công việc của người giải toán cần đặt ra là tìm hiểu nội dung bài toán: phân biệt cái đã cho bao gồm các giả thiết, các điều kiện cho trong bài toán để từ đó xác định được dạng bài toán, tìm được phương hướng giải bài toán và lựa chọn công cụ thích hợp. Bước 1 là một yêu cầu quan trọng và quyết định trong việc tìm lời giải bài toán. Năng lực của người giải toán thể hiện rõ ở bước này. Nhiều người khi giải 10 toán, không tìm hiểu kỹ nội dung đề ra, không phân tích các giả thiết hay tìm ra mối liên hệ quan trọng trong bài toán mà cứ ghi chép, nháp lia lịa, mặc dù chưa biết mình giải quyết cái gì. Đó là cách tìm lời giải máy móc và không hiệu quả. Có thể nói bước này là thước đo năng lực của người giải toán, vì rằng không thể đánh giá kỹ năng giải toán tốt mà chỉ thể hiện ở khâu tiếp thu và vận dụng tốt. Bước 2: Tìm cách giải Tìm tòi, phát hiện cách giải nhờ những suy nghĩ có tính chất tìm đoán: Dựa vào việc phân tích các giả thiết, các điều kiện của bài toán hay liên hệ các giả thiết, các điều kiện đã cho với những tri thức đã biết, liên hệ bài toán cần giải với một bài toán cũ tương tự, một trường hợp riêng, một bài toán tổng quát hơn hay một bài toán nào đó có liên quan. Bước này nhằm rèn luyện những kỹ năng đi sâu vào mỗi bài toán: Việc phân tích các giả thiết, các điều kiện bài toán và cả kết quả của nó giúp cho người giải toán hiểu rõ quá trình xảy ra có tính quy luật của mọi bài toán. Nghĩa là, người giải toán sẽ biết được với các giả thiết, các điều kiện đã cho như vậy thì tất yếu kết quả phải diễn ra như thế nào? Làm tốt bước này người giải toán có đủ lòng tin vào đường lối mình đã tiến hành và hy vọng ở tính đúng đắn của mọi thao tác, biến đổi. Ngoài ra, nó còn giúp ích nhiều cho người giải toán trong việc tìm kiếm các bài toán liên quan, sáng tạo ra các bài toán mới. Bước 3: Trình bày cách giải Từ cách giải đã được phát hiện, sắp xếp các việc phải làm thành một chương trình gồm các bước theo một trình tự nhất định và thực hiện các bước đó. Bước này nhằm rèn luyện cho người giải toán khả năng trình bày một lời giải chính xác, chặt chẽ, lôgic và thẩm mỹ. Bước 4: Nghiên cứu sâu lời giải. Nghiên cứu khả năng ứng dụng kết quả của lời giải, nghiên cứu giải những bài toán tương tự, mở rộng hay lật ngược vấn đề, từ đó sáng tạo ra bài 11 toán mới. Để làm tốt việc này trước hết người giải toán phải phân tích kỹ để nắm được đặc điểm và bản chất của bài toán, các yếu tố tạo nên bài toán đó. Như thế mới có thể thấy được mối liên hệ giữa các bài toán trong cùng một loại bài toán và giữa các loại bài toán khác nhau. Ví dụ1.1: Giải phương trình 5x 2  14x  9  x 2  x  20  5 x  1 (1.1). Điều kiện: x  5. Bước 1: Tìm hiểu nội dung đề bài, phân tích và nghiên cứu đề bài Phương trình có vẻ khá phức tạp, nếu bình phương hai vế của phương trình (1.1) thì sẽ thu được một phương trình phức tạp và không có hướng giải tiếp. Tuy nhiên có thể biến đổi phương trình về dạng tương đương: 5x 2  14x  9  x 2  x  20  5 x  1 . Do hai vế không âm, bằng cách bình phương hai vế, rút gọn ta thu được: 2x2 - 5x + 2 = x 2  x  20   x  1 . (1.1.2) Nếu bình phương hai vế lần nữa ta thu được phương trình mới tương đương nhưng có bậc 4 nên việc giải chắc chắn khó khăn. Bước 2: Tìm cách giải Việc giải bài toán sẽ dễ dàng hơn nếu ta xác định được mối liên hệ giữa các biểu thức có mặt trong hai vế của phương trình (1.1.2). Ta có: x2 - x - 20 = (x + 4) (x -5). (x2 - x - 20)(x+ 1) = (x + 4) (x -5) (x + 1) = (x + 4) (x2 -4x - 5). và 2x2 - 5x + 2 = 2(x2 - 4x - 5) + 3 (x+4). Việc phát hiện ra được mối liên hệ đó cho phép ta thu được phương trình: 2(x2 - 4x - 5) + 3 (x+4) = 5 x 2  4x  5 x  4 . Để giải phương trình này, ta có thể chuyển về phương trình bậc hai hay phương trình thuần nhất. Bước 3: Trình bày cách giải 12 Ta có phương trình (1.1)  5x 2  14x  9  x 2  x  20  5 x  1 . Do hai vế không âm, bình phương hai vế ta thu được: Phương trình (1.1)  2x2 - 5x + 2 = 5 x 2  2x2 - 5x + 2 = 5  x  4  x  5 x  1 ;  2x2 - 5x + 2 = 5  x  4  x 2  x  20   x  1 ;  4x  5  ;  2(x2 - 4x - 5) + 3 (x+4) = 5 x 2  4x  5 x  4 . (Chú ý 2x2 - 5x + 2 > 0,  x  5). Do x  5 nên x + 4 > 0, chia hai vế cho (x + 4) ta được: x 2  4x  5 x 2  4x  5 2. . 35 x4 x4 Đặt t = x 2  4x  5  0, ta được: x4 2t2 - 5t + 3 = 0, t  0  t = 1 hoặc t = Với t = 1  3 . 2 x 2  4x  5 x 2  4x  5 =1.  = 1; x4 x4  x2- 4x - 5 = x +4  x2 - 5x - 9 = 0  x = Đối chiếu điều kiện x 5, chỉ có x = 3 Với t = 2  x 2  4x  5 3 = 2 x4  4x2 - 25x - 56 = 0 5  61 . 2 5  61 thoả mãn. 2 x 2  4x  5 9  = . x4 4 7 4  x = 8 hoặc x= - . Vậy phương trình có hai nghiệm x = 8 và x = 13 5  61 . 2 Bước 4: Nghiên cứu sau lời giải. Từ ví dụ này ta có thể đưa ra một phương pháp chung để giải những phương trình tương tự: Chuyển vế, luỹ thừa hai vế và phân tích theo các biểu thức trong dấu căn. 1.3.3. Cách thức dạy học phương pháp tìm lời giải bài toán Một câu hỏi đặt ra là làm thế nào để học sinh hiểu được và vận dụng được phương pháp tìm lời giải bài toán vào việc giải những bài toán cụ thể mà họ gặp trong chương trình. Học phương pháp tìm lời giải không phải là học một thuật giải mà học những kinh nghiệm giải toán mang tính chất tìm tòi, phát hiện. Theo [19], tác giả Nguyễn Bá Kim, cách thức dạy học phương pháp để tìm lời giải bài toán như sau: - Thông qua việc giải những bài toán cụ thể, cần nhấn mạnh để học sinh nắm được phương pháp tìm lời giải các bài toán và có ý thức vận dụng 4 bước của phương pháp này trong quá trình giải toán. - Cũng thông qua việc giải những bài toán cụ thể, cần đặt cho học sinh những câu hỏi gợi ý đúng tình huống để học sinh dần dần biết sử dụng những câu hỏi này như những phương tiện kích thích, tìm tòi, dự đoán, phát hiện để thực hiện từng bước của phương pháp tìm lời giải bài toán. Như vậy, quá trình học sinh học phương pháp tìm lời giải bài toán là một quá trình biến những tri thức phương pháp tổng quát thành kinh nghiệm giải toán của bản thân mình thông qua việc giải hàng loạt bài toán cụ thể. Từ phương pháp tìm lời giải bài toán đi tới cách giải một bài toán cụ thể còn là cả một chặng đường đòi hỏi lao động tích cực của người học sinh, trong đó có nhiều yếu tố sáng tạo. 1.3.4.Yêu cầu đối với lời giải bài toán phương trình vô tỷ Đây là vấn đề quan trọng trong quá trình rèn luyện kỹ năng giải toán. Vì rằng, từ chỗ tìm ra được phương hướng giải bài toán đến việc giải hoàn chỉnh bài toán là cả một quá trình rèn luyện bao gồm nhiều khâu: Từ việc nắm vững các kiến thức cơ bản về nội dung lý thuyết và các phương pháp thực hành đến 14
- Xem thêm -