Tài liệu Phương pháp tọa độ trong không gian hình học 12 full

  • Số trang: 151 |
  • Loại file: PDF |
  • Lượt xem: 317 |
  • Lượt tải: 0
sushinguyen

Tham gia: 09/08/2017

Mô tả:

CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN BÀI 1. TỌA ĐỘ TRONG KHÔNG GIAN A - LÝ THUYẾT 1. Hệ trục tọa độ trong không gian Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một    điểm gốc O. Gọi i, j , k là các vectơ đơn vị, tương ứng trên các trục Ox, Oy, Oz . Hệ ba trục như vậy gọi là hệ trục tọa độ vuông góc trong không gian. 2  2  2     Chú ý: i  j  k  1 và i. j  i.k  k . j  0 . 2. Tọa độ của vectơ      a) Định nghĩa: u   x; y; z   u  xi  y j  zk   b) Tính chất: Cho a  (a1 ; a2 ; a3 ), b  (b1 ; b2 ; b3 ), k      a  b  (a1  b1 ; a2  b2 ; a3  b3 )   ka  (ka1 ; ka2 ; ka3 ) a1  b1     a  b  a2  b2 a  b  3 3      0  (0;0; 0), i  (1; 0; 0), j  (0;1; 0), k  (0; 0;1)        a cùng phương b (b  0)  a  kb (k   ) a1  kb1 a a a   a2  kb2  1  2  3 , (b1 , b2 , b3  0) b1 b2 b3 a  kb  3 3     a.b  a1.b1  a2 .b2  a3 .b3  a  b  a1b1  a2b2  a3b3  0   2 2 2 2  a 2  a12  a2  a3  a  a12  a2  a2    a.b a1b1  a2b2  a3b3     cos(a , b )     (với a , b  0 ) 2 2 a .b a12  a2  a3 . b12  b22  b32 3. Tọa độ của điểm      a) Định nghĩa: M ( x; y; z )  OM  x.i  y. j  z.k (x : hoành độ, y : tung độ, z : cao độ) Chú ý:  M   Oxy   z  0; M   Oyz   x  0; M   Oxz   y  0  M  Ox  y  z  0; M  Oy  x  z  0; M  Oz  x  y  0 . b) Tính chất: Cho A( x A ; y A ; z A ), B ( xB ; yB ; z B )    AB  ( xB  x A ; y B  y A ; z B  z A )  AB  ( xB  xA ) 2  ( yB  y A ) 2  ( z B  z A )2  x  x y  yB z A  z B   Toạ độ trung điểm M của đoạn thẳng AB : M  A B ; A ;   2 2 2   x  x  x y  yB  yC z A  z B  zC   Toạ độ trọng tâm G của tam giác ABC : G  A B C ; A ;  3 3 3    Toạ độ trọng tâm G của tứ diện ABCD :  x  x  x  xD y A  yB  yC  y D z A  z B  zC  zC  G A B C ; ;   4 4 4  Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 1|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 4. Tích có hướng của hai vectơ   Oxyz cho hai vectơ a  (a1 ; a2 ; a3 ) , b  (b1 ; b2 ; b3 ) . Tích có hướng    a, b  , được xác định bởi    a a3 a3 a1 a1 a2    a, b    2 ; ;    a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1     b2 b3 b3 b1 b1 b2  Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số. b) Tính chất:            [a, b]  a; [a, b]  b   a , b     b, a                        i , j   k ;  j , k   i ;  k , i   j  [a, b]  a . b .sin  a , b  (Chương trình nâng cao)           a, b cùng phương  [a, b]  0 (chứng minh 3 điểm thẳng hàng) a) Định nghĩa: Trong không gian   của hai vectơ a và b, kí hiệu là c) Ứng dụng của tích có hướng: (Chương trình nâng cao)        Điều kiện đồng phẳng của ba vectơ: a, b và c đồng phẳng  [a, b].c  0     Diện tích hình bình hành ABCD : S ABCD   AB, AD     1    Diện tích tam giác ABC : S ABC   AB , AC    2      Thể tích khối hộp ABCDAB C D : VABCD. A ' B ' C ' D '  [ AB, AD ]. AA  Thể tích tứ diện ABCD : VABCD   1    [ AB , AC ]. AD 6 Chú ý: - Tích vô hướng của hai vectơ thường sử dụng để chứng minh hai đường thẳng vuông góc, tính góc giữa hai đường thẳng. - Tích có hướng của hai vectơ thường sử dụng để tính diện tích tam giác; tính thể tích khối tứ diện, thể tích hình hộp; chứng minh các vectơ đồng phẳng – không đồng phẳng, chứng minh các vectơ cùng phương.    a  b a.b  0     a vaø b cuøng phöông   a , b   0       a, b , c ñoàng phaúng   a , b  .c  0 5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus ) Trong không gian Oxyz cho bốn điểm A  x A ; y A ; z A  , B  xB ; yB ; z B  , C  xC ; yC ; zC  , D  xD ; yD ; z D    w 8 1 1 (nhập vectơ AB )  q 5 2 2 2 (nhập vectơ AC )  q 5 2 3 1 (nhập vectơ AD )    C q53q54= (tính  AB, AC  )       C q53q54q57q55= (tính [ AB, AC ]. AD )     Cqc(Abs) q53q54q57q55= (tính [ AB, AC ]. AD ) C1a6qc(Abs) q53q54q57q55=  1    (tính VABCD  [ AB , AC ]. AD 6 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 2|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN B - BÀI TẬP TRẮC NGHIỆM Câu 1. Câu 2. Gọi  là góc giữa hai vectơ  a.b A.   . B. a.b      a và b , với a và b khác 0 , khi đó cos  bằng     a.b  a.b a b C.   . D.   .   . a.b a.b a.b   Gọi  là góc giữa hai vectơ a  1; 2;0  và b   2;0; 1 , khi đó cos  bằng A. 0. B. 2 . 5 C. 2 . 5 2 D.  . 5 Câu 3.    Cho vectơ a  1;3; 4  , tìm vectơ b cùng phương với vectơ a    A. b   2; 6; 8 . B. b   2; 6;8  . C. b   2;6;8  . Câu 4.   Tích vô hướng của hai vectơ a   2; 2;5  , b   0;1; 2  trong không gian bằng A. 10. Câu 5. Câu 7. C. 12. 6. 8. C. 10. D. 12.     Trong không gian Oxyz , gọi i, j, k là các vectơ đơn vị, khi đó với M  x; y; z  thì OM bằng             A.  xi  y j  zk . B. xi  y j  zk . C. x j  yi  zk . D. xi  y j  zk .     Tích có hướng của hai vectơ a  (a1 ; a2 ; a3 ) , b  (b1 ; b2 ; b3 ) là một vectơ, kí hiệu  a , b  , được   B. xác định bằng tọa độ A.  a2 b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  . B.  a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  . D. C. Câu 8. D. 14. Trong không gian cho hai điểm A  1; 2;3 , B  0;1;1 , độ dài đoạn AB bằng A. Câu 6. B. 13.  D. b   2; 6; 8  .  a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  .  a2b2  a3b3 ; a3b3  a1b1 ; a1b1  a2b2  .    Cho các vectơ u   u1; u2 ; u3  và v   v1; v2 ; v3  , u.v  0 khi và chỉ khi A. u1v1  u2 v2  u3v3  1 . B. u1  v1  u2  v2  u3  v3  0 . Câu 9. C. u1v1  u2 v2  u3v3  0 .   Cho vectơ a  1; 1;2  , độ dài vectơ a là A. 6. B. 2. D. u1v2  u2 v3  u3v1  1 . C.  6 . D. 4. Câu 10. Trong không gian Oxyz , cho điểm M nằm trên trục Ox sao cho M không trùng với gốc tọa độ, khi đó tọa độ điểm M có dạng A. M  a; 0; 0  , a  0 . B. M  0; b;0  , b  0 . C. M  0;0; c  , c  0 . D. M  a;1;1 , a  0 . Câu 11. Trong không gian Oxyz , cho điểm M nằm trên mặt phẳng  Oxy  sao cho M không trùng với gốc tọa độ và không nằm trên hai trục Ox, Oy , khi đó tọa độ điểm M là ( a, b, c  0 ) A.  0; b; a  . B.  a; b; 0  . C.  0; 0; c  . D.  a;1;1     Câu 12. Trong không gian Oxyz , cho a   0;3; 4  và b  2 a , khi đó tọa độ vectơ b có thể là A.  0;3; 4  . B.  4; 0;3 . C.  2; 0;1 . Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com D.  8;0; 6  . 3|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN     Câu 13. Trong không gian Oxyz cho hai vectơ u và v , khi đó u , v  bằng                 A. u . v .sin u, v . B. u . v .cos u , v . C. u.v.cos u, v . D. u.v.sin u, v .            Câu 14. Trong không gian Oxyz cho ba vectơ a  1; 1;2  , b   3;0; 1 , c   2;5;1 , vectơ     m  a  b  c có tọa độ là A.  6; 0; 6  . B.  6;6; 0  . C.  6; 6; 0  . D.  0; 6; 6  . Câu 15. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B  2; 4; 1 , C  2; 2; 0  . Độ dài các cạnh AB, AC , BC của tam giác ABC lần lượt là A. 21, 13, 37 . B. 11, 14, 37 . 21, 14, 37 . C. D. 21, 13, 35 . Câu 16. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B  2; 4; 1 , C  2; 2; 0  . Tọa độ trọng tâm G của tam giác ABC là 5 2 4 A.  ; ;   . 3 3 3 5 2 4 B.  ; ;  . 3 3 3 C. 5  D.  ;1; 2  . 2   5; 2; 4  . Câu 17. Trong không gian Oxyz cho ba điểm A 1;2;0  , B  1;1;3 , C  0; 2;5  . Để 4 điểm A, B, C , D đồng phẳng thì tọa độ điểm D là A. D  2;5; 0  . B. D 1; 2;3 . C. D 1; 1;6  .   D. D  0;0; 2  .  Câu 18. Trong không gian Oxyz , cho ba vecto a  (1; 2; 3), b  (2; 0;1), c  ( 1; 0;1) . Tìm tọa độ của      vectơ n  a  b  2c  3i   A. n   6;2;6  . B. n   6;2; 6  .  C. n   0;2;6  .  D. n   6;2;6  . Câu 19. Trong không gian Oxyz , cho tam giác ABC có A(1;0; 2), B(2;1;3), C (3; 2; 4) . Tìm tọa độ trọng tâm G của tam giác ABC 2   1  A. G  ;1;3  . B. G  2;3;9  . C. G  6; 0; 24  . D. G  2; ;3  . 3   3  Câu 20. Cho 3 điểm M  2;0;0  , N  0; 3;0  , P  0;0;4  . Nếu MNPQ là hình bình hành thì tọa độ của điểm Q là A. Q  2; 3; 4  B. Q  2;3; 4  C. Q  3; 4; 2  D. Q  2; 3; 4  Câu 21. Trong không gian tọa độ Oxyz cho ba điểm M 1;1;1 , N  2;3; 4  , P  7; 7;5  . Để tứ giác MNPQ là hình bình hành thì tọa độ điểm Q là A. Q  6;5; 2  . B. Q  6;5; 2  . C. Q  6; 5; 2  . D. Q  6; 5; 2  . Câu 22. Cho 3 điểm A 1;2;0  , B 1;0; 1 , C  0; 1;2  . Tam giác ABC là A. tam giác có ba góc nhọn. C. tam giác vuông đỉnh A . B. tam giác cân đỉnh A . D. tam giác đều. Câu 23. Trong không gian tọa độ Oxyz cho ba điểm A  1; 2;2  , B  0;1;3 , C  3;4;0  . Để tứ giác ABCD là hình bình hành thì tọa độ điểm D là A. D  4;5; 1 . B. D  4;5; 1 . C. D  4; 5; 1 . Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com D. D  4; 5;1 . 4|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN       Câu 24. Cho hai vectơ a và b tạo với nhau góc 600 và a  2; b  4 . Khi đó a  b bằng 8 3  20. A. B. 2 7. C. 2 5. D. 2 . Câu 25. Cho điểm M 1; 2; 3 , khoảng cách từ điểm M đến mặt phẳng  Oxy  bằng B. 3 . A. 2. C. 1. D. 3. Câu 26. Cho điểm M  2;5;0  , hình chiếu vuông góc của điểm M trên trục Oy là điểm A. M   2;5;0  . B. M   0; 5;0  . C. M   0;5;0  . D. M   2;0;0  . Câu 27. Cho điểm M 1; 2; 3 , hình chiếu vuông góc của điểm M trên mặt phẳng  Oxy  là điểm A. M  1;2;0  . B. M  1;0; 3 . C. M   0; 2; 3 . D. M  1;2;3 . Câu 28. Cho điểm M  2;5;1 , khoảng cách từ điểm M đến trục Ox bằng 29 . A. 5. B. C. 2. 26 . D. Câu 29. Cho hình chóp tam giác S . ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng  đúng thức                     A. IA  IB  IC. B. IA  IB  CI  0. C. IA  BI  IC  0. D. IA  IB  IC  0.    Câu 30. Trong không gian Oxyz , cho 3 vectơ a   1;1; 0  ; b  1;1; 0  ; c  1;1;1 . Trong các mệnh đề sau, mệnh đề nào sai:     A. b  c. B. a  2.  C. c  3.   D. a  b. Câu 31. Cho điểm M  3;2; 1 , điểm đối xứng của M qua mặt phẳng  Oxy  là điểm A. M   3; 2;1 . B. M   3; 2; 1 . C. M   3; 2;1 . D. M   3;2;0  . Câu 32. Cho điểm M  3;2; 1 , điểm M   a; b; c  đối xứng của M qua trục Oy , khi đó a  b  c bằng A. 6. B. 4. C. 0. D. 2.     Câu 33. Cho u  1;1;1 và v   0;1; m  . Để góc giữa hai vectơ u , v có số đo bằng 450 thì m bằng A.  3 . B. 2  3 . C. 1  3 . 3. D. Câu 34. Cho A 1; 2;0  , B  3;3;2  , C  1; 2;2  , D  3;3;1 . Thể tích của tứ diện ABCD bằng A. 5. B. 4. C. 3. D. 6. Câu 35. Trong không gian Oxyz cho tứ diện ABCD . Độ dài đường cao vẽ từ D của tứ diện ABCD cho bởi công thức nào sau đây:          AB, AC  . AD  AB, AC  . AD 1  1    A. h  B. h  . .       3 3  AB. AC  AB.AC            AB, AC  . AD  AB, AC  . AD     C. h  . D. h     .     AB. AC  AB. AC   Câu 36. Trong không gian tọa độ Oxyz , cho bốn điểm A 1; 2;0  , B  3;3;2  , C  1; 2;2  , D  3;3;1 . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng  ABC  là A. 9 7 2 . B. 9 . 7 C. 9 . 2 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com D. 9 . 14 5|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 37. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0; 2), B(2;1;3), C (3; 2; 4), D (6;9; 5) . Tìm tọa độ trọng tâm G của tứ diện ABCD 18 14     A. G  9; ; 30  . B. G  8;12; 4  . C. G  3;3;  . D. G  2;3;1 . 4 4    Câu 38. Trong không gian Oxyz , cho hai điểm A(1; 2;1), B(2; 1; 2) . Điểm M trên trục Ox và cách đều hai điểm A, B có tọa độ là 1 1 3 A. M  ; ;  . 2 2 2 1  B. M  ; 0; 0  . 2  3  C. M  ; 0; 0  . 2   1 3 D. M  0; ;  .  2 2 Câu 39. Trong không gian Oxyz , cho hai điểm A(1; 2;1), B(3; 1;2) . Điểm M trên trục Oz và cách đều hai điểm A, B có tọa độ là A. M  0; 0; 4  . B. M  0; 0; 4  . 3  C. M  0; 0;  . 2  3 1 3 D. M  ; ;  . 2 2 2  Câu 40. Trong không gian Oxyz cho ba điểm A(1; 2;3), B(0;3;1), C (4;2;2) . Cosin của góc BAC là 9 9 . D.  . 2 35 35    Câu 41. Tọa độ của vecto n vuông góc với hai vecto a  (2; 1; 2), b  (3; 2;1) là     A. n   3;4;1 . B. n   3; 4; 1 . C. n   3;4; 1 . D. n   3; 4; 1 . A. 9 . 2 35 B. 9 . 35 C.            2  Câu 42. Cho a  2; b  5, góc giữa hai vectơ a và b bằng , u  k a  b; v  a  2b. Để u vuông 3  góc với v thì k bằng 6 45 6 45 A.  . B. . C. . D.  . 45 6 45 6     Câu 43. Cho u   2; 1;1 , v   m;3; 1 , w  1; 2;1 . Với giá trị nào của m thì ba vectơ trên đồng phẳng 3 8 8 B.  . C. . D.  . 8 3 3     Câu 44. Cho hai vectơ a  1;log 3 5; m  , b   3;log 5 3;4  . Với giá trị nào của m thì a  b A. 3 . 8 A. m  1; m  1 . B. m  1 . C. m  1 . D. m  2; m  2 . Câu 45. Trong không gian Oxyz cho ba điểm A(2;5;3), B (3;7;4), C ( x; y;6) . Giá trị của x, y để ba điểm A, B, C thẳng hàng là A. x  5; y  11 . B. x  5; y  11 . C. x  11; y  5 . D. x  11; y  5 . Câu 46. Trong không gian Oxyz cho ba điểm A(1;0;0), B(0;0;1), C (2;1;1) . Tam giác ABC là A. tam giác vuông tại A . B. tam giác cân tại A . C. tam giác vuông cân tại A . D. Tam giác đều. Câu 47. Trong không gian Oxyz cho tam giác ABC có A(1;0;0), B(0;0;1), C (2;1;1) . Tam giác ABC có diện tích bằng A. 6. B. 6 . 3 C. 6 . 2 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com D. 1 . 2 6|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 48. Ba đỉnh của một hình bình hành có tọa độ là 1;1;1 ,  2;3; 4  ,  7; 7;5  . Diện tích của hình bình hành đó bằng 83 A. 2 83 . B. 83 . C. 83 . D. . 2       Câu 49. Cho 3 vecto a  1;2;1 ; b   1;1; 2  và c   x;3x; x  2  . Tìm x để 3 vectơ a, b, c đồng phẳng A. 2. B. 1. C. 2. D. 1.     Câu 50. Trong không gian Oxyz cho ba vectơ a   3; 2;4  , b   5;1;6  , c   3; 0; 2  . Tìm vectơ x     sao cho vectơ x đồng thời vuông góc với a, b, c A. 1; 0; 0  . B.  0; 0;1 . C.  0;1; 0  . D.  0; 0;0  . Câu 51. Trong không gian Oxyz , cho 2 điểm B(1; 2; 3) , C (7; 4; 2) . Nếu E là điểm thỏa mãn đẳng     thức CE  2 EB thì tọa độ điểm E là 8 1  8 8  8 8   A.  3; ;   . B.  3; ;  . C.  3;3;   . D.  1; 2;  . 3 3  3 3  3 3   Câu 52. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(1; 2; 1) , B(2; 1;3) , C (2;3;3) . Điể m M  a; b; c  là đı̉nh thứ tư củ a hı̀nh bı̀nh hà nh ABCM , khi đó P  a 2  b 2  c 2 có giá trị bằng A. 43. . B. 44. . C. 42. . D. 45. Câu 53. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(1; 2; 1) , B(2; 1;3) , C (2;3;3) . Tìm tọa độ điể m D là chân đườ ng phân giá c trong gó cA củ a tam giá c ABC A. D (0;1;3) . B. D (0;3;1) . C. D (0; 3;1) . D. D (0;3; 1) . Câu 54. Trong không gian với hệ toạ độ Oxyz , cho các điểm A( 1;3;5) , B( 4;3;2) , C(0; 2;1) . Tìm tọa độ điể m I tâm đường tròn ngoại tiếp tam giác ABC 8 5 8 5 8 8  5 8 8 8 8 5 A. I  ; ;  . B. I  ; ;  . C. I   ; ;  . D. I  ; ;  .  3 3 3  3 3 3  3 3 3 3 3 3     Câu 55. Trong không gian Oxyz , cho 3 vectơ a   1;1;0  , b  1;1;0  , c  1;1;1 . Cho hình hộp          OABC.O AB C  thỏa mãn điều kiện OA  a , OB  b , OC '  c . Thể tích của hình hộp nói trên bằng: 1 2 A. B. 4 C. D. 2 3 3 Câu 56. Trong không gian với hệ trục Oxyz cho tọa độ 4 điểm A  2; 1;1 , B 1;0;0  , C  3;1;0  , D  0;2;1 . Cho các mệnh đề sau: (1) Độ dài AB  2 . (2) Tam giác BCD vuông tại B . (3) Thể tích của tứ diện ABCD bằng 6 . Các mệnh đề đúng là: A. (2). B. (3). C. (1); (3). D. (2), (1)    Câu 57. Trong không gian Oxyz , cho ba vectơ a   1,1, 0  ; b  (1,1, 0); c  1,1,1 . Trong các mệnh đề sau, mệnh đề nào đúng:       6 A. cos b, c  . B. a  b  c  0. 3       C. a, b, c đồng phẳng. D. a.b  1. Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 7|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 58. Trong không gian với hệ tọa độ Oxyz , cho tứ diêṇ ABCD , biết A(1;0;1) , B(1;1; 2) , C (1;1;0) , D (2; 1; 2) . Đô ̣ dà i đườ ng cao AH củ a tứ diê ̣n ABCD bằng: A. 2 . 13 B. 1 . 13 C. 13 . 2 D. 3 13 . 13 Câu 59. Cho hình chóp tam giác S . ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng  1       1      A. SI  SA  SB  SC . B. SI  SA  SB  SC . 2 3              C. SI  SA  SB  SC. D. SI  SA  SB  SC  0.     Câu 60. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0;0), B(0;1;0), C (0;0;1), D(2;1; 1) . Thể tích của tứ diện ABCD bằng 3 1 A. . B. 3 . C. 1 . D. . 2 2  Câu 61. Cho hình chóp S . ABC có SA  SB  a, SC  3a,   CSB  600 , CSA  900 . Gọi G là trọng ASB  tâm tam giác ABC . Khi đó khoảng cách SG bằng a 15 a 5 a 7 A. . B. . C. . D. a 3 . 3 3 3 Câu 62. Trong không gian tọa độ Oxyz cho ba điểm A  2;5;1 , B  2; 6; 2  , C 1; 2; 1 và điểm   M  m; m; m  , để MB  2 AC đạt giá trị nhỏ nhất thì m bằng A. 2. B. 3 . C. 1. D. 4. Câu 63. Trong không gian tọa độ Oxyz cho ba điểm A  2;5;1 , B  2; 6; 2  , C 1; 2; 1 và điểm M  m; m; m  , để MA2  MB 2  MC 2 đạt giá trị lớn nhất thì m bằng A. 3. B. 4. C. 2. D. 1. Câu 64. Cho hình chóp S . ABCD biết A  2; 2; 6  , B  3;1;8 , C  1; 0; 7  , D 1; 2;3 . Gọi H là trung điểm của CD, SH   ABCD  . Để khối chóp S . ABCD có thể tích bằng 27 (đvtt) thì có hai 2 điểm S1 , S2 thỏa mãn yêu cầu bài toán. Tìm tọa độ trung điểm I của S1S2 A. I  0; 1; 3 . B. I 1; 0;3 C. I  0;1;3 . D. I  1; 0; 3 . Câu 65. Trong không gian Oxyz , cho hai điểm A(2; 1;7), B(4;5; 2) . Đường thẳng AB cắt mặt phẳng (Oyz ) tại điểm M . Điểm M chia đoạn thẳng AB theo tỉ số nào 1 1 2 A. . B. 2 . C. . D. . 2 3 3 Câu 66. Trong không gian Oxyz , cho tứ diện ABCD có A(2;1; 1), B(3;0;1), C(2; 1;3) và D thuộc trục Oy . Biết VABCD  5 và có hai điểm D1  0; y1 ; 0  , D2  0; y2 ; 0  thỏa mãn yêu cầu bài toán. Khi đó y1  y2 bằng A. 0. B. 1 . C. 2 . D. 3 . Câu 67. Trong không gian Oxyz , cho tam giác ABC có A(1; 2;4), B(3;0; 2), C(1;3;7) . Gọi D là chân  đường phân giác trong của góc A . Tính độ dài OD . A. 207 . 3 B. 203 3 C. 201 . 3 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com D. 205 . 3 8|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 68. Trong không gian với hệ toạ độ Oxyz , cho tam giá c ABC , biế t A(1;1;1) , B(5;1; 2) , C (7;9;1) . Tı́nh đô ̣ dà i phân giá c trong AD củ a gó cA A. 2 74 . 3 B. 3 74 . 2 C. 2 74. D. 3 74. Câu 69. Trong không gian với hệ toạ độ Oxyz , cho 4 điểm A(2;4; 1) , B(1; 4; 1) , C (2; 4;3) D (2; 2; 1) . Biết M  x; y; z  , để MA2  MB 2  MC 2  MD 2 đạt giá trị nhỏ nhất thì x  y  z bằng A. 7. B. 8. C. 9. D. 6. Câu 70. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B(1; 2;0) , C (1;1; 2) . H là trực tâm tam giác ABC , khi đó, độ dài đoạn OH bằng A. 870 . 12 B. 870 . 14 C. 870 . 16 D. 870 . 15 Câu 71. Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(3;1;0) , B nằm trên mặt phẳng (Oxy ) và có hoành độ dương, C nằm trên trục Oz và H (2;1;1) là trực tâm của tam giác ABC . Toạ độ các điểm B , C thỏa mãn yêu cầu bài toán là:  3  177 17  177   3  177  A. B  ; ; 0  , C  0; 0; .  4 2   4   3  177 17  177   3  177  B. B  ; ; 0  , C  0; 0; .  4 2   4   3  177 17  177   3  177  C. B  ; ; 0  , C  0; 0; .  4 2   4   3  177 17  177   3  177  D. B  ; ; 0  , C  0; 0; .  4 2   4  Câu 72. Trong không gian với hệ tọa độ Oxyz , cho hình vuông ABCD , B(3;0;8) , D (5; 4;0) . Biế t     đỉnh A thuộc mặt phẳng ( Oxy ) và có to ̣a đô ̣ là nhữ ng số nguyên, khi đó CA  CB bằng: A. 5 10. B. 6 10. C. 10 6. D. 10 5. Câu 73. Trong không gian với hệ tọa độ Oxyz , cho tam giá c ABC , biết A(5;3; 1) , B(2;3; 4) , C (3;1; 2) . Bá n kı́nh đườ ng trò n nô ̣i tiế p tam giá c ABC bằng: A. 9  2 6. C. 9  3 6. Câu 74. B. 9  3 6. D. 9  2 6. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm M  3; 0; 0  , N  m, n, 0  , P  0;0; p  . Biết  MN  13, MON  600 , thể tích tứ diện OMNP bằng 3. Giá trị của biểu thức A  m  2n 2  p 2 bằng A. 29. C. 28. B. 27. D. 30. Câu 75. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B(1; 2;0) , C (1;1; 2) . Gọi I  a; b; c  là tâm đường tròn ngoại tiếp tam giác ABC . Tính P  15a  30b  75c . A. 48. C. 52. B. 50. D. 46. Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 9|THBTN Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN C - ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM I – ĐÁP ÁN 1 A 2 B 3 A 4 C 5 A 6 D 7 A 8 C 9 A 10 11 12 13 14 15 16 17 18 19 20 A B D A C C A A D A B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 B A A B D C A D D A C C B C D A D C A A 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B D D C A A C A A D A B A C D A A B B D 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 A A B C A B D A A D A B B A B II –HƯỚNG DẪN GIẢI Câu 1. Chọn A. Câu 2. Chọn B. Câu 3. Chọn A. Câu 4. Chọn C. Câu 5. Chọn A. Câu 6. Chọn D. Câu 7. Chọn A. Câu 8. Chọn C. Câu 9. Chọn A. Câu 10. Chọn A. Câu 11. Chọn B. Câu 12. Chọn D. Câu 13. Chọn A. Câu 14. Chọn C. Câu 15. Chọn C. Câu 16. Chọn A. Câu 17. Chọn A.     Cách 1:Tính  AB, AC  . AD  0   Cách 2: Lập phương trình (ABC) và thế toạ độ D vào phương trình tìm được. Câu 18. Chọn D. Câu 19. Chọn A. Câu 20. Chọn B.  x2      Gọi Q ( x; y; z ) , MNPQ là hình bình hành thì MN  QP   y  3 z  4  0  Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 10 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 21. Chọn B. Điểm Q  x; y; z      MN  1;2;3 , QP   7  x;7  y;5  z      Vì MNPQ là hình bình hành nên MN  QP  Q  6;5; 2  Câu 22. Chọn A.        AB  (0; 2; 1); AC  ( 1; 3; 2) . Ta thấy AB. AC  0  ABC không vuông.    AB  AC  ABC không cân. Câu 23. Chọn A. Điểm D  x; y; z     AB  1; 1;1 , DC   3  x;4  y;  z     Vì ABCD là hình bình hành nên AB  DC  D  4;5; 1 Câu 24. Chọn B.  2 2 2       Ta có a  b  a  b  2 a b .cos a, b  4  16  8  28  a  b  2 7.   Câu 25. Chọn D. Với M  a; b; c   d  M ,  Oxy    c Câu 26. Chọn C. Với M  a; b; c   hình chiếu vuông góc của M lên trục Oy là M 1  0; b; 0  Câu 27. Chọn A. Với M  a; b; c   hình chiếu vuông góc của M lên mặt phẳng  Oxy  là M 1  a; b; 0  Câu 28. Chọn D. Với M  a; b; c   d  M , Ox   b 2  c 2 Câu 29. Chọn D. Câu 30. Chọn A.  Vı̀ b.c  2  0. Câu 31. Chọn C. Với M  a; b; c   điểm đối xứng của M qua mặt phẳng  Oxy  là M  a; b;  c  Câu 32. Chọn C. Với M  a; b; c   điểm đối xứng của M qua trục Oy là M    a; b; c   M   3; 2;1  a  b  c  0. Câu 33. Chọn B. cos   1.0  1.1  1.m 3. m 2  1   m  1 1   2  m  1  3 m2  1   2 2 2 3  m  1  2  m  1   m  2 3 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 11 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 34. Chọn C.     Tính AB   2;5; 2  , AC   2; 4; 2  , AD   2;5;1  1    V   AB , AC  .AD  3  6 Sử dụng Casio   w 8 1 1 (nhập vectơ AB )  q 5 2 2 2 (nhập vectơ AC )  q 5 2 3 1 (nhập vectơ AD ) C1a6qc(abs) q53q54q57q55= (tính V ) Câu 35. Chọn D. Vı̀ VABCD  1 1   1  h.  AB. AC     6 3 2      AB, AC  . AD       AB, AC  . AD nên h     .     AB. AC    Câu 36. Chọn A.     Tính AB  2;5; 2  , AC  2;4;2  , AD  2;5;1  1    V   AB , AC  .AD  3  6  1 1   V  B.h , với B  S ABC   AB, AC   7 2 , h  d  D,  ABC    3 2 h 3V 3.3 9   B 7 2 7 2 Câu 37. Chọn D. Câu 38. Chọn C. M  Ox  M  a; 0;0  2 2 M cách đều hai điểm A, B nên MA2  MB 2  1  a   22  12   2  a   22  12  2a  3  a  3 2 Câu 39. Chọn A. Câu 40. Chọn A. Câu 41. Chọn B. Câu 42. Chọn D.    u.v  ka  b        a  2b   4k  50   2k  1 a b cos 23  6k  45 Câu 43. Chọn D.       Ta có: u , v    2; m  2; m  6  , u, v  .w  3m  8             8 u , v, w đồng phẳng  u , v  .w  0  m     3 Câu 44. Chọn C. Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 12 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 45. Chọn A.    AB  1; 2;1 , AC   x  2; y  5;3    x2 y5 3 A, B, C thẳng hàng  AB, AC cùng phương     x  5; y  11 1 2 1 Câu 46. Chọn A.       BA  1;0; 1 , CA   1; 1; 1 , CB   2; 1;0      BA.CA  0  tam giác vuông tại A , AB  AC . Câu 47. Chọn C.     1   6 AB   1;0;1 , AC  1;1;1 . S ABC   AB. AC     2 2 Câu 48. Chọn A. Gọi 3 đỉnh theo thứ tự là A, B, C       AB  1; 2;3 , AC   6;6;4  . S hbh   AB, AC     Câu 49. Chọn A.    a, b, c đồng phẳng thì  10  2 2  142   6   2 83      a, b  .c  0  x  2.     Câu 50. Chọn D.     Dễ thấ y chı̉ có x  (0; 0; 0) thỏ a mã n x.a  x.b  x.c  0. Câu 51. Chọn A.  x  3      8  E ( x; y; z ) , từ CE  2 EB   y  . 3  8  z   3  Câu 52. Chọn b. M ( x; y; z) , ABCM là hı̀nh bı̀nh hà nh thı̀  x  1  2  2      AM  BC   y  2  3  1  M (3;6; 1)  P  44. . z 1  3  3  Câu 53. Chọn A. Ta có AB  26, AC  26  tam giá c ABC cân ở A nên D là trung điể m BC  D (0;1;3). Câu 54. Chọn c. Ta có: AB  BC  CA  3 2  ABC đều. Do đó tâm I của đường tròn ngoại tiếp ABC là  5 8 8 trọng tâm của nó. Kết luận: I   ; ;  .  3 3 3 Câu 55. Chọn d.          OA  a ,  A(1;1;0), OB  b  B (1;1;0),OC '  c  C '(1;1;1)         AB  OC  C (2;0;0)  CC '  ( 1;1;1)  OO '  VOABC .O ' A ' B ' C '  Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com       OA, OB  OO '   13 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 56. Chọn A. Câu 57. Chọn A.    b.c cos(b, c)    b.c Câu 58. Chọn B.      AB, AC  . AD 1   Sử du ̣ng công thứ c h   .    13 AB.AC Câu 59. Chọn B.     SI  SA  AI                SI  SB  BI   3SI  SA  SB  SB  AI  BI  CI       SI  SC  CI        1      Vì I là trọng tâm tam giác ABC  AI  BI  CI  0  SI  SA  SB  SC . 3    Câu 60. Chọn D. Thể tích tứ diện: VABCD    1      AB, AC  . AD 6 Câu 61. Chọn A. Áp dụng công thức tổng quát: Cho hình chóp S . ABC có SA  a, SB  b, SC  c và có    , BSC   , CSA   . Gọi G là trọng tâm tam giác ABC, khi đó   ASB 1 2 a  b 2  c 2  2ab cos   2ac cos   2bc  3 Chứng minh:  1      Ta có: SG  SA  SB  SC 3    2  2  2  2           SA  SB  SC  SA  SB  SC  2SA.SB  2SA.SC  2 SB.SC SG   Khi đó SG     1 2 a  b 2  c 2  2ab cos   2ac cos   2bc  3 Áp dụng công thức trên ta tính được SG  a 15 3 Câu 62. Chọn A.   AC  1; 3; 2  , MB  2  m;  6  m;2  m    2 2 MB  2 AC  m2  m 2   m  6   3m 2  12m  36  3  m  2   24   Để MB  2 AC nhỏ nhất thì m  2 Câu 63. Chọn B.     MA   2  m;5  m;1  m  , MB   2  m; 6  m; 2  m  , MC  1  m;2  m; 1  m  2 MA2  MB 2  MC 2  3m 2  24m  20  28  3  m  4   28 Để MA2  MB 2  MC 2 đạt giá trị lớn nhất thì m  4 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 14 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 64. Chọn C.     1   3 3 Ta có AB   1; 1; 2  , AC  1; 2;1  S ABC   AB, AC     2 2       DC   2; 2; 4  , AB   1; 1;2   DC  2. AB  ABCD là hình thang và 9 3 1 . Vì VS . ABCD  SH .S ABCD  SH  3 3 2 3 Lại có H là trung điểm của CD  H  0;1;5         Gọi S  a; b; c   SH    a;1  b;5  c   SH  k  AB, AC   k  3;3;3   3k ;3k ;3k    S ABCD  3S ABC  Suy ra 3 3  9k 2  9k 2  9k 2  k  1   +) Với k  1  SH   3;3;3  S  3; 2;2    +) Với k  1  SH   3; 3; 3  S  3;4;8  Suy ra I  0;1;3 Câu 65. Chọn A. Đường thẳng AB cắt mặt phẳng (Oyz ) tại điểm M  M (0; y; z )    MA  (2; 1  y; 7  z ), MB  (4;5  y; 2  z ) 2  k .4    1 Từ MA  k MB ta có hệ 1  y  k  5  y   k  2  7  z  k   2  z  Câu 66. Chọn B. D  Oy  D(0; y;0)     Ta có: AB  1; 1;2  , AD   2; y  1;1 , AC   0; 2; 4           AB. AC    0; 4; 2    AB. AC  . AD  4 y  2     1 VABCD  5  4 y  2  5  y  7; y  8  D1  0; 7; 0  , D2  0;8;0   y1  y2  1 6 Câu 67. Chọn D. Gọi D  x; y; z  . DB AB 2 14   2 DC AC 14 5  3  x  2 1  x  x  3      Vì D nằm giữa B, C (phân giác trong) nên DB  2 DC   y  2  3  y    y  2  z  4 2  z  2  7  z     205 5  Suy ra D  ; 2; 4   OD  3 3  Câu 68. Chọn A. D ( x; y; z ) là chân đườ ng phân giá c trong gó cA củ a tam giá c ABC . Ta có   DB AB 1  17 11 2 74    DC  2 DB  D( ; ; 1)  AD  . DC AC 2 3 3 3 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 15 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 69. Chọn A.  7 14  Gọi G là trọng tâm của ABCD ta có: G  ; ;0  . 3 3  Ta có: MA2  MB 2  MC 2  MD 2  4MG 2  GA2  GB 2  GC 2  GD 2  7 14   GA2  GB 2  GC 2  GD 2 . Dấu bằng xảy ra khi M  G  ; ;0   x  y  z  7 . 3 3  Câu 70. Chọn D. H ( x; y; z ) là trực tâm của ABC  BH  AC , CH  AB, H  ( ABC )    BH . AC  0     2 29 1 870    2 29 1   CH . AB  0   x  ; y  ; z    H  ; ;    OH  . 15 15 3 15  15 15 3           AB, AC  . AH  0  Câu 71. Chọn A. Giả sử B( x; y;0)  (Oxy ), C (0;0; z )  Oz .        AH  BC  AH .BC  0        H là trực tâm của tam giác ABC  CH  AB  CH . AB  0           AB, AC , AH ñoàng phaúng  AB, AH  . AC  0    x  z  0 3  177 17  177 3  177   2x  y  7  0  x ;y ;z  4 2 4 3x  3 y  yz  z  0   3  177 17  177   3  177   B ; ; 0  , C  0; 0; .  4 2   4  Câu 72. Chọn B. Ta có trung điểm BD là I (1; 2; 4) , BD  12 và điểm A thuộc mặt phẳng (Oxy ) nên A(a; b;0) .  AB 2  AD 2 (a  3)2  b 2  82  (a  5)2  (b  4)2   2  ABCD là hình vuông    1  2 2 2 2 (a  1)  (b  2)  4  36  AI   BD   2   17  a  5 b  4  2a  a  1  hoặc    2 2 b  2 (a  1)  (6  2a )  20 b  14  5   17 14  ; 0  (loa ̣i).  A(1; 2; 0) hoặc A  ;  5 5  Với A(1; 2;0)  C (3; 6;8) . Câu 73. Chọn B. Ta có AC 2  BC 2  9  9  AB 2  tam giá c ABC vuông ta ̣i C . 1 CA.CB S ABC 3.3 2 2 Suy ra: r     93 6 1 p 3 2 3 3  AB  BC  CA 2 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 16 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Câu 74. Chọn A.       OM   3;0;0  , ON   m; n;0   OM .ON  3m          OM .ON 1 m 1 0 OM .ON  OM . ON cos 60        OM . ON 2 m2  n2 2 MN   m  3 2  n 2  13 suy ra m  2; n  2 3      1 OM , ON  .OP  6 3 p  V  6 3 p  3  p   3   6 Vậy A  2  2.12  3  29. Câu 75. Chọn B. I ( x; y; z ) là tâm đường tròn ngoại tiếp tam giá c ABC  AI  BI  CI , I  ( ABC )  AI 2  BI 2  14 61 1   14 61 1    x  ; y  ; z    I  ; ;    P  50.  CI 2  BI 2 15 30 3   15 30 3        AB, AC  AI  0    Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 17 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN BÀI 2. PHƯƠNG TRÌNH MẶT CẦU A - KIẾN THỨC CƠ BẢN 1. Định nghĩa I R A Cho điểm I cố định và một số thực dương R. Tập hợp tất cả những điểm M trong không gian cách I một khoảng R được gọi là mặt cầu tâm I, bán kính R. B Kí hiệu: S  I ; R   S  I ; R   M | IM  R 2. Các dạng phương trình mặt cầu Dạng 2 : Phương trình tổng quát Dạng 1 : Phương trình chính tắc Mặt cầu (S) có tâm I  a; b; c  , bán kính R  0 . 2 2  S  :  x  a    y  b   z  c 2 (S ) : x 2  y 2  z 2  2ax  2by  2cz  d  0 (2)  Điều kiện để phương trình (2) là phương trình  R2 mặt cầu: a 2  b2  c 2  d  0  (S) có tâm I  a; b; c  .  (S) có bán kính: R  a 2  b 2  c 2  d . 3. Vị trí tương đối giữa mặt cầu và mặt phẳng Cho mặt cầu S  I ; R  và mặt phẳng  P  . Gọi H là hình chiếu vuông góc của I lên  P   d  IH là khoảng cách từ I đến mặt phẳng  P  . Khi đó : + Nếu d  R : Mặt cầu và mặt + Nếu d  R : Mặt phẳng tiếp xúc + Nếu d  R : Mặt phẳng  P  phẳng không có điểm chung. mặt cầu. Lúc đó:  P  là mặt phẳng cắt mặt cầu theo thiết diện là tiếp diện của mặt cầu và H là tiếp đường tròn có tâm I' và bán điểm. kính r  R 2  IH 2 M1 R I I R M2 P H P H I d R r I' α Lưu ý: Khi mặt phẳng (P) đi qua tâm I thì mặt phẳng (P) được gọi là mặt phẳng kính và thiết diện lúc đó được gọi là đường tròn lớn. Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 18 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 4. Vị trí tương đối giữa mặt cầu và đường thẳng Cho mặt cầu S  I ; R  và đường thẳng  . Gọi H là hình chiếu của I lên  . Khi đó : + IH  R :  không cắt mặt + IH  R :  tiếp xúc với mặt cầu. + IH  R :  cắt mặt cầu tại cầu.  là tiếp tuyến của (S) và H là tiếp hai điểm phân biệt. điểm.   H H I R Δ R R I H I B A * Lưu ý: Trong trường hợp  cắt (S) tại 2 điểm A, B thì bán kính R của (S) được tính như sau: + Xác định: d  I ;    IH . + Lúc đó:  AB  R  IH  AH  IH     2  2 2 2 2 ĐƯỜNG TRÒN TRONG KHÔNG GIAN OXYZ * Đường tròn (C) trong không gian Oxyz, được xem là giao tuyến của (S) và mặt phẳng ( ) . S  :   : x 2  y 2  z 2  2ax  2by  2cz  d  0 Ax  By  Cz  D  0 I * Xác định tâm I’ và bán kính R’ của (C). + Tâm I '  d    . R Trong đó d là đường thẳng đi qua I và vuông góc với mp ( ) 2 + Bán kính R '  R 2   II '  R 2   d  I ;       2 I' R'  5/ Điều kiện tiếp xúc : Cho mặt cầu (S) tâm I, bán kính R. + Đường thẳng  là tiếp tuyến của (S)  d  I ;    R. + Mặt phẳng   là tiếp diện của (S)  d  I ;     R. * Lưu ý: Tìm tiếp điểm M 0  x0 ; y0 ; z0  .     IM 0  ad  IM 0  d Sử dụng tính chất :        IM 0 // n  IM 0     Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 19 | T H B T N Mã số tài liệu: BTN-CD8 CHINH PHỤC KỲ THI THPTQG 2017 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN B - KỸ NĂNG CƠ BẢN Dạng 1: VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp: * Thuật toán 1: Bước 1: Xác định tâm I  a; b; c  . Bước 2: Xác định bán kính R của (S). Bước 3: Mặt cầu (S) có tâm I  a; b; c  và bán kính R . (S ) : 2 2  x  a   y  b   z  c 2  R2 * Thuật toán 2: Gọi phương trình ( S ) : x 2  y 2  z 2  2ax  2by  2cz  d  0 Phương trình (S) hoàn toàn xác định nếu biết được a, b, c, d . ( a 2  b 2  c 2  d  0 ) Bài tập 1 : Viết phương trình mặt cầu (S), trong các trường hợp sau: a)  S  có tâm I  2; 2; 3  và bán kính R  3 . b)  S  có tâm I 1; 2; 0  và (S) qua P  2; 2;1 . c)  S  có đường kính AB với A 1;3;1 , B  2; 0;1 . Bài giải: 2 2 2 a) Mặt cầu tâm I  2; 2; 3  và bán kính R  3 , có phương trình: (S):  x  2    y  2    z  3  9   b) Ta có: IP  1; 4;1  IP  3 2 . 2 2 Mặt cầu tâm I 1; 2; 0  và bán kính R  IP  3 2 , có phương trình (S):  x  1   y  2   z 2  18   c) Ta có: AB   3; 3;0   AB  3 2 .  1 3  Gọi I là trung điểm AB  I   ; ;1 .  2 2  AB 3 2  1 3  Mặt cầu tâm I   ; ;1 và bán kính R   , có phương trình: 2 2  2 2  2 2 1  3 9 2  (S):  x     y     z  1  . 2  2 2  Bài tập 2 : Viết phương trình mặt cầu (S) , trong các trường hợp sau: a) (S) qua A  3;1; 0  , B  5;5;0  và tâm I thuộc trục Ox . b) (S) có tâm O và tiếp xúc mặt phẳng   : 16 x  15 y  12 z  75  0 . c) (S) có tâm I  1; 2; 0  và có một tiếp tuyến là đường thẳng  : x  1 y 1 z   . 1 1 3 Bài giải:     a) Gọi I  a; 0; 0   Ox . Ta có : IA   3  a;1;0  , IB   5  a;5;0  . Do (S) đi qua A, B  IA  IB  3  a  2 1  5  a  2  25  4a  40  a  10  I 10; 0;0  và IA  5 2 . 2 Mặt cầu tâm I 10; 0;0  và bán kính R  5 2 , có phương trình (S) :  x  10   y 2  z 2  50 b) Do (S) tiếp xúc với    d  O,     R  R  75  3. 25 Chuyên đề 8 – Phương pháp tọa độ trong không gian Oxyz Cần file Word vui lòng liên hệ: toanhocbactrungnam@gmail.com 20 | T H B T N Mã số tài liệu: BTN-CD8
- Xem thêm -