Đăng ký Đăng nhập
Trang chủ Phương trình tích phân fredholm loại ii...

Tài liệu Phương trình tích phân fredholm loại ii

.PDF
53
296
119

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC MA VĨNH HUY PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI II Chuyên ngành: TOÁN ỨNG DỤNG Mã số: 60.46.01.12 LUẬN VĂN THẠC SĨ TOÁN HỌC Giáo viên hướng dẫn: TS. NGUYỄN VĂN NGỌC THÁI NGUYÊN - NĂM 2014 i Mục lục Mục lục i Lời cảm ơn ii Mở đầu 1 1 Phương trình tích phân với nhân suy biến 3 1.1 Một số không gian hàm . . . . . . . . . . . . . . . . . . . . 3 1.2 Khái niệm về phương trình Fredholm . . . . . . . . . . . . 5 1.3 Phương trình tích phân với nhân suy biến . . . . . . . . . . 6 2 Phương pháp xấp xỉ liên tiếp và xấp xỉ đều 15 2.1 Phương pháp thay thế liên tiếp . . . . . . . . . . . . . . . . 15 2.2 Phương pháp xấp xỉ liên tiếp . . . . . . . . . . . . . . . . . 19 2.3 Phương pháp xấp xỉ đều . . . . . . . . . . . . . . . . . . . 28 3 Các định lý Fredholm 33 3.1 Dẫn luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Định lý Fredholm thứ nhất . . . . . . . . . . . . . . . . . . 40 3.3 Định lý Fredholm thứ tư . . . . . . . . . . . . . . . . . . . 40 3.4 Định lý Fredholm thứ hai . . . . . . . . . . . . . . . . . . . 43 3.5 Định lý Fredholm thứ ba . . . . . . . . . . . . . . . . . . . 45 Kết luận 48 Tài liệu tham khảo 49 ii Lời cảm ơn Trong suốt quá trình làm luận văn, tác giả luôn nhận được sự hướng dẫn và giúp đỡ của TS. Nguyễn Văn Ngọc. Thầy đã dành nhiều thời gian chỉ bảo rất tận tình, hướng dẫn và giải đáp các thắc mắc của tôi trong suốt quá trình làm luận văn. Tác giả xin chân thành bày tỏ lòng biết ơn sâu sắc đến Thầy và kính chúc thầy luôn luôn mạnh khỏe. Tác giả xin chân thành cảm ơn Ban Giám hiệu, phòng Đào tạo Khoa học và Quan hệ quốc tế, Khoa Toán - Tin trường Đại học Khoa học, Đại học Thái Nguyên, Viện Toán học và quý thầy cô tham gia giảng dạy lớp cao học khóa 6 (2012 - 2014) đã quan tâm, giúp đỡ và mang đến cho tôi nhiều kiến thức bổ ích trong suốt thời gian học tập tại trường. Tác giả xin chân thành cảm ơn gia đình, các anh chị em học viên lớp cao học toán K6 và bạn bè đồng môn đã giúp đỡ tác giả trong quá trình học tập tại Đại học Thái Nguyên và trong quá trình hoàn thiện luận văn cao học. Thái Nguyên, tháng 8 năm 2014 Tác giả Ma Vĩnh Huy 1 Mở đầu Toán học là một môn học gắn liền với thực tiễn, bởi toán học bắt nguồn từ nhu cầu giải quyết các vấn đề có nguồn gốc từ thực tiễn. Cùng với thời gian, toán học ngày càng phát triển và được chia làm hai lĩnh vực: Toán học lý thuyết và toán học ứng dụng. Trong lĩnh vực toán học ứng dụng, thường gặp rất nhiều bài toán dẫn đến những phương trình trong đó hàm chưa biết chứa dưới dấu tích phân. Những loại phương trình đó được gọi là phương trình tích phân. Đây được xem như là một công cụ toán học hữu ích có ứng dụng rộng rãi không chỉ trong toán học mà còn trong nhiều ngành như vật lí, cơ học và các ngành khoa học kĩ thuật khác ví dụ như nghiên cứu phương trình tích phân nhằm giải phương trình vi phân với các điều kiện biên xác định hay giải quyết một số vấn đề vật lí như hiện tượng khuếch tán, hiện tượng truyền, . . . Vì vậy việc nghiên cứu các phương trình tích phân đóng vai trò quan trọng trong toán học. Hai loại phương trình tích phân rất quan trọng được nghiên cứu và phát triển vào những năm đầu của thế kỷ 20 là phương trình tích phân Fredholm loại II và phương trình tích phân Volterra. Luận văn này trình bày môt số vấn đề lý thuyết của phương trình tích phân Fredholm loại II. Với đề tài "Phương trình tích phân Fredholm loại II", tác giả trình bày các khái niệm cơ bản về phương trình Fredholm, các định lý Fredholm, sự tồn tại nghiệm của phương trình phương trình tích phân Fredholm loại II trong trường hợp nhân suy biến, sử dụng phương pháp thay thế liên tiếp, xấp xỉ liên tiếp, xấp xỉ đều cho phương trình này. Luận văn gồm có phần Mở đầu, Ba chương, Kết luận và Danh mục các tài liệu tham khảo. Chương 1: Phương trình tích phân với nhân suy biến . Chương này trình 2 bày các không gian hàm khả tổng cơ bản, các khái niệm cơ bản về phương trình Fredholm. Nội dung chính của chương này là trình bày cách giải phương trình Fredholm (loại II) với nhân suy biến (tách biến). Chương 2: Phương pháp xấp xỉ liên tiếp và xấp xỉ đều. Mục đích của chương này là trình bày một số phương pháp giải các phương trình tích phân Fredholm loại II, là phương pháp thế liên tiếp, phương pháp xấp xỉ liên tiếp, phương pháp xấp xỉ đều và các ví dụ minh họa. Chương 3: Các định lý Fredholm. Chương này là cơ sở lý thuyết quan trọng của phương trình Fredholm loại II. Trong chương này đã trình bày bốn định lý Fredholm tính tồn tại nghiệm, tính duy nhất nghiệm của các phương trình Fredholm loại II với nhân tổng quát. Luận văn này chưa đề cập tới lớp phương trình tích phân Fredholm loại II đối với nhân Hermitian (nhân đối xứng). Nội dung của luận văn chủ yếu được hình thành từ các tài liệu [3] và [4]. Luận văn được hoàn thành tại trường Đại học Khoa học, Đại học Thái Nguyên dưới sự hướng dẫn trực tiếp của TS. Nguyễn Văn Ngọc. Mặc dù, tác giả đã hết sức cố gắng nhưng do thời gian có hạn và kinh nghiệm nghiên cứu còn hạn chế nên khó tránh khỏi thiếu sót. Tác giả mong nhận được sự góp ý của các thầy cô và các bạn. Xin chân thành cảm ơn! Thái Nguyên, tháng 8 năm 2014 Tác giả Ma Vĩnh Huy 3 Chương 1 Phương trình tích phân với nhân suy biến Trong chương này chúng tôi trình bày một số khái niệm và kết quả về không gian hàm, phương trình tích phân Fredholm. 1.1 Một số không gian hàm Ký hiệu C [a, b] là không gian các hàm liên tục trên khoảng hữu hạn [a, b] với chuẩn ||f ||C = max |f (x)|. a6x6b Ký hiệu Lp (a, b) (0 < p < +∞) là không gian các hàm khả tổng trên (a, b), sao cho kf kp = Z b |f (x)|p dx 1/p < ∞. a Các trường hợp riêng đặc biệt quan trọng là p = 1 và p = 2. L2 (a, b) là một không gian Hilbert với tích vô hướng Z (f, g) = b f (x)g(x)dx. a Bất đẳng thức Cauchy-Schwarz có dạng |(f, g)| 6 ||f ||2 ||g||2 . 4 hay, một cách cụ thể hơn Z b Z b 1/2 Z b 2 1/2 . |f (x)|2 dx f (x)g (x)dx ≤ g (x) dx a a a Một chuẩn khác được nhắc đến là chuẩn vô cùng được định nghĩa như sau kf k∞ = sup {|f (x)| : x ∈ [a, b]} . Hoàn toàn tương tự, chuẩn có thể được định nghĩa theo tập hợp các hàm nhận giá trị phức liên tục được định nghĩa trên hình vuông Q(a, b). Ký hiệu L2 (Q(a, b)) là không gian của các hàm hai biến K(x, y), (x, y) ∈ Q(a, b), sao cho kKk2 = Z b Z a b |K (x, t)|2 dxdt 1/2 < ∞, a và kKk∞ = sup {|K (x, t)| : (x, t) ∈ Q (a, b)} , sẽ được quan tâm đặc biệt trong chương này. Hội tụ đều của dãy hàm vô tận: Dãy vô hạn {fn (x)} của hàm hội tụ đều trên [a, b] tới hàm f (x) nếu: Với mọi ε > 0 tồn tại số nguyên N = N (ε) sao cho |fn (x) − f (x)| < ε với mọi x ∈ [a, b] và với mọi n ≥ N (ε). P Chuỗi vô hạn ∞ 1 fn (x) hội tụ đều trên [a, b] nếu tổng của các dãy con hội tụ đều trên [a, b]. Tiêu chuẩn Cauchy được dùng để thiết lập hội tụ đều. Chúng ta nói rằng dãy vô hạn {fn (x)} được định nghĩa hội tụ đều trên [a, b] khi và chỉ khi với mọi ε > 0 tồn tại số nguyên N (ε) sao cho |fn (x) − fm (x)| < ε với mọi x ∈ [a, b] và với mọi n, m ≥ N (ε). Hội tụ đều là điều kiện cần trong nhiều định lý. Ví dụ, nếu {fn (x)} là một dãy vô hạn của hàm liên tục trên [a, b] và nếu dãy {fn (x)} hội tụ đều đến hàm giới hạn f (x) thì f (x) liên tục trên [a, b]. 5 Hội tụ đều cũng cần để chứng minh phép lấy tích phân. Nếu {fn (x)} là một dãy các hàm khả tích hội tụ đều đến f (x) trên [a, b], thì f (x) khả tích và b Z Z f (x) dx = lim n→∞ a b fn (x) dx. a Như một hệ quả tức thời, ta có thể nói rằng nếu ∞ X f (x) = fn (x), n=1 và hội tụ đều trên [a, b] thì Z b ∞ Z b X f (x) dx = fn (x) dx. a 1.2 n=1 a Khái niệm về phương trình Fredholm Khái niệm 1.1. Kí hiệu (a, b) là khoảng hữu hạn hay vô hạn của trục thực. Giả sử f (x) (a < x < b), K (x, y) (a < x, y < b) là các hàm đã cho, u (x) (a < x < b) là hàm cần tìm. Các phương trình sau đây được gọi là các phương trình tích phân đối với ẩn hàm u(x) : Z b K (x, y) u (y) dy = f (x) , a < x < b, (1.1) a u (x) − Z b K (x, y) u (y) dy = f (x) , a < x < b. (1.2) a Phương trình (1.1) được gọi là phương trình tích phân loại 1, còn phương trình (1.2) được gọi là phương trình tích phân loại 2, hàm f (x) được gọi là vế phải, hay số hạng tự do, còn hàm K (x, y) được gọi là nhân hay hạch của phương trình. Nếu vế phải f (x) ≡ 0, thì phương trình được gọi là phương trình thuần nhất, còn nếu f (x) 6= 0, thì phương trình được gọi là phương trình không thuần nhất. Thông thường người ta không chỉ xét một phương trình mà xét cho một họ các phương trình dạng Z b u (x) − λ K (x, y) u (y) dy = f (x) , a a < x < b, (1.3) 6 trong đó λ (là số thực hay phức) được gọi là tham số của phương trình (1.3). Phương trình Fredholm: Xét phương trình (1.2). Phương trình (1.2) được gọi là phương trình Fredholm nếu Z b Z bZ b 2 |K (x, y)|2 dxdy < ∞. |f (x)| dx < ∞, a a (1.4) a Nếu điều kiện thứ 2 trong (1.4) được thỏa mãn thì, theo định lí Fubini, tích phân Z b |K (x, y)|2 dy, a tồn tại hầu khắp nơi với x ∈ (a, b). Trong nhiều trường hợp chúng ta giả thiết thêm rằng: Tồn tại hằng số A sao cho Z b |K (x, y)|2 dx ≤ A, a < x < b. (1.5) a Nếu khoảng (a, b) hữu hạn, thì từ điều kiện (1.5) suy ra điều kiện thứ hai trong (1.4). Nghiệm u (x) của phương trình tích phân cũng được tìm trong lớp hàm bình phương khả tích Z b |u (x)|2 dx < ∞. a 1.3 Phương trình tích phân với nhân suy biến Nhân suy biến của một phương trình tích phân là nhân có dạng K (x, s) = n X ak (x) bk (s). (1.6) i=1 Chúng ta sẽ giả thiết rằng, các hàm ak (x) và bk (s) là bình phương khả tích trên khoảng (a, b). Đặt (1.6) vào phương trình Z b u (x) − λ K (x, s) u (s) ds = f (x) , a a < x < b, (1.7) 7 ta được u (x) − λ n X Z b ak (x) bk (s) u (s) ds = f (x). (1.8) a k=1 Giả sử phương trình (1.8) có nghiệm. Ký hiệu Z b bk (s) u (s) ds = Ck . (1.9) a Từ (1.8) và (1.9) suy ra u (x) = λ n X Ck ak (x) + f (x) , a < x < b. (1.10) k=1 Nhân hai vế của (1.10) với bm (x), tích phân theo x trên (a, b), sử dụng ký hiệu (1.9), ta được hệ phương trình đại số tuyến tính Cm − λ n X amk Ck = fm , m = 1, 2, ..., n, (1.11) k=1 trong đó Z amk = b Z ak (x) bm (x) dx, fm = a b f (x) bm (x) dx. a Nếu hệ đại số tuyến tính (1.11) không có nghiệm thì rõ ràng phương trình (1.7) cũng không có nghiệm. Giả sử hệ (1.11) có nghiệm C1 , C2 , ..., Cn . Khi đó hàm u (x), được xác định bởi công thức (1.10) sẽ là nghiệm của phương trình (1.8). Định thức của hệ (1.11) là 1 − λa11 −λa12 −λa21 1 − λa22 D (λ) = .. .. . . −λan1 −λan2 · · · −λa1n · · · −λa2n .. . · · · −λann . Rõ ràng D (λ) là đa thức bậc n và D (0) = 1. Hệ (1.11) được viết dưới dạng (I − λA)c = f , (1.12) 8 trong đó I là ma trận cấp n × n, A = (aij ) là ma trận vuông cấp n của các phần tử aij được xác điịnh ở trên, f = (f1 , f2 , ...., fn )T là véc tơ đã biết, c = (C1 , C2 , ..., Cn )T là các hệ số phải tìm. Trường hợp D(λ) 6= 0. Trong trường hợp này λ được gọi là giá trị chính quy của nhân K(x, y). Khi đó hệ tuyến tính (1.12) có nghiệm duy nhất c = (I − λA)−1 f , hay c= 1 adj(I − λA)f , D(λ) trong đó adj(I − λA) là ma trận phụ hợp của ma trận (I − λA). Do đó mỗi hệ số Ci có biểu diễn n 1 X Ci = Dji (λ)fj . D(λ) j=1 Thay biểu diễn của Ci và fi vào phương trình (1.10) ta được Z b n n  1 XX u(x) = f (x) + λ Dji (λ)ai (x)bj (t) f (t)dt. D(λ) i=1 j=1 a Ký hiệu n n 1 XX R(x, t; λ) = Dji (λ)ai (x)bj (t), D(λ) i=1 j=1 (1.13) và gọi nó là giải thức (nhân giải) của phương trình tích phân đã cho. Khi đó nghiệm u(x) được cho bởi công thức Z b u(x) = f (x) + λ R(x, t; λ)f (t)dt. (1.14) a Trường hợp D(λ) = 0. Trong trường hợp này λ được gọi là trị riêng của toán tử tích phân (hay của nhân). Giả sử λk là một trị riêng, nghĩa là D(λk ) = 0. Xét trường hợp f = 0. Khi đó ta có hệ phương trình (I − λk A)c = 0. 9 Vì D(λk ) = 0, nên hệ trên đây có pk nghiệm độc lập tuyến tính được biểu diễn bởi (j) (j) c(j) (λk ) = (C1 (λk ), C2 (λk ), ..., Cn(j) (λk ))T , j = 1, 2, ..., pk . Thay các giá trị này vào phương trình đã cho ta thu được các nghiệm uj (x; λk ) = f (x) + λk n X (j) Ci (λk ))ai (x). i=1 Nếu f (x) ≡ 0 trên (a, b) thì mỗi hàm uj (x; λk ) = λk n X (j) Ci (λk ))ai (x), i=1 là một nghiệm không tầm thường và là hàm riêng tương ứng với trị riêng λk của phương trình tích phân thuần nhất Z b n X u(x) = λk K(x, t)u(t)dt, K(x, t) = ai (x)bi (t). a i=1 Xét trường hợp f 6= 0. Ta cần Bổ để sau đây Bổ đề 1.1. Cho các ma trận B = (bij )n×n , B∗ = bji n×n . Khi đó, nếu det B = 0 thì hệ không thuần nhất Bx = f có nghiệm nếu và chỉ nếu f trực giao với tất các các nghiệm của phương trình liên hợp thuần nhất B∗ y = O. Như vậy, theo Bổ đề 1.1, hệ tuyến tính (I − λk A)c = f có nghiệm khi và chỉ khi f trực giao với tất các các nghiệm của phương trình (I − λk A)∗ d = O. (1.15) Vì các ma trận (I − λk A), (I − λk A)∗ có cùng hạng và số khuyết, nên phương trình (1.15) cũng có pk nghiệm độc lập tuyến tính. Lại có T (I − λk A)∗ d = (I − λk A )d=O. Vì thế, nếu (j) (j) T d(j) (λk ) = (d1 (λk ), d2 (λk ), ...., d(j) n (λk )) , 10 là một trong pk của hệ (1.15) thì d(j) m − λk n X (j) aim di (λk ) = 0, m = 1, 2, ..., n. (1.16) i=1 Mặt khác, xét phương trình tích phân thuần nhất liên hợp tương ứng với phương trình đã cho với λ = λk Z b K(t, x)v(t)dt. v(x) = λk (1.17) a Vì K(t, x) = Pn i=1 ai (t) bi (x), nên tương tự như trên, phương trình (1.17) có thể được viết dưới dạng dm − λk n X aim di = 0, m = 1, 2, ..., n, (1.18) i=1 trong đó Z b di = Z b ai (t)v(t)dt, aim = a am (t) bi (t)dt. a Ta có (d, f ) = n X i=1 b Z = Z di fi = b n X  v(t)dt ai (t)fi a i=1 Z b n X  v(t)dt ai (t) bi (s)f (s)ds a i=1 a Z b  b = v(t)dt K(t, s) f (s)ds a a Z b Z b  = f (s)ds K(t, s)v(t)dt a a Z b 1 = v(s)f (s)ds. λk a Z (1.19) Theo Bổ đề 1.1, thì (d, f ) = 0 là điều kiện cần và đủ để phương trình (1.7) có nghiệm. Từ (1.19) suy ra Z b v(s)f (s)ds = 0, a (1.20) 11 trong đó v(x) là nghiệm không tầm thường của phương trình thuần nhất liên hợp (1.17), là điều kiện cần và đủ để phương trình (1.8) giải được trong trường hợp D(λk ) = 0. Từ đó ta có kết quả sau đây. Định lý 1.1. ( Định lý Fredholm đối với trường hợp nhân suy biến). Xét phương trình Fredholm loại hai Z u(x) = f (x) + λ b K(x, t)u(t)dt, a trong đó λ là tham số phức, f (x) ∈ L2 (a, b), K(x, t) = Pn i=1 ai (x)bi (t), ai (x)bi (t) ∈ L2 ((a, b) × (a, b)). Khi đó: (i) Nếu λ là giá trị chính quy thì phương trình (1.7) có nghiệm duy nhất được cho bởi công thức Z b u(x) = f (x) + λ R(x, t; λ)f (t)dt, a trong đó R(x, t; λ) được xác định theo công thức (1.13). (ii) Nếu λ là trị riêng thì phương trình thuần nhất Z b u(x) = λ K(x, t)u(t)dt, a có nghiệm không tầm thường. Trong trường hợp này phương trình không thuần nhất có nghiệm khi và chỉ khi hàm f (x) trực giao với tất cả các hàm riêng là nghiệm của phương trình liên hợp thuần nhất Z b K(t, x)v(t)dt. v(x) = λ a Định lý 1.1 trên đây sẽ được mở rộng cho trường hợp nhân tổng quát và phân thành bốn định lý Fredholm nổi tiếng sẽ được trình bày trong chương 3 của luận văn này. Ví dụ 1.1. Xét phương trình Z π u (x) − λ sin (x + s) u (s) ds = f (x), 0 0 < x < π. 12 Ta có sin (x + s) = sinxcoss + cosxsins, n = 2, a1 (x) =sinx, b1 (s) = coss, a2 (x) = cosx, b2 (s) = sins, Z π Z π π α11 = sinxcosxdx = 0, α12 = sin2 xdx = , 2 Z π0 Z0 π π cosxsinxdx = 0, α21 = cos2 xdx = , α22 = 2 0 0 Z π Z π f1 = f (x) cosxdx, f2 = f (x) sinxdx. 0 0 Trong trường hợp này hệ (1.11) có dạng  λπ   C1 − C2 = f1 , 2   − λπ C1 + C2 = f2. 2 (1.21) Định thức của hệ (1.21) là λ2 π 2 D (λ) = 1 − , 4 và có các nghiệm 2 λ1 = − , π λ2 = 2 . π 2 Vậy, nếu λ 6= ± , thì hệ có nghiệm duy nhất C1 , C2 và khi đó nghiệm π duy nhất của phương trình đã cho là u (x) = f (x) + λ (C1 sinx + C2 cosx) . Ví dụ 1.2. Tìm tất cả các số đặc trưng và các hàm riêng tương ứng của phương trình Z u (x) = λ 0 2π   1 sin (x + y) + u (y) dy. 2 Ta có K (x, y) = sin (x + y) + 1 1 = sinx.cosy + cosx.siny + 1. . 2 2 13 Như vậy phương trình đã cho thuộc loại nhân suy biến và là phương trình thuần nhất. Trong trường hợp này ta có α12 α13 α21 α22 α23 α31 α32 α33 a2 (x) = cosx, b1 (y) = cosy, b2 (y) = sin y, 2π a3 (x) = 1, 1 b3 (y) = , 2 Z 1 2π sinxcosxdx = = b1 (x)a1 (x) dx = sin 2xdx = 0, 2 0 0 0 Z Z 2π Z 2π 1 2π 1 + cos2x dx = π, = b1 (x)a2 (x) dx = cosx.cosxdx = 2 0 2 0 0 Z 2π Z 2π = b1 (x)a3 (x) dx = cosxdx =0, 0 0 Z 2π Z 2π Z 2π 1 − cos2x dx =π, = b2 (x)a1 (x) dx = sinx.sinxdx = 2 0 0 0 Z 2π Z 2π sinx.cosxdx = 0, = b2 (x)a2 (x) dx = 0 0 Z 2π Z 2π sinx.1dx = 0, = b2 (x)a3 (x) dx = 0 0 Z 2π Z 2π 1 sinxdx = 0, = b3 (x)a1 (x) dx = 2 0 0 Z 2π Z 2π 1 cosxdx = 0, = b3 (x)a2 (x) dx = 2 0 0 Z 2π Z 2π 1 = b3 (x)a3 (x) dx = .1dx = π. 2 0 0 Z α11 a1 (x) = sinx, Z 2π Theo (1.11) ta có hệ Cm − λ 3 X αmk Ck = 0. (1.22) 2 = (1 − λπ) (1 + λπ) . (1.23) k=1 Định thức của hệ là 1 −λπ 0 0 D (λ) = −λπ 1 0 0 1 − λπ Hệ (1.22) là thuần nhất, nên để hệ có nghiệm không tầm thường thì định thức của hệ phải bằng không. Từ (1.23) suy ra nghiệm của phương trình D (λ) = 0 là λ1 = 1/π và λ2 = −1/π . 14 1) Với λ1 = 1/π ta có C1 = C2 = 1, C3 = 0, do đó hàm riêng sẽ là u1 (x) = sin x + cos x. 2) Với λ2 = −1/π ta có C1 = −1, C2 = 1, C3 = 0, do đó hàm riêng sẽ là u2 (x) = cos x − sin x. Vậy, ta có các tri riêng và hàm riêng tương ứng sau đây: 1 , π 1 λ2 = − , π λ1 = u1 (x) = cos x − sin x, (1.24) u2 (x) = cos x − sin x. (1.25) 15 Chương 2 Phương pháp xấp xỉ liên tiếp và xấp xỉ đều Trong chương này chúng tôi trình bày các phương pháp thay thế liên tiếp, xấp xỉ liên tiếp và xấp xỉ đều. Các kiến thức của chương này được tổng hợp từ các tài liệu trong [4]. 2.1 Phương pháp thay thế liên tiếp Xét phương trình tích phân Z b K (x, t)φ (t) dt, φ (x) = f (x) + λ a trong đó, ta giả thiết hàm f (x) liên tục trên đoạn [a, b] và hàm K (x, t) nhận giá trị phức và liên tục trên hình vuông Q [a, b]. Nếu phương trình này có một nghiệm φ (x), thì phương trình cung cấp một đại diện cho nó. Nếu không có thêm bất kỳ điều kiện nào ngoài điều kiện khả tích, thì φ (x) có thể thế vào hàm lấy tích phân, do đó tạo thêm một, mặc dù phức tạp hơn, đại diện cho φ (x). Chính xác hơn, nếu ta thay x bởi t và t bởi s trong phương trình tích phân, sau đó thay thế trực tiếp ta được:   Z b Z b φ (x) = f (x) + λ K (x, t) f (t) + λ K (t, s) φ (s) ds dt t=a s=a Z b = f (x) + λ K (x, t) f (t) dt a Z b Z b 2 +λ K (x, t) K (t, s) φ (s) dsdt. t=a s=a 16 Sau khi hoán đổi thứ tự của phép lấy tích phân trong tích phân cuối cùng và thay biến s bằng t, ta có Z b Z b φ (x) = f (x) + λ K (x, t) f (t) dt + λ2 K2 (x, t)φ (t) dt, a a trong đó b Z K2 (x, t) = K (x, s) K (s, t) ds. a Có vẻ như vô nghĩa khi ta lặp lại quá trình này, vì nghiệm φ (x) sẽ luôn luôn là đại diện cho dù ta có lặp lại nó bao nhiêu lần. Tuy nhiên, trong thực tế sự thay thế liên tiếp được chứng minh là khá hiệu quả. Không chỉ tiếp tục lặp đi lặp lại quá trình này để tìm ra các nghiệm cho phương trình mà còn tạo ra một đại diện mới mà không liên quan đến φ (x). Tiếp tục lặp lại quá trình ta đi đến dạng tổng quát sau: Z b  n X φ (x) = f (x) + λm Km (x, t) f (t) dt a m=1 +λ b Z n+1 Kn+1 (x, t) φ (t) dt, a với mọi số nguyên n bất kỳ, ở đây K1 (x, t) = K (x, t), và Z b Km (x, t) = Km−1 (x, s) K (s, t) ds, (2.1) a với m = 2, · · · , n. Dạng tổng quát này có giá trị với mọi λ. Hàm Km (x, t) gọi là nhân lặp. Mỗi hàm Km (x, t) nhận giá trị phức và liên tục trên Q (a, b). Vì hàm Km (x, t) bị chặn với mọi m ≥ 2, nên nếu |K (x, t)| ≤ M thì |Km (x, t)| ≤ M m (b − a)m−1 . Bây giờ giả sử Z b  n X σn (x) = λm−1 Km (x, t) f (t) dt , a m=1 và n+1 Z ρn (x) = λ b Kn+1 (x, t) φ (t) dt, a (2.2) 17 suy ra φ (x) = f (x) + λσn (x) + ρn (x) . Dễ thấy được dãy {σn (x)} của hàm liên tục hội tụ đều đến hàm giới hạn liên tục σ (x) trên đoạn [a, b] và do đó φ (x) = f (x) + λσ (x). Vì hàm Km (x, t) bị chặn nên mỗi số hạng của tổng σn (x) thỏa mãn bất đẳng thức Z b  m−1 λ ≤ (|λ| M (b − a))m−1 M kf k . K (x, t) f (t) dt m 1 a Nếu |λ| M (b − a) < 1, thì dãy {σn (x)} của tổng riêng là dãy Cauchy. Với mỗi ε > 0 bé tùy ý ta có  n X |σn (x) − σp (x)| ≤   (|λ| M (b − a))m−1  M kf k1 m=p+1 ≤ (|λ| M (b − a))p M kf k1 1 − |λ| M (b − a) < ε, với p đủ lớn. Nếu thêm điều kiện phần dư ρn (x) → 0 đều trên [a, b] khi n → +∞, thì ta có đánh giá |ρn (x)| ≤ |λ| M kφk1 (|λ| M (b − a))n . Ta có dãy {σn (x)} của hàm liên tục hội tụ tuyệt đối và đều trên [a, b] đến hàm giới hạn liên tục Z b  ∞ X m−1 σn (x) = λ Km (x, t) f (t) dt , m=1 a với điều kiện |λ| M (b − a) < 1. Ngoài ra, ta có ! Z b Z b X ∞ m−1 σ (x) = λ Km (x, t) f (t) dt = R (x, t; λ) f (t) dt, a m=1 a trong đó R (x, t; λ) biểu thị chuỗi vô hạn. Chuỗi này được biết đến là chuỗi Neumann, và nó là nhân của phương trình tích phân. Bán bán kính hội tụ của nó ít nhất là 1/ (M (b − a)). Nhắc lại rằng hàm φ (x) là nghiệm của phương trình tích phân nếu phương trình tích phân trở thành đồng nhất thức khi ta thay φ (x) vào phương trình đó.
- Xem thêm -

Tài liệu liên quan