Đăng ký Đăng nhập
Trang chủ Quy trình tổng quát sàng lọc thuốc hiệu năng cao...

Tài liệu Quy trình tổng quát sàng lọc thuốc hiệu năng cao

.DOC
24
222
61

Mô tả:

ĐH Y Dượ TPHCM Khoa Dượ  CHUYÊN ĐÊ HH MMN SINH HOC THHN ƯN ên ̣huyên đề: QUY RÌNH ỔNG QUÁ SÀNG LOC HUỐC HIỆU NĂNG CAO  Họ̣ viên H: Lớ: GVHD: TPHCM - 2016 1 1P Dân nhâ ̣́ Với tình hình bệnh tật ngày càng tăng và diễn biến phức tạp, nhu cầu thuốc sử dụng vì thế cũng tăng theo. Nhiều bệnh mới xuất hiện mà đến nay vẫn chưa có thuốc điều trị, cùng với tình hình kháng thuốc đã trở thành những vấn đề thách thức đối với các nhà nghiên cứu dược phẩm và các chuyên gia y tế. Việc nghiên cứu một thuốc mới từ ý tưởng ban đầu là một quá trình rất phức tạp, trung bình cần 10 đến 15 năm và tốn khoảng 1 tỷ USD. Phương pháp sàng lọc để tìm kiếm thuốc mới, phát triển từ phương pháp truyền thống hay còn gọi là phương pháp sàng lọc hiệu năng thấp (low-throughput screening – LTS) với hiệu quả thấp, một hợp chất tại một thời điểm, cho tới phương pháp sàng lọc hiệu năng cao (high-throughput screening – HTS) liên quan đến hệ thống robot hoàn toàn tự động, cho phép thử nghiệm một số lượng lớn các hợp chất cho các mục đích khác nhau trong một ngày. Hiện nay, HTS có khả năng sàng lọc hơn 100.000 mẫu mỗi ngày. So với phương pháp nghiên cứu thuốc truyền thống, HTS cho thấy nhiều ưu thế vượt trội như: đơn giản, nhanh, chi phí thấp, hiệu quả cao. HTS giúp đẩy nhanh quá trình tìm kiếm các hợp chất có tác dụng sinh học, trong đó bao gồm phương pháp tiếp cận thư viện của hàng chục ngàn hợp chất, sử dụng các xét nghiệm sinh hóa được hổ trợ bởi hệ thống tự động hóa, bao gồm các xét nghiệm thu nhỏ, sử dụng phát xạ huỳnh quang, cộng hưởng từ hạt nhân hay phương pháp phân tích các dữ liệu lớn. Sàng lọc hiệu năng cao đã được ứng dụng trong hai thập kỷ qua và đã trở thành một phương pháp tiêu chuẩn để phát hiện thuốc mới trong nghành công nghiệp dược phẩm. Vì vậy, mục tiêu của chuyên đề là tìm hiểu: “Quy trình tổng quát sàng lọ̣ thuộ́ hiệu năng ̣ao”P 2 2P ổng quan 2P1P Khái niệm H S và ứng dụng trong ̣ông nghệ dượ ́hẩm: HTS cơ bản là một quá trình sàng lọc và thử nghiệm số lượng lớn các bộ điều biến sinh học và cơ quan phản ứng lại kích thích với những mục tiêu xác định. Mục đích của HTS là để đẩy nhanh phát hiện hoạt chất có tác dụng sinh học, trong đó bao gồm một cách tiếp cận thư viê ̣n các hợp chất bao gồm hàng chục ngàn hợp chất đang thử nghiệm với một mục tiêu cụ thể bằng cách sử dụng một xét nghiệm sinh học định lượng thông qua việc sử dụng hê ̣ thống tự động hóa, xét nghiệm thu nhỏ, sử dụng phát xạ huỳnh quang, cô ̣ng hưởng từ hạt nhân, phân tích dữ liệu quy mô lớn. Hiện nay, kỹ thuật sàng lọc hiệu năng cao (HTS) trong việc tìm kiếm thuốc mới ngày càng được phát triển rộng rãi. HTS đã được ứng dụng để sàng lọc các hợp chất hóa học, gen, protein và các chuổi peptid. Có rất nhiều mục tiêu đang được thử nghiệm. Trong đó, các thụ thể màng tế bào, chủ yếu là protein-G chiếm 45%, enzyme chiếm 28%, kích thích tố 11%, ion-kênh 5%, các thụ hạt nhân 2% và cuối cùng DNA 2%, khác %. HTS đóng một vai trò thiết yếu trong quá trình phát triển thuốc. HTS cho phép đánh giá nhanh chóng dược lực của số lượng lớn các hoạt chất. Kết nối các thư viện hợp chất với sự đa dạng của hoá chất cùng với HTS cho thấy tiềm năng lớn phát hiện hoạt chất, nhưng để thành công kỹ thuật này phụ thuộc vào nhiều yếu tố: số lượng và chất lượng của các mục tiêu đã xác nhận, số lượng và sự đa dạng của các hợp chất trong các bộ sưu tập, sự kịp thời khi kiểm tra khả năng này và hiệu quả sử dụng các xét nghiệm ... Xác định các phân tử tiềm năng tốt bằng cách sử HTS có thể hạn chế tối đa các khoảng thời gian của phát hiện hoạt chất. Hầu hết các công ty dược phẩm và công nghệ sinh học sử dụng sàng lọc hiệu năng cao (HTS) là một chức năng trung tâm trong quá trình phát triển thuốc. Ngày càng tăng các mục tiêu điều trị xác nhận được phát hiện thông qua những tiến bộ trong nghiên cứu bộ gen của con người, và ngày càng nhiều các hợp chất hóa học được sản xuất thông qua HTS. [1] 2P2P Ưu điểm ̣ủa H S 3 Giảm thiểu chi phí nghiên cứu, giảm chất thải khảo nghiệm bằng cách cho phép việc sử dụng các xử lý mẫu song song và phương thức phát hiện. Ngăn chặn sự suy giảm nguồn cung cấp hợp chất, làm giảm lượng thuốc thử sử dụng. Để bao quát và thu nhỏ hơn nữa khảo nghiệm có thể tiến hành dựa trên hệ thống liên quan đến đĩa với mật độ cao hơn và khối lượng nhỏ hơn. Dễ dàng tự động hóa, kỹ thuật có độ nhạy cao để thực hiện dòng chảy liên tục. Áp dụng trên cơ sở công nghệ sinh học, nghiên cứu trên tế bào, không thực nghiệm trên động vật, trên người, không bị ràng buột bởi vấn đề đạo đức trong nghiên cứu. 2P3P Cạ́ thế hệ ̣ủa H S: 2P3P1P Thân loại theo Rịardo Mạarrón and Robert TP Hertzberg [10] Kiểu sàng lọ̣ Low-throughput Số lương Ví dụ mâu thử/ ngày 500 Thử nghiệm trên mô hình động vật, các xét nghiệm thông qua trung gian trao đổi chất của screening CYP, kết hợp với LC/MS/MS 500- 10.000 Khảo nghiệm bằng kỹ thuật chụp ảnh bằng Medium throughput kính hiển vi sự phát huỳnh quang của tế bào, xét screening nghiệm để xác định hoạt tính xúc tác của enzyme oxy tiêu thụ High-throughput 10.000-100.000 screening Ultra-high Phân tích ức chế phát huỳnh quang thuộc về enzyme >100.000 Thử nghiệm β-lactamase di động throughput screening 2P3P2P Thân loại theo Oliver Kayser and Heribert Warzẹha [8] 2P3P2P1P hế hệ thứ nhất hroungh́ut: bắt đầu xuất hiện từ năm 1993 với đĩa có 96 giếng. Đến năm 2000 sử dụng đĩa có 1536 giếng (bội số của 96). Số lượng mẫu từ 50.000 -200.000. Thể tích mỗi giếng từ 100 – 200 µl giảm xuống còn 2,5 – 10 µl 4 Công cụ sản xuất Phát triển KT khảo nghiệm Sàng lọc HTS II Công cụ sản xuất Phát triển KT khảo nghiệm Sàng lọc HTS I Sàng lọc ngược Thẩm định sàng lọc Mục tiêu Thư viện mẫu > 1,500,000 Sàng lọc ngược Thẩm định sàng lọc Danh sách trọng tâm 10,000 – 50,000 Tìm ra chất định hướng Tối ưu hóa chất định hướng Quá trình thực hiện: Khảo nghiệm 2P3P2P2P Điều chỉnh PP khảo nghiệm Sàng lọc HTS Tối ưu hóa chất định hướng hế hệ thứ hai Effịạy: kích thước thư viện mẫu từ 200,000 đến 1,500,000 mẫu, phát triển từ năm 2001 -2006, số lượng giếng trên mỗi đĩa lên tới 9600 giếng/đĩa, thể tích mẫu 0,2 µl. Nhưng phải đối mặt với một số vấn đề kỹ thuật chẳng hạn như độ nhạy cảm với nồng độ Dimethylsulfoxide và những hạn chế trong pha chế thể tích nhỏ và yêu cầu giám sát sự bốc hơi. Sơ đồ thực hiện: Mục tiêu Công cụ sản xuất Phát triển PP khảo nghiệm Sàng lọc HTS Sàng lọc ngược Tìm ra chất định hướng Tối ưu hóa chất định hướng 2P3P2P3P hế hệ thứ ba Flexibility: xuất hiện từ năm 200 đến nay, số lượng mẫu có thể thực hiện được từ 1,500,000 mẫu trở lên 5 Hình 2P1P Các thế hệ HTS [ ] 6 3P Nô ̣i dung Quy trình tổng quát sàng lọc thuốc hiệu năng cao dựa trên công nghệ sinh học phân tử gồm các bước cơ bản sau: 3P1P Xạ́ định mụ̣ tiêu thử nghiệm [2] Mục tiêu thử nghiệm là các thành phần cụ thể tồn tại sẵn có trên các tế bào bệnh lý hoặc trên các cấu trúc phân tử mà chịu trách nhiệm đối với bệnh; Mục tiêu thử nghiệm có thể là receptor, enzyme, axit nucleic, hormon, các kênh ion… Mục tiêu thử nghiệm phụ thuộc vào bệnh mà nhà nghiên cứu đó quan tâm. Hiện nay, thụ thể bắt cặp với protein-G (G protein-coupled receptor - GPCR) là một họ lớn đã được xác định và mã hóa hơn 600 gen đã được xác định. Trong cơ thể con người, GPCR chịu trách nhiệm cho khoảng 30 bệnh bao gồm đái tháo nhạt, nhược giáp, cường giáp, viêm võng mạc sắc tố, một số rối loạn sinh sản và thậm chí cả ung thư. Khoảng 150 họ thụ thể bắt cặp với protein-G (GPCRs) tìm thấy trong cơ thể con người có chức năng chưa rõ. 3P1P1P Đặ̣ điểm ̣ủa mụ̣ tiêu thử nghiệm: [11]  Các mục tiêu thử nghiệm là các phân tử sinh học, thông thường là một loại protein và protein đó có thể ở dạng đơn giản hoặc ở dạng phức hợp.  Các phân tử sinh học có các vị trí đặc biệt để gắn với các phân tử khác (thường là những phân tử nhỏ có cấu trúc đặc biệt). Những phân tử này có thể là nội sinh bên trong cơ thể hoặc những chất bên ngoài cơ thể như phân tử hóa học (thuốc).  Cấu trúc phân tử sinh học có thể thay đổi khi các phân tử sinh học liên kết với những phân tử nhỏ và những thay đổi trong cấu trúc thường là thuận nghịch.  Sau khi có sự thay đổi trong cấu trúc của các phân tử sinh học những phản ứng sinh lý khác nhau có thể xảy ra và gây ra các điều chỉnh trạng thái của tế bào, mô, cơ quan hoặc cơ thể.  Các phản ứng sinh lý gây ra bởi những thay đổi trong cấu trúc phân tử sinh học đóng một vai trò quan trọng trong việc điều trị bệnh.  Các biểu hiện, hoạt động và cấu trúc của các phân tử sinh học có thể thay đổi theo thời gian của quá trình bệnh lý.  Các phân tử nhỏ liên kết với các phân tử sinh học là thuốc. 3P1P2P Cạ́ loại mụ̣ tiêu thử nghiệm: Có 483 mục tiêu thử nghiệm đang được sử dụng, trong đó có các thụ thể (45%), enzyme (28%), hormon (11%), chưa rõ ( %), kênh ion (5%) thụ thể ở nhân (2%) và AND (2%) (Drews, 2000) Hình 3P1P Các loại mục tiêu thử nghiệm 3P1P3P Mụ̣ đị́h ̣ủa việ̣ xạ́ định mụ̣ tiêu thử nghiệm: Tùy vào các xu hướng tìm kiếm thuốc phân tử nhỏ mà việc xác địch mục tiêu thử nghiệm có mục đích khác nhau: 3P1P3P1P Sàng lọ̣ dựa vào mụ̣ tiêu thử nghiệm ( arget-base Ṣreening) Xác định mục tiêu thử nghiệm là nền tảng của sàng lọc dựa vào mục tiêu thử nghiệm. Hầu hết các thuốc làm việc bằng cách gắn vào một mục tiêu cụ thể. Vì vậy, nếu muốn tìm kiếm một loại thuốc mới thật sự, điều đầu tiên cần phải làm là tìm một mục tiêu mới. Bước tiếp theo là tìm các phân tử nhỏ mà gắn với mục tiêu này, tốt hơn là càng cụ thể càng tốt. Quy trình này dường như là có tính đổi mới và khoa học mà 8 các cộng đồng nghiên cứu dược phẩm đã mơ ước trong nhiều thập kỷ. Với những nỗ lực to lớn, một số thậm chí đã thành công trong việc đưa ra các loại thuốc theo cách này (ví dụ mercaptopurine và cimetidine). Tuy nhiên nhiều nhà khoa học trong lĩnh vực này, đặc biệt các nhà sinh học phân tử và nhà quản lý trẻ, sẽ thấy một sự bùng nổ của các loại thuốc mới chống lại bệnh tật trước đây không thể chữa được. Nhưng ngày nay, hầu hết các bệnh vẫn còn đó, và điều duy nhất mà thực sự bùng nổ là chi phí để tìm ra và phát triển các loại thuốc mới. Sàng lọc dựa vào mục tiêu thử nghiệm hiện nay còn nhiều và nhiều hơn nữa câu hỏi. Mặc dù xu hướng này chắc chắn dẫn đến nhiều thành công tuy nhiên nó đã thất bại nhiều hơn so với dự kiến phương thức này là tuyệt vời ở in vitro nhưng lại tai hại trong lâm sàng do thiếu hiệu quả hoặc độc tính bất ngờ. 3P1P3P2P Sàng lọ̣ kiểu hình (Thenotýị Ṣreening) [6] Sàng lọc kiểu hình là một loại sàng lọc được sử dụng trong nghiên cứu và tìm kiếm thuốc để xác định các chất như các phân tử nhỏ, peptide, hoặc RNAi để can thiệp làm thay đổi kiểu hình của một tế bào hoặc một cơ quan. Hầu hết các sàng lọc kiểu hình ngày nay vẫn còn được thực hiện trong các tế bào. Một lần nữa, chúng ta phải ý thức được rằng tế bào là gần giống với các mô và cơ quan. Và các tế bào trong phòng thí nghiệm-thường được làm bằng các dòng tế bào ung thư không chết, có thể thao tác để bắt chước một căn bệnh - có thể hoạt động hoàn toàn khác biệt so với các tế bào bình thường. Tuy nhiên, những tế bào sàng lọc kiểu hình có nhiều lợi thế hơn so với sàng lọc sinh hóa. Một lợi thế lớn là trong một tế bào, mục tiêu ở trong điều kiện sinh học bình thường của nó: nó hiện diện trong khoang thực sự của các tế bào, ở nồng độ thật và trong con đường điều hòa và trao đổi một cách hoàn chỉnh. Một lợi thế thứ hai là các tế bào chứa nhiều mục tiêu. Ngược lại, trong sáng lọc sinh hóa chỉ kiểm tra một mục tiêu được biết đến vào một thời điểm và nó có thể mất nhiều năm để thiết lập một thử nghiệm cho một protein thứ hai. Một lợi thế thứ ba là sàng lọc kiểu hình thành công xác định các tiền chất, mà không cần phải được chuyển đổi sang các hoạt chất bởi các tế bào chủ hoặc một tế bào vi khuẩn. Tiền chất không thực hiện được bằng các thử nghiệm sinh hóa. Trong trường hợp sử dụng sàng lọc kiểu hình để tìm các hoạt chất, việc xác định xác định các mục tiêu rất hữu dụng. Đầu tiên, xây dựng một SAR dựa trên cách đo 9 bằng một xét nghiệm sinh hóa sẽ cho một kết quả tốt hơn bởi vì bạn loại trừ tất cả các biến thể gây ra do sự xuyên qua tế bào, ngoài mục tiêu gắn kết, sự phân chia tế bào....Thứ hai, khi các cấu trúc 3D của các mục tiêu có sẵn, mô hình phân tử có thể hỗ trợ các SAR. Thứ ba, biết các mục tiêu cũng có thể giúp trong việc tìm ra các độc tính và đường đi trong các mô hình của con người và động vật. Thứ tư, khó khăn hơn để có được sự chấp thuận của các cơ quan trong và ngoài công ty về một hợp chất mà không có một mục tiêu. Trong trường hợp sử dụng sàng lọc kiểu hình như là một cách để tìm mục tiêu mới, vai trò của việc xác định mục tiêu là hiển nhiên. Cách tiếp cận này để tìm kiếm mục tiêu mới trở thành một lựa chọn hợp lý vì ba lý do. Trước tiên, đó là tăng khả năng tăng để đọc ra nhiều kiểu hình phức tạp hơn. Thứ hai, phương pháp để xác định một mục tiêu đang trở nên ngày càng hiệu quả. Và thứ ba, mục tiêu tìm thấy thông qua sàng lọc kiểu hình có nhiều khả năng thành công hơn. Hình 3P2P Hai phương pháp xác định mục tiêu thử nghiệm 10 3P1P4P Thương ́há́ xạ́ định mụ̣ tiêu thử nghiệm Có nhiều phương pháp để xác định các mục tiêu của thuốc và các lĩnh vực là dựa trên sự phát triển nhanh chóng của những kỹ thuật như sinh học phân tử, kính hiển vi, tự động hóa và tin học. Không có phương pháp hay hướng dẫn có thể được áp dụng cho tất cả các mục tiêu. 3P1P5P hẩm định mụ̣ tiêu thử nghiệm: [5] Thẩm định mục tiêu mới là một quá trình cơ bản, hoàn toàn mới và là bước đầu để tìm ra thuốc. Thẩm định mục tiêu của thuốc có thể giúp rất nhiều không chỉ để nghiên cứu và phát triển thuốc mới mà còn cung cấp cái nhìn sâu sắc hơn về cơ chế bệnh sinh của mục tiêu liên quan đến bệnh. Về cơ bản, quá trình thẩm định mục tiêu có thể bao gồm sáu bước sau: 1. Phát hiện một phân tử sinh học quan tâm. 2. Đánh giá tiềm năng của phân tử sinh học như là một mục tiêu. 3. Thiết kế một xét nghiệm sinh học để đo lường hoạt động sinh học. 4. Xây dựng một sàng lọc hiệu năng cao. 5. Thực hiện sàng lọc để tìm hits. 6. Đánh giá các hits. Các mục tiêu của thuốc phải được thẩm định bằng thực nghiệm theo các mô hình hoạt động. Thẩm định là trực tiếp liên kết dữ liệu với các hiệu quả trên lâm sàng (ví dụ: các thí nghiệm trong các tế bào/ mô người). Những nghiên cứu về chức năng có thể áp dụng các quy trình can thiệp làm thay đổi cấu trúc của gen (gene knockdown hay knockout). Ở In vitro các nghiên cứu về chuyển hóa trên tế bào có thể được sử dụng để phát hiện hay điều chỉnh các đặc điểm của các mục tiêu và các con đường mà mục tiêu đã tham gia. Cuối cùng, cần đánh giá mối liên quan của một mục tiêu cụ thể với các bệnh trên mô hình động vật. Giả sử rằng chức năng di truyền giữa chuột và con người là như nhau và tồn tại các mô hình bệnh thích hợp thì quy trình can thiệp làm thay đổi cấu trúc của gen (knockout hay transgenic) động vật có thể được sử dụng để thẩm định mục tiêu. Tuy nhiên, trên invivo việc thẩm định mục tiêu trên con người không phải là không rủi ro. Trong khi đó, một số mô hình hứa hẹn là hiệu quả khi sử dụng ở người, một số mô hình khác cho thấy sự khác biệt lớn. Hơn nữa, một số bệnh 11 bị hạn chế chỉ có trên các loài linh trưởng, trong khi hầu hết các nghiên cứu chuyển hóa trên động vật được thực hiện ở các loài gặm nhấm. Chuyển sang sự tìm kiếm thuốc thật sự, các interleukin (IL) -2-cảm ứng tyrosine kinase (ITK) có thể là một khái niệm mới mẻ trong điều trị các bệnh viêm da. ITK tác động một cách chọn lọc trong các mô bệnh. Nó hiện diện chủ yếu là trong các tế bào T và được tăng lên trong các da thương tổn từ bệnh nhân với viêm da. RNA silencing đã được áp dụng như là một xu hướng để thẩm định mục tiêu và được tiếp tục bởi các nghiên cứu in vivo (tức là trong một quy trình can thiệp thay đổi cấu trúc gen knockout của ITK trên chuột). Hơn nữa, một chất ức chế SMOL đã xác định chắc chắn vai trò của kinase này trong các mô hình bệnh tật. Đánh giá Druggability Các phương pháp để đánh giá druggability protein bao gồm các phương pháp tìm hiểu trình tự liên quan đến các protein cũng như các cấu trúc 3D của protein. Những mục tiêu của thuốc đã biết cấu trúc 3D có thể được tìm thấy trong cơ sở dữ liệu mục tiêu thuốc tiềm năng (http: //www.dddc.ac.cn/pdtd/). Biết cấu trúc 3D là một thuận lợi để đánh giá mục tiêu của thuốc vì nó cho phép dự đoán điểm gắn liên kết tiềm năng cho SMOL, việc dự đoán này được thực hiện bởi công cụ tìm kiếm druggability dựa trên cấu trúc cung cấp bởi EMBL-EBI (https://www.ebi.ac.uk/chembl/drugebility). Bên cạnh dự ðoán của druggability, ðánh giá một SMOL mục tiêu tiềm nãng gồm các phân tích các mặt xúc tác và/hoặc các chức nãng và phân tích các vấn đề chọn lọc so với các protein khác với các điểm gắn tương tự 3P2P hành lậ́ thư viện sàng lọ̣ [9]: 3P2P1P Đĩa thử nghiệm Các đĩa thử nghiệm (microplate) được biết đến với nhiều tên khác nhau như microtiter plate (MTP) hoặc multiwell đều có nghĩa là các đĩa với nhiều giếng. Đĩa đầu tiên được tìm ra vào năm 1951 như một thiết bị nhỏ được sắp xếp 8x12. Đĩa đầu tiên được đúc gồm 96 giếng đã được thực hiện vào năm 1963. Các đĩa đã được sử dụng phổ biến vào cuối những năm 1960s. Đến những năm 1990s, các đĩa có nhiều định dạng cũng như hình dạng khác nhau. Năm 1996, Hiệp hội sàng lọc sinh học phân tử (SBS) đã đề xuất tiêu chuẩn hóa kích thước đĩa với khoảng cách từ trung tâm đến trung tâm của các giếng là 9 mm đối với bản mỏng 96 giếng, chân bên ngoài 12 , 6 x 12 85.4 mm và chiều cao tiêu chuẩn của giếng là 14,35 mm. Năm 2003, Tiêu chuẩn SBS được ANSI chấp thuận. Các đĩa là nền tảng chính cho nghiên cứu phân tích sinh học, xét nghiệm chẩn đoán lâm sàng và HTS ngày nay Các đĩa sử dụng ngày nay: Bảng 3P1P Định dạng, kích thước và thể tích sử dụng của đĩa Loại đĩa Định Khoảng ̣ạ́h Bội số ̣ủa hể tị́h sử dạng trung tâm (mm) 96 dụng (µL) 96 8 x 12 9.0 1 x 96 100 – 300 384 thể tích bình thường 16 x 24 4.5 4 x 96 5 – 100 384 thể tích thấp 16 x 24 4.5 4 x 96 1 – 10 1536 32 x 48 2.25 16 x 96 1 – 10 3456 48 x 2` 1.5 36 x 96 0.2 – 3 Đĩa 384 giếng (thể tích bình thường) là loại đĩa được sử dụng phổ biến nhất hiện nay (2005) để sàng lọc và dự kiến sẽ tiếp tục như vậy đến năm 2008. Tuy nhiên, đến năm 2008 sử dụng đĩa 1536 giếng và 384 giếng thể tích thấp cũng được dự kiến sẽ vượt qua bản mỏng 96 giếng. Và vào năm 2008, nhiều hơn sáu trong số 10 người dùng sẽ sử dụng một sự kết hợp giữa đĩa 384 (thể tích bình thường) hay 384 giếng (thể tích thấp) và các bản mỏng 1536 cho thử nghiệm của họ. Chỉ có 5% sẽ sử dụng đĩa 3456 giếng và khoảng 10% các định dạng khác (chủ yếu là hệ thống vi lỏng). 3P2P2P Cơ ̣hế ́hân ́hối ̣hất lỏng vào ̣ạ́ đĩa Hiện nay có bảy cơ chế phân phối được sử dụng trong ứng dụng sàng lọc tự động: 3P2P2P1P Air-diśalement Bơm pit tông và không khí là cơ chế phân phối sử dụng phổ biến nhất trên pipet. Những hệ thống này dựa trên một pit tông hoặc cán piston vận hành bằng sự giữ lại của một ống tiêm, hình trụ hoặc một đầu khóa rắn với nhiều lõi. Chuyển động của pit tông ra khỏi ống tiêm làm cho chất lỏng được hút vào và đảo ngược hướng pít tông làm chất lỏng bị tống ra (phân phối). Trong một hệ thống dịch chuyển khí (airdispalement) chất lỏng không bao giờ chạm vào pit tông, có một khoảng không khí giữa chất lỏng và pit tông. Trong một hệ thống bơm pit tông tích cực có thể không có khoảng cách không khí giữa pít tông và các chất lỏng được phân phối, toàn bộ khoảng 13 không khí hoặc phần lớn có thể được thay thế bằng một hệ thống chất lỏng không trộn lẫn được với chất lỏng mà được phân phối. Cơ chế phân phối dịch chuyển khí được sử dụng phần lớn trong các 96- và 384 kênh pipetters 3P2P2P2P ool ́in Tool pin dựa trên sự di chuyển giọt chất lỏng mà bám chặt vào đầu của đinh ghim (pin). Diện tích bề mặt của đầu xác định thể tích của giọt, trong đó khoảng tương đương với thể tích di chuyển. Công cụ Pin đại diện cho một phương pháp phân phối tiếp xúc, đòi hỏi phải có sức căng bề mặt để loại bỏ các giọt từ mũi của đầu ghim. Bên cạnh các ghim bằng chất rắn, còn có các loại khác như rãnh, khe và ghim với các lõi mao quản rổng để giữ chất lỏng mà được phân phối. Sự phân phối khác nhau giữa các pin từ lâu đã là một vấn đề và nó thường được công nhận là chính xác [Hệ số biến thiên (CV)] của pin pha chế là ở phía cao. Sự thay đổi khác nhau của pin như chất phủ bề mặt đầu và trục pin). Công cụ pin không phù hợp với khối lượng lớn hơn 500 nL và khối lượng phân phối tối thiểu là khoảng 5 nL. 3P2P2P3P Nhu động (Teristaltis ́uḿ) Bơm nhu động hoạt động theo cơ chế liên quan đến một ống được nén và kẹp giữa một hình trụ quay với mái chèo và một bề mặt cố định. Khi xi lanh quay, các mái chèo di chuyển dọc theo ống nén và làm cho các chất lỏng chạy dọc theo ống. 3P2P2P4P Solenoid-syringe Trong một phân phối solenoid-syringe, ống tiêm được sử dụng để hút mẫu. Việc hút chất lỏng xảy ra thông qua các van mở. Một vòi phun hoặc đầu dùng một lần được sử dụng cho các van để hướng dòng và điều chỉnh kích thước giọt. Áp lực mở van tạo ra các giọt chất lỏng có kích thước nanolit. Kiểm soát chính xác về thời gian mở van cho phép điều chỉnh thể tích phân phối. Thông thường một hệ thống bao gồm 1-8 solenoid-syringe để dẫn lưu chất lỏng. Mỗi solenoid-syringe có khả năng phân phối một cách độc lập một chất lỏng và / hoặc một thể tích khác nhau. Solenoid- syringe chủ yếu được sử dụng để phân phổi khoảng 5 nL-50 L, nhưng thể tích phân phối chính xác tùy thuộc vào dung tích bơm tiêm và kích thước của lỗ vòi phun. 3P2P2P5P Cáillary Sí́er Cơ chế của phương pháp này đó là nhúng một mảng gồm 96 hoặc 384 mao quản thủy tinh polyamide vào trong một bản mỏng nguồn, mao quản được làm đầy bằng sự 14 mao dẫn và được phân phối (phóng chất lỏng) vào bản mỏng đích bằng cách sử dụng áp lực suất đến từ phía sau của mao quản. Thể tích phân phối được xác định bằng thể tích của các mao quản và kỹ thuật sử dụng. Ưu điểm của kỹ thuật này là sự đơn giản; không có bộ phận chuyển động như trong bơm tiêm và không pha loãng hoặc mất mẫu trong quá trình truyền. 3P2P2P6P Tiezoelẹtrị Piezoelectric thường bao gồm một ống mao quản thủy tinh hay thạch anh được nối với một máy áp điện. Một đầu của các mao mạch được mở và kéo dài vào trong một đầu nhỏ và đầu kia được gắn vào hệ thống chất lỏng (bơm tiêm hay hồ chứa). Khi cơ chế áp điện được kích hoạt thông qua một xung điện và cảm ứng sóng nén tạo ra giọt có kích thước nanolit từ đầu mao quản. Sử dụng một điện áp cụ thể cho phép phân phối và điều chỉnh một thể tích chính xác đến nanolit. 3P2P2P7P Ạoustị ransdụer Các thiết bị này phân phối theo cơ chế phân phối không tiếp xúc (tức là sự phóng thích của giọt chất lỏng từ một nguồn mà các yếu tố phân phối không xâm nhập vào nguồn hoặc tiếp xúc với các chất nền). Kỹ thuật này tạo ra giọt chất lỏng trong phạm vi thể tích từ 0,1 pL đến hơn 1 mL. Những ưu điểm của cơ chế này là không ô nhiễm chéo và không có chất thải. 15 Hình 3P3P Kỹ thuật phân phối chất lỏng [3] 3P2P3P Kỷ thuật ́hân ́hối và những ứng dụng xử lý ̣hất lỏng trong H S 3P2P3P1P Sự thêm vào hàng loạt thuộ́ thử và tế bào Bổ sung số lượng lớn thuốc thử được yêu cầu khi một thử nghiệm sinh hóa hoặc tế bào có 2-5 thành phần giống với nhau. Các khoảng thể tích thử nghiệm và thể tích thêm vào cho các định dạng đĩa được đưa ra trong bảng 3.2. Thông thường tất cả các giếng nhận các thành phần tương tự; Tuy nhiên, phân phối trong những hàng hoặc cột được chọn có thể được điều chỉnh khác nhau. 16 Bảng 3P2P Tổng thể tích thử nghiệm và thể tích thêm vào của các loại đĩa Loại đĩa ổng thể tị́h thử nghiệm hể tị́h thêm vào (µL) (µL) 96 25 – 300 5 – 100 384 thể tích bình thường 10 – 100 5 – 50 384 thể tích thấp 2 – 20 0.5 – 5 1536 2 – 10 0.5 – 3 Hiện nay có 2 loại phân phối thuốc thử số lượng lớn: (1) 96- và 384 đầu dựa trên cơ chế phân phối air-displacement - có khả năng hút và phân phối vào tất cả các giếng của đĩa cùng một lúc. Nếu nguồn của thuốc thử cần hút là một đĩa (không phải là một hồ chứa chung), nó có thể phân phối theo một mô hình thuốc thử cụ thể của các bản mỏng. (2) 8, 16 và 24 đầu dựa trên cơ chế phân phối nhu động, syringesolenoid hoặc solenoid-pressure bottle. Chất lỏng thường được cung cấp từ một hồ chứa hoặc chai và đầu phân phối được cố định bằng các vòi phun có đường kính phù hợp với thể tích phân phối mong muốn. Chúng ta có thể thay đổi đầu / vòi phun có dung tích khác (ví dụ thấp). Các thiết bị thường phân phối vào một cột hoặc một hàng cùng một thời điểm và di chuyển ngang hoặc xuống trên bản mỏng. Nhiều đầu có thể được nhóm lại và phân phối song song với nhau, với các đầu/chất lỏng phân phối riêng biệt sẽ phân phối cho mỗi thuốc thử hoặc các thành phần thử nghiệm riêng biệt. 3P2P3P2P Coḿound Reformatting và ́hân ́hối Nanolite Compound Reformatting là việc chuyển giao một hợp chất (mẫu) từ một kho thư viện bản mỏng. Những mẫu dự trữ, được hòa tan trong 100% DMSO, được bảo quản trong những bản mỏng 96 hoặc 384 giếng mà thường được gọi là những "bản mỏng mẹ". Những bản mỏng thử nghiệm hoặc bản mỏng pha loãng thường được gọi là "bản mỏng con". Sự phân phối thể tích thấp (<50 nL) là điều cần thiết cho Compound Reformatting vì những lý do sau đây: (1) ngành công nghiệp hiện đang tập trung vào việc sử dụng ít hóa chất trên điểm dữ liệu thử nghiệm; (2) hầu hết các phòng thí nghiệm muốn chuyển mẫu từ bảo quản DMSO nguyên chất sang thử nghiệm thể tích thấp (<5 L); (3) nồng độ DMSO cần được giữ ở mức thấp (thường <1% là mong muốn cho các thử nghiệm liên quan đến tế bào); (4) trong hầu hết các trường hợp, nồng độ mẫu càng cao càng tốt; (5) mẫu không chắc chắn tồn tại mếu được pha loãng trong 1 dung dịch đệm là nước; và (6) chuẩn bị các bản mỏng thử nghiệm bằng cách pha loãng trực tiếp thì tốt hơn vì tiết kiệm được hóa chất, các bước pha loãng, tiền. 3P2P3P3P Cherry Tịking Cherry Picking là khả năng hút mẫu từ một giếng của bản mỏng được lựa chọn và phân phối đến một giếng được xác định trước trong bản mỏng khác. Cherry picking được sử dụng để chọn lựa những chất tiềm năng từ một bản mỏng mẹ dự trữ và chuyển chúng vào một bản mỏng để kiểm tra lại trong quá trình xác nhận lại những chất tiềm năng. 3P2P4P Những kỹ thuật ́hát hiện Những phương thức phát hiện chính được sử dụng trong HTS: Huỳnh quang (52% của tất cả các thử nghiệm sàng lọc), Sự phát quang - Luminescence (19%), đo bức xạ (13%), hấp thụ - trắc quang hoặc so màu (8%), các phương thức phát hiện khác (8%) 3P2P5P Những kỹ thuật sàng lọ̣ tự động (Chen, 2010) 3P2P5P1P Bảo quản đĩa hớ ̣hất và đĩa thử nghiệm trong tủ ấm: Những hợp chất sàng lọc sơ cấp thường được hòa tan trong DMSO và lưu trữ trong những đĩa 96-, 384-, và 1536 giếng. Các đĩa cần được giữ trong tủ đông - 0oC để lưu trữ lâu dài và có thể kéo dài đến 10 năm. Các đĩa hợp chất, được bao phủ với nắp hàn kín khí hoặc hàn kín nóng, được lưu giữ trong một đơn vị đĩa lưu trữ ở nhiệt độ phòng sẵn sàng để hệ thống robot sàng lọc sử dụng. Thông thường, các hợp chất trong dung dịch DMSO có thể được bảo quản ở nhiệt độ phòng trong 3-6 tháng mà không ảnh hưởng nhiều đến chất lượng của các hợp chất. Những chu kỳ đông-tan rã thường xuyên và lưu trữ ở 4oC đến -40oC nên tránh cho các hợp chất trong dung dịch DMSO vì những điều kiện này đẩy nhanh tiến độ phân hủy các hợp chất. Những hợp chất có trong dung dịch nước nên được sử dụng khi vừa mới pha loãng và không nên được lưu trữ trong bất kỳ điều kiện nào, vì nhiều hợp chất sẽ bị phân hủy. 3P2P5P2P Cạ́ thiết bị đọ̣ ̣ạ́ đĩa thử nghiệm Sau khi những đĩa thử nghiệm được ủ với các hợp chất và thuốc thử phát hiện, chúng được chuyển đến một đầu đọc đĩa để đo lường kết quả. Việc lựa chọn các chế độ phát hiện tại một đầu đọc đĩa được xác định bởi bản chất của thử nghiệm sàng lọc. 18 Hiện nay, hơn 95% các xét nghiệm sàng lọc sử dụng hệ thống phát hiện cũng dựa trên đo tín hiệu từ toàn bộ giếng trong một thử đĩa nghiệm. Cường độ huỳnh quang, huỳnh quang phân cực, huỳnh quang phân giải thời gian, hấp thụ, và độ sáng là những phương pháp phổ biến để phát hiện trong các thử nghiệm sàng lọc. Thiết bị đọc nhiều đĩa cùng một lúc là một lựa chọn phổ biến cho sàng lọc thử nghiệm mà đòi hỏi phải thường xuyên thay đổi các chế độ phát hiện. Dựa trên trên các thiết bị phát hiện tín hiệu, đầu đọc đĩa cũng có thể chia thành hai loại: dựa trên đèn nhân quang điện (PMT-Photomultiplier tube) và dựa trên linh điện tích điện kép (CCD-charge-coupled device) Thiết bị đọc dựa trên PMT gồm các tia đi qua qua một bộ lọc ánh sáng kích thích và được chiếu đến giếng mẫu thông qua một gương lưỡng sắc. Các tia phát xạ đi qua gương lưỡng sắc và bộ lọc sau đó được đọc bởi máy dò. Trình tự này lặp đi lặp lại cho mỗi giếng mẫu. Các thiết bị đọc đĩa dựa trên PMT có chi phí tương đối thấp và cung cấp độ nhạy phát hiện cao hơn. Các thiết bị CCD (cảm biến chuyển đổi hình ảnh quang học sang tín hiệu điện trong các máy thu nhận hình ảnh) được coi là công cụ "cao cấp" cho phép tốc độ phát hiện nhanh và tính biến thiên của các giếng thấp, vì các thiết bị này ghi lại hình ảnh của toàn bộ đĩa. Dụng cụ này là một lựa chọn tốt cho những thử nghiệm thu nhỏ (1536 giếng) 19 Hình 3P4P Cơ chế của hệ thống đọc đĩa thử nghiệm PMT và CCD 3P2P5P3P Những nền tảng sàng lọ̣ hớ ̣hất: Máy trạm và hệ thống robot tự động hoàn toàn Dựa trên số lượng hợp chất sàng lọc mỗi ngày, một phòng thí nghiệm sàng lọc có thể chọn một máy trạm hoặc hệ thống sàng lọc tự động hoàn toàn (Hình 11.3) (Hamilton, 2002). Một sàng lọc dựa trên nền tảng máy trạm có thể được thiết lập một cách nhanh chóng và chi phí thấp. Các sàng lọc hiệu năng với một nền tảng máy trạm là tương đối nhỏ, thường là 20 đến 100 đĩa mỗi ngày trong 8 giờ. Một hệ thống robot sàng lọc tự động hoàn toàn đòi hỏi 6-12 tháng để thiết lập đầy đủ và đầu tư tối thiểu của hàng triệu đô la. Và chúng hoạt động liên tục (24 giờ mỗi ngày, ngày mỗi tuần) và đạt được lưu lượng của 100 đến 600 đĩa trong 24 giờ. 20
- Xem thêm -

Tài liệu liên quan